|
1
|
Timmins JM, Lee JY, Boudyguina E, Kluckman
KD, Brunham LR, Mulya A, Gebre AK, Coutinho JM, Colvin PL, Smith
TL, et al: Targeted inactivation of hepatic Abca1 causes profound
hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. J
Clin Invest. 115:1333–1342. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Vaisar T, Pennathur S, Green PS, Gharib
SA, Hoofnagle AN, Cheung MC, Byun J, Vuletic S, Kassim S, Singh P,
et al: Shotgun proteomics implicates protease inhibition and
complement activation in the antiinflammatory properties of HDL. J
Clin Invest. 117:746–756. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
3
|
Davidsson P, Hulthe J, Fagerberg B and
Camejo G: Proteomics of apolipoproteins and associated proteins
from plasma high-density lipoproteins. Arterioscler Thromb Vasc
Biol. 30:156–163. 2010. View Article : Google Scholar
|
|
4
|
Boisfer E, Stengel D, Pastier D, Laplaud
PM, Dousset N, Ninio E and Kalopissis AD: Antioxidant properties of
HDL in transgenic mice overexpressing human apolipoprotein A-II. J
Lipid Res. 43:732–741. 2002.PubMed/NCBI
|
|
5
|
Kontush A, Chantepie S and Chapman MJ:
Small, dense HDL particles exert potent protection of atherogenic
LDL against oxidative stress. Arterioscler Thromb Vasc Biol.
23:1881–1888. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Rosenson RS, Brewer HB Jr, Chapman MJ, et
al: HDL measures, particle heterogeneity, proposed nomenclature,
and relation toatherosclerotic cardiovascular events. Clin Chem.
57:392–410. 2007. View Article : Google Scholar
|
|
7
|
Sankaranarayanan S, Oram JF, Asztalos BF,
Vaughan AM, Lund-Katz S, Adorni MP, Phillips MC and Rothblat GH:
Effects of acceptor composition and mechanism of ABCG1-mediated
cellular free cholesterol efflux. J Lipid Res. 50:275–284. 2009.
View Article : Google Scholar :
|
|
8
|
de la Llera-Moya M, Drazul-Schrader D,
Asztalos BF, Cuchel M, Rader DJ and Rothblat GH: The ability to
promote efflux via ABCA1 determines the capacity of serum specimens
with similar high-density lipoprotein cholesterol to remove
cholesterol from macrophages. Arterioscler Thromb Vasc Biol.
30:796–801. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Saito H, Dhanasekaran P, Nguyen D,
Deridder E, Holvoet P, Lund-Katz S and Phillips MC: α-helix
formation is required for high affinity binding of human
apolipoprotein A-I to lipids. J Biol Chem. 279:20974–20981. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Duong PT, Weibel GL, Lund-Katz S, Rothblat
GH and Phillips MC: Characterization and properties of pre beta-HDL
particles formed by ABCA1-mediated cellular lipid efflux to apoA-I.
J Lipid Res. 49:1006–1014. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Wang N and Tall AR: Regulation and
mechanisms of ATP-binding cassette transporter A1-mediated cellular
cholesterol efflux. Arterioscler Thromb Vasc Biol. 23:1178–1184.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
McNeish J, Aiello RJ, Guyot D, Turi T,
Gabel C, Aldinger C, Hoppe KL, Roach ML, Royer LJ, de Wet J, et al:
High density lipoprotein deficiency and foam cell accumulation in
mice with targeted disruption of ATP-binding cassette
transporter-1. Proc Natl Acad Sci USA. 97:4245–4250. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Voloshyna I and Reiss AB: The ABC
transporters in lipid flux and atherosclerosis. Prog Lipid Res.
50:213–224. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Brooks-Wilson A, Marcil M, Clee SM, Zhang
LH, Roomp K, van Dam M, Yu L, Brewer C, Collins JA, Molhuizen HO,
et al: Mutations in ABC1 in Tangier disease and familial
high-density lipoprotein deficiency. Nat Genet. 22:336–345. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Bodzioch M, Orsó E, Klucken J, Langmann T,
Böttcher A, Diederich W, Drobnik W, Barlage S, Büchler C,
Porsch-Ozcürümez M, et al: The gene encoding ATP-binding cassette
transporter 1 is mutated in Tangier disease. Nat Genet. 22:347–351.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Voloshyna I and Reiss AB: The ABC
transporters in lipid flux and atherosclerosis. Prog Lipid Res.
50:213–224. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Mendez AJ, Lin G, Wade DP, Lawn RM and
Oram JF: Membrane lipid domains distinct from
cholesterol/sphingomyelin-rich rafts are involved in the
ABCA1-mediated lipid secretory pathway. J Biol Chem. 276:3158–3166.
2001. View Article : Google Scholar
|
|
18
|
Drobnik W, Borsukova H, Böttcher A,
Pfeiffer A, Liebisch G, Schütz GJ, Schindler H and Schmitz G: Apo
AI/ABCA1-dependent and HDL3-mediated lipid efflux from
compositionally distinct cholesterol-based microdomains. Traffic.
3:268–278. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Sun Y, Hao M, Luo Y, Liang CP, Silver DL,
Cheng C, Maxfield FR and Tall AR: Stearoyl-CoA desaturase inhibits
ATP-binding cassette transporter A1-mediated cholesterol efflux and
modulates membrane domain structure. J Biol Chem. 278:5813–5820.
2003. View Article : Google Scholar
|
|
20
|
Yamauchi Y, Abe-Dohmae S and Yokoyama S:
Differential regulation of apolipoprotein A-I/ATP binding cassette
transporter A1-mediated cholesterol and phospholipid release.
Biochim Biophys Acta. 1585:1–10. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wang N, Lan D, Chen W, Matsuura F and Tall
AR: ATP-binding cassette transporters G1 and G4 mediate cellular
cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci
USA. 101:9774–9779. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Vaughan AM and Oram JF: ABCG1
redistributes cell cholesterol to domains removable by high density
lipoprotein but not by lipid-depleted apolipoproteins. J Biol Chem.
280:30150–30157. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Gelissen IC, Harris M, Rye KA, Quinn C,
Brown AJ, Kockx M, Cartland S, Packianathan M, Kritharides L and
Jessup W: ABCA1 and ABCG1 synergize to mediate cholesterol export
to apoA-I. Arterioscler Thromb Vasc Biol. 26:534–540. 2006.
View Article : Google Scholar
|
|
24
|
Langmann T, Klucken J, Reil M, Liebisch G,
Luciani MF, Chimini G, Kaminski WE and Schmitz G: Molecular cloning
of the human ATP-binding cassette transporter 1 (hABC1): Evidence
for sterol-dependent regulation in macrophages. Biochem Biophys Res
Commun. 257:29–33. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Liu W, Qin L, Yu H, Lv F and Wang Y:
Apolipoprotein A-I and adenosine triphosphate-binding cassette
transporter A1 expression alleviates lipid accumulation in
hepatocytes. J Gastroenterol Hepatol. 29:614–622. 2014. View Article : Google Scholar
|
|
26
|
O'Connell BJ, Denis M and Genest J:
Cellular physiology of cholesterol efflux in vascular endothelial
cells. Circulation. 110:2881–2888. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Terasaka N, Wang N, Yvan-Charvet L and
Tall AR: High-density lipoprotein protects macrophages from
oxidized low-density lipo-protein-induced apoptosis by promoting
efflux of 7-ketocholesterol via ABCG1. Proc Natl Acad Sci USA.
104:15093–15098. 2007. View Article : Google Scholar
|
|
28
|
Rye KA: Biomarkers associated with
high-density lipoproteins in atherosclerotic kidney disease. Clin
Exp Nephrol. 18:247–250. 2014. View Article : Google Scholar
|
|
29
|
Simonelli S, Tinti C, Salvini L, Tinti L,
Ossoli A, Vitali C, Sousa V, Orsini G, Nolli ML, Franceschini G, et
al: Recombinant human LCAT normalizes plasma lipoprotein profile in
LCAT deficiency. Biologicals. 41:446–449. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Larrede S, Quinn CM, Jessup W, Frisdal E,
Olivier M, Hsieh V, Kim MJ, Van Eck M, Couvert P, Carrie A, et al:
Stimulation of cholesterol efflux by LXR agonists in
cholesterol-loaded human macrophages is ABCA1-dependent but
ABCG1-independent. Arterioscler Thromb Vasc Biol. 29:1930–1936.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Brundert M, Ewert A, Heeren J, Behrendt B,
Ramakrishnan R, Greten H, Merkel M and Rinninger F: Scavenger
receptor class B type I mediates the selective uptake of
high-density lipoprotein-associated cholesteryl ester by the liver
in mice. Arterioscler Thromb Vasc Biol. 25:143–148. 2005.
|
|
32
|
Pagler TA, Rhode S, Neuhofer A, Laggner H,
et al: SR-BI-mediated high density lipoprotein (HDL)endocytosis
leads to HDL resecretion facilitatingcholesterol efflux. J Biol
Chem. 281:11193–11204. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Gillotte-Taylor K, Boullier A, Witztum JL,
Steinberg D and Quehenberger O: Scavenger receptor class B type I
as a receptor for oxidized low density lipoprotein. J Lipid Res.
42:1474–1482. 2001.PubMed/NCBI
|
|
34
|
Barter P and Rye KA: Cholesteryl ester
transfer protein: Its role in plasma lipid transport. Clin Exp
Pharmacol Physiol. 21:663–672. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Tall AR: Plasma cholesteryl ester transfer
protein and high-density lipoproteins: New insights from molecular
genetic studies. J Intern Med. 237:5–12. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhang L, Yan F, Zhang S, Lei D, Charles
MA, Cavigiolio G, Oda M, Krauss RM, Weisgraber KH, Rye KA, et al:
Structural basis of transfer between lipoproteins by cholesteryl
ester transfer protein. Nat Chem Biol. 8:342–349. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Beisiegel U: New aspects on the role of
plasma lipases in lipoprotein catabolism and atherosclerosis.
Atherosclerosis. 124:1–8. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Olivecrona G and Olivecrona T:
Triglyceride lipases and atherosclerosis. Curr Opin Lipidol.
6:291–305. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Lamarche B, Uffelman KD, Carpentier A,
Cohn JS, Steiner G, Barrett PH and Lewis GF: Triglyceride
enrichment of HDL enhances in vivo metabolic clearance of HDL apo
A-I in healthy men. J Clin Invest. 103:1191–1199. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Cappel DA, Palmisano BT, Emfinger CH,
Martinez MN, McGuinness OP and Stafford JM: Cholesteryl ester
transfer protein protects against insulin resistance in obese
female mice. Mol Metab. 2:457–467. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Fisher EA, Feig JE, Hewing B, Hazen SL and
Smith JD: High-density lipoprotein function, dysfunction, and
reverse cholesterol transport. Arterioscler Thromb Vasc Biol.
32:2813–2820. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Rosenson RS, Brewer HB Jr, Davidson WS,
Fayad ZA, Fuster V, Goldstein J, Hellerstein M, Jiang XC, Phillips
MC, Rader DJ, et al: Cholesterol efflux and atheroprotection:
Advancing the concept of reverse cholesterol transport.
Circulation. 125:1905–1919. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Groen AK, Oude Elferink RP, Verkade HJ and
Kuipers F: The ins and outs of reverse cholesterol transport. Ann
Med. 36:135–145. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ono K and Ono K: Current concept of
reverse cholesterol transport and novel strategy for
atheroprotection. J Cardiol. 60:339–343. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Freeman SR, Jin X, Anzinger JJ, Xu Q,
Purushothaman S, Fessler MB, Addadi L and Kruth HS: ABCG1-mediated
generation of extracellular cholesterol microdomains. J Lipid Res.
55:115–127. 2014. View Article : Google Scholar :
|
|
46
|
Zhang Y, Da Silva JR, Reilly M, Billheimer
JT, Rothblat GH and Rader DJ: Hepatic expression of scavenger
receptor class B type I (SR-BI) is a positive regulator of
macrophage reverse cholesterol transport in vivo. J Clin Invest.
115:2870–2874. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Chen W, Silver DL, Smith JD and Tall AR:
Scavenger receptor-BI inhibits ATP-binding cassette transporter
1-mediated cholesterol efflux in macrophages. J Biol Chem.
275:30794–30800. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Yvan-Charvet L, Pagler TA, Wang N,
Senokuchi T, Brundert M, Li H, Rinninger F and Tall AR: SR-BI
inhibits ABCG1-stimulated net cholesterol efflux from cells to
plasma HDL. J Lipid Res. 49:107–114. 2008. View Article : Google Scholar
|
|
49
|
Gromelski S and Brezesinski G: DNA
condensation and interaction with zwitterionic phospholipids
mediated by divalent cations. Langmuir. 22:6293–6301. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Lu D and Rhodes DG: Binding of
phosphorothioate oligonucle-otides to zwitterionic liposomes.
Biochim Biophys Acta. 1563:45–52. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Vickers KC, Palmisano BT, Shoucri BM,
Shamburek RD and Remaley AT: MicroRNAs are transported in plasma
and delivered to recipient cells by high-density lipoproteins. Nat
Cell Biol. 13:423–433. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Yvan-Charvet L, Wang N and Tall AR: Role
of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and
immune responses. Arterioscler Thromb Vasc Biol. 30:139–143. 2010.
View Article : Google Scholar :
|
|
53
|
Barter PJ, Puranik R and Rye KA: New
insights into the role of HDL as an anti-inflammatory agent in the
prevention of cardiovascular disease. Curr Cardiol Rep. 9:493–498.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Schmidt A, Geigenmüller S, Völker W and
Buddecke E: The antiatherogenic and antiinflammatory effect of
HDL-associated lysosphingolipids operates via Akt–>NF-kappaB
signalling pathways in human vascular endothelial cells. Basic Res
Cardiol. 101:109–116. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Mineo C, Deguchi H, Griffin JH and Shaul
PW: Endothelial and antithrombotic actions of HDL. Circ Res.
98:1352–1364. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Landmesser U: High density lipoprotein –
should we raise it? Curr Vasc Pharmacol. 10:718–719. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Kozarsky KF, Donahee MH, Rigotti A, Iqbal
SN, Edelman ER and Krieger M: Overexpression of the HDL receptor
SR-BI alters plasma HDL and bile cholesterol levels. Nature.
387:414–417. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Rigotti A, Trigatti BL, Penman M, Rayburn
H, Herz J and Krieger M: A targeted mutation in the murine gene
encoding the high density lipoprotein (HDL) receptor scavenger
receptor class B type I reveals its key role in HDL metabolism.
Proc Natl Acad Sci USA. 94:12610–12615. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Rader DJ: Molecular regulation of HDL
metabolism and function: Implications for novel therapies. J Clin
Invest. 116:3090–3100. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Glass C, Pittman RC, Weinstein DB and
Steinberg D: Dissociation of tissue uptake of cholesterol ester
from that of apoprotein A-I of rat plasma high density lipoprotein:
Selective delivery of cholesterol ester to liver, adrenal, and
gonad. Proc Natl Acad Sci USA. 80:5435–5439. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Christensen EI and Gburek J: Protein
reabsorption in renal proximal tubule-function and dysfunction in
kidney patho-physiology. Pediatr Nephrol. 19:714–721. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Luo Y and Tall AR: Sterol upregulation of
human CETP expression in vitro and in transgenic mice by an LXR
element. J Clin Invest. 105:513–520. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Lehmann JM, Kliewer SA, Moore LB,
Smith-Oliver TA, Oliver BB, Su JL, Sundseth SS, Winegar DA,
Blanchard DE, Spencer TA, et al: Activation of the nuclear receptor
LXR by oxysterols defines a new hormone response pathway. J Biol
Chem. 272:3137–3140. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Peet DJ, Turley SD, Ma W, Janowski BA,
Lobaccaro JM, Hammer RE and Mangelsdorf DJ: Cholesterol and bile
acid metabolism are impaired in mice lacking the nuclear oxysterol
receptor LXR alpha. Cell. 93:693–704. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Repa JJ, Liang G, Ou J, Bashmakov Y,
Lobaccaro JM, Shimomura I, Shan B, Brown MS, Goldstein JL and
Mangelsdorf DJ: Regulation of mouse sterol regulatory
element-binding protein-1c gene (SREBP-1c) by oxysterol receptors,
LXRalpha and LXRbeta. Genes Dev. 14:2819–2830. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Costet P, Luo Y, Wang N and Tall AR:
Sterol-dependent transac-tivation of the ABC1 promoter by the liver
X receptor/retinoid X receptor. J Biol Chem. 275:28240–28245.
2000.PubMed/NCBI
|
|
67
|
Schwartz K, Lawn RM and Wade DP: ABC1 gene
expression and ApoA-I-mediated cholesterol efflux are regulated by
LXR. Biochem Biophys Res Commun. 274:794–802. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Malerød L, Juvet LK, Hanssen-Bauer A,
Eskild W and Berg T: Oxysterol-activated LXRalpha/RXR induces
hSR-BI-promoter activity in hepatoma cells and preadipocytes.
Biochem Biophys Res Commun. 299:916–923. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Xu X, Li Q, Pang L, Huang G, Huang J, Shi
M, Sun X and Wang Y: Arctigenin promotes cholesterol efflux from
THP-1 macrophages through PPAR-γ/LXR-α signaling pathway. Biochem
Biophys Res Commun. 441:321–326. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Rigamonti E, Chinetti-Gbaguidi G and
Staels B: Regulation of macrophage functions by PPAR-alpha,
PPAR-gamma, and LXRs in mice and men. Arterioscler Thromb Vasc
Biol. 28:1050–1059. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Briand F, Naik SU, Fuki I, Millar JS,
Macphee C, Walker M, Billheimer J, Rothblat G and Rader DJ: Both
the peroxisome proliferator-activated receptor delta agonist,
GW0742, and ezetimibe promote reverse cholesterol transport in mice
by reducing intestinal reabsorption of HDL-derived cholesterol.
Clin Transl Sci. 2:127–133. 2009. View Article : Google Scholar
|