|
1
|
Ushijima T and Sasako M: Focus on gastric
cancer. Cancer Cell. 5:121–125. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Smith MG, Hold GL, Tahara E and El-Omar
EM: Cellular and molecular aspects of gastric cancer. World J
Gastroenterol. 12:2979–2990. 2006.PubMed/NCBI
|
|
3
|
Tahara E: Genetic pathways of two types of
gastric cancer. IARC Sci Publ. 157:327–349. 2004.PubMed/NCBI
|
|
4
|
Lee JH, Abraham SC, Kim HS, Nam JH, Choi
C, Lee MC, Park CS, Juhng SW, Rashid A, Hamilton SR, et al: Inverse
relationship between APC gene mutation in gastric adenomas and
development of adenocarcinoma. Am J Pathol. 161:611–618. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Park WS, Oh RR, Park JY, Lee SH, Shin MS,
Kim YS, Kim SY, Lee HK, Kim PJ, Oh ST, et al: Frequent somatic
mutations of the beta-catenin gene in intestinal-type gastric
cancer. Cancer Res. 59:4257–4260. 1999.PubMed/NCBI
|
|
6
|
Maesawa C, Tamura G, Suzuki Y, Ogasawara
S, Sakata K, Kashiwaba M and Satodate R: The sequential
accumulation of genetic alterations characteristic of the
colorectal adenoma-carcinoma sequence does not occur between
gastric adenoma and adenocarcinoma. J Pathol. 176:249–258. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Becker KF, Atkinson MJ, Reich U, Becker I,
Nekarda H, Siewert JR and Höfler H: E-cadherin gene mutations
provide clues to diffuse type gastric carcinomas. Cancer Res.
54:3845–3852. 1994.PubMed/NCBI
|
|
8
|
Li QL, Ito K, Sakakura C, Fukamachi H,
Inoue K, Chi XZ, Lee KY, Nomura S, Lee CW, Han SB, et al: Causal
relationship between the loss of RUNX3 expression and gastric
cancer. Cell. 109:113–124. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Hirst M and Marra MA: Epigenetics and
human disease. Int J Biochem Cell Biol. 41:136–146. 2009.
View Article : Google Scholar
|
|
10
|
Panani AD: Cytogenetic and molecular
aspects of gastric cancer: Clinical implications. Cancer Lett.
266:99–115. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Waddington CH: An Introduction to Modern
Genetics. Allen & Unwin; London: 1939
|
|
12
|
Riggs AD, Martienssen RA and Ruso VEA:
Epigenetic mechanisms of gene regulation. Cold Spring Harbor
Laboratory Press; ISBN: 0-87969-490-41996
|
|
13
|
Mulero-Navarro S and Esteller M:
Epigenetic biomarkers for human cancer: The time is now. Crit Rev
Oncol Hematol. 68:1–11. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Khan FA and Shukla AN: Pathogenesis and
treatment of gastric carcinoma: 'an up-date with brief review'. J
Cancer Res Ther. 2:196–199. 2006. View Article : Google Scholar
|
|
15
|
Nitti D, Mocellin S, Marchet A, Pilati P
and Lise M: Recent advances in conventional and molecular
prognostic factors for gastric carcinoma. Surg Oncol Clin N Am.
17:467–483. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Fan CY: Epigenetic alterations in head and
neck cancer: Prevalence, clinical significance, and implications.
Curr Oncol Rep. 6:152–161. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Tischoff I, Wittekind C and Tannapfel A:
Role of epigenetic alterations in cholangiocarcinoma. J
Hepatobiliary Pancreat Surg. 13:274–279. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Robertson KD: DNA methylation and human
disease. Nat Rev Genet. 6:597–610. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Bird AP: CpG-rich islands and the function
of DNA methylation. Nature. 321:209–213. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Nakajima T, Enomoto S and Ushijima T: DNA
methylation: A marker for carcinogen exposure and cancer risk.
Environ Health Prev Med. 13:8–15. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Calin GA and Croce CM: MicroRNA signatures
in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Chen CZ: MicroRNAs as oncogenes and tumor
suppressors. N Engl J Med. 353:1768–1771. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Hinshelwood RA and Clark SJ: Breast cancer
epigenetics: Normal human mammary epithelial cells as a model
system. J Mol Med Berl. 86:1315–1328. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Jones PA and Baylin SB: The fundamental
role of epigenetic events in cancer. Nat Rev Genet. 3:415–428.
2002.PubMed/NCBI
|
|
25
|
Karpf AR and Jones DA: Reactivating the
expression of methylation silenced genes in human cancer. Oncogene.
21:5496–5503. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Sparmann A and van Lohuizen M: Polycomb
silencers control cell fate, development and cancer. Nat Rev
Cancer. 6:846–856. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Lund AH and van Lohuizen M: Polycomb
complexes and silencing mechanisms. Curr Opin Cell Biol.
16:239–246. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Thacker J: The RAD51 gene family, genetic
instability and cancer. Cancer Lett. 219:125–135. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kim K, Park U, Wang J, Lee J, Park S, Kim
S, Choi D, Kim C and Park J: Gene profiling of colonic serrated
adenomas by using oligonucleotide microarray. Int J Colorectal Dis.
23:569–580. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Mancino M, Strizzi L, Wechselberger C,
Watanabe K, Gonzales M, Hamada S, Normanno N, Salomon DS and Bianco
C: Regulation of human Cripto-1 gene expression by TGF-beta1 and
BMP-4 in embryonal and colon cancer cells. J Cell Physiol. 215–203.
2008.
|
|
31
|
Forn M, Díez-Villanueva A, Merlos-Suárez
A, Muñoz M, Lois S, Carriò E, Jordà M, Bigas A, Batlle E and
Peinado MA: Overlapping DNA methylation dynamics in mouse
intestinal cell differentiation and early stages of malignant
progression. PLoS One. 10:e01232632015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Bae JH, Kim JG, Heo K, Yang K, Kim TO and
Yi JM: Identification of radiation-induced aberrant hypomethylation
in colon cancer. BMC Genomics. 16:562015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ng JM and Yu J: Promoter hypermethylation
of tumour suppressor genes as potential biomarkers in colorectal
cancer. Int J Mol Sci. 16:2472–2496. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
An C, Choi IS, Yao JC, Worah S, Xie K,
Mansfield PF, Ajani JA, Rashid A, Hamilton SR and Wu TT: Prognostic
significance of CpG island methylator phenotype and microsatellite
instability in gastric carcinoma. Clin Cancer Res. 11:656–663.
2005.PubMed/NCBI
|
|
35
|
Song SH, Jong HS, Choi HH, Kang SH, Ryu
MH, Kim NK, Kim WH and Bang YJ: Methylation of specific CpG sites
in the promoter region could significantly down-regulate p16(INK4a)
expression in gastric adenocarcinoma. Int J Cancer. 87:236–240.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Guimarães AC, Lima EM, Khayat AS, Girão
Faria MH, Barem Rabenhorst SH, Pitombeira MV, Assumpção PP, de
Oliveira Bahia M, Lima de Lima PD, de Arruda Cardoso Smith M, et
al: Interrelationships among chromosome aneuploidy, promoter
hypermethylation, and protein expression of the CDKN2A gene in
individuals from northern Brazil with gastric adenocarcinoma.
Cancer Genet Cytogenet. 179:45–51. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Lee JH, Park SJ, Abraham SC, Seo JS, Nam
JH, Choi C, Juhng SW, Rashid A, Hamilton SR and Wu TT: Frequent CpG
island methylation in precursor lesions and early gastric
adenocarcinomas. Oncogene. 23:4646–4654. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Fleisher AS, Esteller M, Wang S, Tamura G,
Suzuki H, Yin J, Zou TT, Abraham JM, Kong D, Smolinski KN, et al:
Hypermethylation of the hMLH1 gene promoter in human gastric
cancers with microsatellite instability. Cancer Res. 59:1090–1095.
1999.PubMed/NCBI
|
|
39
|
Leung SY, Yuen ST, Chung LP, Chu KM, Chan
AS and Ho JC: hMLH1 promoter methylation and lack of hMLH1
expression in sporadic gastric carcinomas with high-frequency
microsatellite instability. Cancer Res. 59:159–164. 1999.PubMed/NCBI
|
|
40
|
Jung HY, Jung KC, Shim YH, Ro JY and Kang
GH: Methylation of the hMLH1 promoter in multiple gastric
carcinomas with microsatellite instability. Pathol Int. 51:445–451.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhang YJ, Chen Y, Ahsan H, Lunn RM, Lee
PH, Chen CJ and Santella RM: Inactivation of the DNA repair gene
O6-methylguanine-DNA methyltransferase by promoter hypermethylation
and its relationship to aflatoxin B1-DNA adducts and p53 mutation
in hepatocellular carcinoma. Int J Cancer. 103:440–444. 2003.
View Article : Google Scholar
|
|
42
|
Zazula M, Ferreira AM, Czopek JP,
Kolodziejczyk P, Sinczak-Kuta A, Klimkowska A, Wojcik P, Okon K,
Bialas M, Kulig J, et al: CDH1 gene promoter hypermethylation in
gastric cancer: Relationship to Goseki grading, microsatellite
instability status, and EBV invasion. Diagn Mol Pathol. 15:24–29.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Graziano F, Arduini F, Ruzzo A, Bearzi I,
Humar B, More H, Silva R, Muretto P, Guilford P, Testa E, et al:
Prognostic analysis of E-cadherin gene promoter hypermethylation in
patients with surgically resected, node-positive, diffuse gastric
cancer. Clin Cancer Res. 10:2784–2789. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Liu WT, Jiao HL, Yang YL, Wang D and Zhang
WM: Correlation of E-cadherin hypermethylation to tumorigenesis and
development of gastric cancer. Ai Zheng. 26:1199–1203. 2007.In
Chinese. PubMed/NCBI
|
|
45
|
Chan AO: E-cadherin in gastric cancer.
World J Gastroenterol. 12:199–203. 2006.PubMed/NCBI
|
|
46
|
Chan AO, Lam SK, Wong BC, Wong WM, Yuen
MF, Yeung YH, Hui WM, Rashid A and Kwong YL: Promoter methylation
of E-cadherin gene in gastric mucosa associated with Helicobacter
pylori infection and in gastric cancer. Gut. 52:502–506. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Terrés AM, Pajares JM, O'Toole D, Ahern S
and Kelleher D: H. pylori infection is associated with
downregulation of E-cadherin, a molecule involved in epithelial
cell adhesion and proliferation control. J Clin Pathol. 51:410–412.
1998. View Article : Google Scholar
|
|
48
|
Miotto E, Sabbioni S, Veronese A, Calin
GA, Gullini S, Liboni A, Gramantieri L, Bolondi L, Ferrazzi E, Gafà
R, et al: Frequent aberrant methylation of the CDH4 gene promoter
in human colorectal and gastric cancer. Cancer Res. 64:8156–8159.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Chan AW, Chan MW, Lee TL, Ng EK, Leung WK,
Lau JY, Tong JH, Chan FK and To KF: Promoter hypermethylation of
Death-associated protein-kinase gene associated with advance stage
gastric cancer. Oncol Rep. 13:937–941. 2005.PubMed/NCBI
|
|
50
|
Byun DS, Lee MG, Chae KS, Ryu BG and Chi
SG: Frequent epigenetic inactivation of RASSF1A by aberrant
promoter hypermethylation in human gastric adenocarcinoma. Cancer
Res. 61:7034–7038. 2001.PubMed/NCBI
|
|
51
|
Byun DS, Cho K, Ryu BK, Lee MG, Kang MJ,
Kim HR and Chi SG: Hypermethylation of XIAP-associated factor 1, a
putative tumor suppressor gene from the 17p13.2 locus, in human
gastric adenocarcinomas. Cancer Res. 63:7068–7075. 2003.PubMed/NCBI
|
|
52
|
Jee CD, Lee HS, Bae SI, Yang HK, Lee YM,
Rho MS and Kim WH: Loss of caspase-1 gene expression in human
gastric carcinomas and cell lines. Int J Oncol. 26:1265–1271.
2005.PubMed/NCBI
|
|
53
|
Jung Y, Park J, Bang YJ and Kim TY: Gene
silencing of TSPYL5 mediated by aberrant promoter methylation in
gastric cancers. Lab Invest. 88:153–160. 2008. View Article : Google Scholar
|
|
54
|
Lee JH, Byun DS, Lee MG, Ryu BK, Kang MJ,
Chae KS, Lee KY, Kim HJ, Park H and Chi SG: Frequent epigenetic
inactivation of hSRBC in gastric cancer and its implication in
attenuated p53 response to stresses. Int J Cancer. 122:1573–1584.
2008. View Article : Google Scholar
|
|
55
|
Sato H, Suzuki H, Toyota M, Nojima M,
Maruyama R, Sasaki S, Takagi H, Sogabe Y, Sasaki Y, Idogawa M, et
al: Frequent epigenetic inactivation of DICKKOPF family genes in
human gastrointestinal tumors. Carcinogenesis. 28:2459–2466. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Cheng YY, Yu J, Wong YP, Man EP, To KF,
Jin VX, Li J, Tao Q, Sung JJ, Chan FK, et al: Frequent epigenetic
inactivation of secreted frizzled-related protein 2 (SFRP2) by
promoter methylation in human gastric cancer. Br J Cancer.
97:895–901. 2007.PubMed/NCBI
|
|
57
|
Nojima M, Suzuki H, Toyota M, Watanabe Y,
Maruyama R, Sasaki S, Sasaki Y, Mita H, Nishikawa N, Yamaguchi K,
et al: Frequent epigenetic inactivation of SFRP genes and
constitutive activation of Wnt signaling in gastric cancer.
Oncogene. 26:4699–4713. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ebert MP, Yu J, Hoffmann J, Rocco A,
Röcken C, Kahmann S, Müller O, Korc M, Sung JJ and Malfertheiner P:
Loss of beta-catenin expression in metastatic gastric cancer. J
Clin Oncol. 21:1708–1714. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Takada H, Imoto I, Tsuda H, Nakanishi Y,
Sakakura C, Mitsufuji S, Hirohashi S and Inazawa J: Genomic loss
and epigenetic silencing of very-low-density lipoprotein receptor
involved in gastric carcinogenesis. Oncogene. 25:6554–6562. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Oshimo Y, Kuraoka K, Nakayama H, Kitadai
Y, Yoshida K, Chayama K and Yasui W: Epigenetic inactivation of
SOCS-1 by CpG island hypermethylation in human gastric carcinoma.
Int J Cancer. 112:1003–1009. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Choi MC, Jong HS, Kim TY, Song SH, Lee DS,
Lee JW, Kim TY, Kim NK and Bang YJ: AKAP12/Gravin is inactivated by
epigenetic mechanism in human gastric carcinoma and shows growth
suppressor activity. Oncogene. 23:7095–7103. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Oshimo Y, Oue N, Mitani Y, Nakayama H,
Kitadai Y, Yoshida K, Chayama K and Yasui W: Frequent epigenetic
inactivation of RIZ1 by promoter hypermethylation in human gastric
carcinoma. Int J Cancer. 110:212–218. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yamamichi N, Inada K, Ichinose M,
Yamamichi-Nishina M, Mizutani T, Watanabe H, Shiogama K, Fujishiro
M, Okazaki T, Yahagi N, et al: Frequent loss of Brm expression in
gastric cancer correlates with histologic features and
differentiation state. Cancer Res. 67:10727–10735. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Hamai Y, Oue N, Mitani Y, Nakayama H, Ito
R, Matsusaki K, Yoshida K, Toge T and Yasui W: DNA hypermethylation
and histone hypoacetylation of the HLTF gene are associated with
reduced expression in gastric carcinoma. Cancer Sci. 94:692–698.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kim TY, Lee HJ, Hwang KS, Lee M, Kim JW,
Bang YJ and Kang GH: Methylation of RUNX3 in various types of human
cancers and premalignant stages of gastric carcinoma. Lab Invest.
84:479–484. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Hayashi K, Yokozaki H, Goodison S, Oue N,
Suzuki T, Lotan R, Yasui W and Tahara E: Inactivation of retinoic
acid receptor beta by promoter CpG hypermethylation in gastric
cancer. Differentiation. 68:13–21. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Oue N, Matsumura S, Nakayama H, Kitadai Y,
Taniyama K, Matsusaki K and Yasui W: Reduced expression of the TSP1
gene and its association with promoter hypermethylation in gastric
carcinoma. Oncology. 64:423–429. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kim TY, Jong HS, Song SH, Dimtchev A,
Jeong SJ, Lee JW, Kim TY, Kim NK, Jung M and Bang YJ:
Transcriptional silencing of the DLC-1 tumor suppressor gene by
epigenetic mechanism in gastric cancer cells. Oncogene.
22:3943–3951. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Yu J, Leung WK, Lee TL, Tse PC, To KF and
Sung JJ: Promoter hypermethylation of cyclooxygenase-2 in gastric
carcinoma. Int J Oncol. 22:1025–1031. 2003.PubMed/NCBI
|
|
70
|
de Maat MF, van de Velde CJ, Umetani N, de
Heer P, Putter H, van Hoesel AQ, Meijer GA, van Grieken NC, Kuppen
PJ, Bilchik AJ, et al: Epigenetic silencing of cyclooxygenase-2
affects clinical outcome in gastric cancer. J Clin Oncol.
25:4887–4894. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Poplawski T, Tomaszewska K, Galicki M,
Morawiec Z and Blasiak J: Promoter methylation of cancer-related
genes in gastric carcinoma. Exp Oncol. 30:112–116. 2008.PubMed/NCBI
|
|
72
|
Lee TL, Leung WK, Chan MW, Ng EK, Tong JH,
Lo KW, Chung SC, Sung JJ and To KF: Detection of gene promoter
hypermethylation in the tumor and serum of patients with gastric
carcinoma. Clin Cancer Res. 8:1761–1766. 2002.PubMed/NCBI
|
|
73
|
Kang GH, Lee S, Kim JS and Jung HY:
Profile of aberrant CpG island methylation along multistep gastric
carcinogenesis. Lab Invest. 83:519–526. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Oue N, Motoshita J, Yokozaki H, Hayashi K,
Tahara E, Taniyama K, Matsusaki K and Yasui W: Distinct promoter
hypermethylation of p16INK4a, CDH1, and RAR-beta in
intestinal, diffuse-adherent, and diffuse-scattered type gastric
carcinomas. J Pathol. 198:55–59. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Honda T, Tamura G, Waki T, Kawata S,
Terashima M, Nishizuka S and Motoyama T: Demethylation of MAGE
promoters during gastric cancer progression. Br J Cancer.
90:838–843. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Yanagawa N, Tamura G, Honda T, Endoh M,
Nishizuka S and Motoyama T: Demethylation of the synuclein gamma
gene CpG island in primary gastric cancers and gastric cancer cell
lines. Clin Cancer Res. 10:2447–2451. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lima EM, Leal MF, Burbano RR, Khayat AS,
Assumpção PP, Bello MJ, Rey JA, Smith MA and Casartelli C:
Methylation status of ANAPC1, CDKN2A and TP53 promoter genes in
individuals with gastric cancer. Braz J Med Biol Res. 41:539–543.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Park YS, Jin MY, Kim YJ, Yook JH, Kim BS
and Jang SJ: The global histone modification pattern correlates
with cancer recurrence and overall survival in gastric
adenocarcinoma. Ann Surg Oncol. 15:1968–1976. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Heard E, Rougeulle C, Arnaud D, Avner P,
Allis CD and Spector DL: Methylation of histone H3 at Lys-9 is an
early mark on the X chromosome during X inactivation. Cell.
107:727–738. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Mermoud JE, Popova B, Peters AH, Jenuwein
T and Brockdorff N: Histone H3 lysine 9 methylation occurs rapidly
at the onset of random X chromosome inactivation. Curr Biol.
12:247–251. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Nguyen CT, Weisenberger DJ, Velicescu M,
Gonzales FA, Lin JC, Liang G and Jones PA: Histone H3-lysine 9
methylation is associated with aberrant gene silencing in cancer
cells and is rapidly reversed by 5-aza-2′-deoxycytidine. Cancer
Res. 62:6456–6461. 2002.PubMed/NCBI
|
|
82
|
Schotta G, Lachner M, Sarma K, Ebert A,
Sengupta R, Reuter G, Reinberg D and Jenuwein T: A silencing
pathway to induce H3-K9 and H4-K20 trimethylation at constitutive
heterochromatin. Genes Dev. 18:1251–1262. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Kondo Y, Shen L and Issa JP: Critical role
of histone methylation in tumor suppressor gene silencing in
colorectal cancer. Mol Cell Biol. 23:206–215. 2003. View Article : Google Scholar :
|
|
84
|
Watanabe Y, Toyota M, Kondo Y, Suzuki H,
Imai T, Ohe-Toyota M, Maruyama R, Nojima M, Sasaki Y, Sekido Y, et
al: PRDM5 identified as a target of epigenetic silencing in
colorectal and gastric cancer. Clin Cancer Res. 13:4786–4794. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ono S, Oue N, Kuniyasu H, Suzuki T, Ito R,
Matsusaki K, Ishikawa T, Tahara E and Yasui W: Acetylated histone
H4 is reduced in human gastric adenomas and carcinomas. J Exp Clin
Cancer Res. 21:377–382. 2002.PubMed/NCBI
|
|
86
|
Mitani Y, Oue N, Hamai Y, Aung PP,
Matsumura S, Nakayama H, Kamata N and Yasui W: Histone H3
acetylation is associated with reduced p21(WAF1/CIP1) expression by
gastric carcinoma. J Pathol. 205:65–73. 2005. View Article : Google Scholar
|
|
87
|
Xia G, Schneider-Stock R, Diestel A,
Habold C, Krueger S, Roessner A, Naumann M and Lendeckel U:
Helicobacter pylori regulates p21(WAF1) by histone H4 acetylation.
Biochem Biophys Res Commun. 369:526–531. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Yi Kim D, Kyoon Joo J, Kyu Park Y, Yeob
Ryu S, Soo Kim H, Kyun Noh B, Hwa Lee K and Hyuk Lee J: E-cadherin
expression in early gastric carcinoma and correlation with lymph
node metastasis. J Surg Oncol. 96:429–435. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Rich S, Ganz R and Levy PS: Comparative
actions of hydralazine, nifedipine and amrinone in primary
pulmonary hypertension. Am J Cardiol. 52:1104–1107. 1983.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Windle J, Prystowsky EN, Miles WM and
Heger JJ: Pharmacokinetic and electrophysiologic interactions of
amiodarone and procainamide. Clin Pharmacol Ther. 41:603–610. 1987.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Strolin Benedetti M, Rumigny JF and
Dostert P: Mechanisms of action and biochemical toxicology of
valproic acid. Encephale. 10:177–188. 1984.In French.
|
|
92
|
Kaminskas E, Farrell A, Abraham S, Baird
A, Hsieh LS, Lee SL, Leighton JK, Patel H, Rahman A, Sridhara R, et
al: FDA: Approval summary: Azacitidine for treatment of
myelodysplastic syndrome subtypes. Clin Cancer Res. 11:3604–3608.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Issa JP, Gharibyan V, Cortes J, Jelinek J,
Morris G, Verstovsek S, Talpaz M, Garcia-Manero G and Kantarjian
HM: Phase II study of low-dose decitabine in patients with chronic
myelogenous leukemia resistant to imatinib mesylate. J Clin Oncol.
23:3948–3956. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zambrano P, Segura-Pacheco B,
Perez-Cardenas E, Cetina L, Revilla-Vazquez A, Taja-Chayeb L,
Chavez-Blanco A, Angeles E, Cabrera G, Sandoval K, et al: A phase I
study of hydralazine to demethylate and reactivate the expression
of tumor suppressor genes. BMC Cancer. 5:442005. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Zhang X, Yashiro M, Ren J and Hirakawa K:
Histone deacetylase inhibitor, trichostatin A, increases the
chemosensitivity of anticancer drugs in gastric cancer cell lines.
Oncol Rep. 16:563–568. 2006.PubMed/NCBI
|
|
96
|
Riester D, Hildmann C and Schwienhorst A:
Histone deacetylase inhibitors - turning epigenic mechanisms of
gene regulation into tools of therapeutic intervention in malignant
and other diseases. Appl Microbiol Biotechnol. 75:499–514. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Ji M, Lee EJ, Kim KB, Kim Y, Sung R, Lee
SJ, Kim DS and Park SM: HDAC inhibitors induce
epithelial-mesenchymal transition in colon carcinoma cells. Oncol
Rep. 33:2299–2308. 2015.PubMed/NCBI
|
|
98
|
Kang Y, Nian H, Rajendran P, Kim E,
Dashwood WM, Pinto JT, Boardman LA, Thibodeau SN, Limburg PJ, Löhr
CV, et al: HDAC8 and STAT3 repress BMF gene activity in colon
cancer cells. Cell Death Dis. 5:e14762014. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Satoh A, Toyota M, Itoh F, Sasaki Y,
Suzuki H, Ogi K, Kikuchi T, Mita H, Yamashita T, Kojima T, et al:
Epigenetic inactivation of CHFR and sensitivity to microtubule
inhibitors in gastric cancer. Cancer Res. 63:8606–8613.
2003.PubMed/NCBI
|
|
100
|
Koga Y, Kitajima Y, Miyoshi A, Sato K,
Sato S and Miyazaki K: The significance of aberrant CHFR
methylation for clinical response to microtubule inhibitors in
gastric cancer. J Gastroenterol. 41:133–139. 2006. View Article : Google Scholar : PubMed/NCBI
|