|
1
|
Wöhrle FU, Daly RJ and Brummer T:
Function, regulation and pathological roles of the Gab/DOS docking
proteins. Cell Commun Signal. 7:222009. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Gu H and Neel BG: The 'Gab' in signal
transduction. Trends Cell Biol. 13:122–130. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Yu M, Lowell CA, Neel BG and Gu H:
Scaffolding adapter Grb2-associated binder 2 requires Syk to
transmit signals from FcepsilonRI. J Immunol. 176:2421–2429. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Lock LS, Royal I, Naujokas MA and Park M:
Identification of an atypical Grb2 carboxyl-terminal SH3 domain
binding site in Gab docking proteins reveals Grb2-dependent and
-independent recruitment of Gab1 to receptor tyrosine kinases. J
Biol Chem. 275:31536–31545. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Gu H, Maeda H, Moon JJ, Lord JD, Yoakim M,
Nelson BH and Neel BG: New role for Shc in activation of the
phosphatidylinositol 3-kinase/Akt pathway. Mol Cell Biol.
20:7109–7120. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Yu WM, Hawley TS, Hawley RG and Qu CK:
Role of the docking protein Gab2 in beta (1)-integrin signaling
pathway-mediated hematopoietic cell adhesion and migration. Blood.
99:2351–2359. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Hibi M and Hirano T: Gab-family adapter
molecules in signal transduction of cytokine and growth factor
receptors, and T and B cell antigen receptors. Leuk Lymphoma.
37:299–307. 2000.PubMed/NCBI
|
|
8
|
Wickrema A, Uddin S, Sharma A, Chen F,
Alsayed Y, Ahmad S, Sawyer ST, Krystal G, Yi T, Nishada K, et al:
Engagement of Gab1 and Gab2 in erythropoietin signaling. J Biol
Chem. 274:24469–24474. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Nishida K, Yoshida Y, Itoh M, Fukada T,
Ohtani T, Shirogane T, Atsumi T, Takahashi-Tezuka M, Ishihara K,
Hibi M, et al: Gab-family adapter proteins act downstream of
cytokine and growth factor receptors and T- and B-cell antigen
receptors. Blood. 93:1809–1816. 1999.PubMed/NCBI
|
|
10
|
Nishida K, Wang L, Morii E, Park SJ,
Narimatsu M, Itoh S, Yamasaki S, Fujishima M, Ishihara K, Hibi M,
et al: Requirement of Gab2 for mast cell development and KitL/c-Kit
signaling. Blood. 99:1866–1869. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Gu H, Saito K, Klaman LD, Shen J, Fleming
T, Wang Y, Pratt JC, Lin G, Lim B, Kinet JP, et al: Essential role
for Gab2 in the allergic response. Nature. 412:186–190. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zhang Y, Diaz-Flores E, Li G, Wang Z, Kang
Z, Haviernikova E, Rowe S, Qu CK, Tse W, Shannon KM, et al:
Abnormal hemato-poiesis in Gab2 mutant mice. Blood. 110:116–124.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Bentires-Alj M, Gil SG, Chan R, Wang ZC,
Wang Y, Imanaka N, Harris LN, Richardson A, Neel BG and Gu H: A
role for the scaffolding adapter GAB2 in breast cancer. Nat Med.
12:114–121. 2006. View
Article : Google Scholar
|
|
14
|
Brummer T, Schramek D, Hayes VM, Bennett
HL, Caldon CE, Musgrove EA and Daly RJ: Increased proliferation and
altered growth factor dependence of human mammary epithelial cells
overexpressing the Gab2 docking protein. J Biol Chem. 281:626–637.
2006. View Article : Google Scholar
|
|
15
|
Sattler M, Mohi MG, Pride YB, Quinnan LR,
Malouf NA, Podar K, Gesbert F, Iwasaki H, Li S, Van Etten RA, et
al: Critical role for Gab2 in transformation by BCR/ABL. Cancer
Cell. 1:479–492. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Teal HE, Ni S, Xu J, Finkelstein LD, Cheng
AM, Paulson RF, Feng GS and Correll PH: GRB2-mediated recruitment
of GAB2, but not GAB1, to SF-STK supports the expansion of Friend
virus-infected erythroid progenitor cells. Oncogene. 25:2433–2443.
2006. View Article : Google Scholar
|
|
17
|
Pan XL, Ren RJ, Wang G, Tang HD and Chen
SD: The Gab2 in signal transduction and its potential role in the
pathogenesis of Alzheimer's disease. Neurosci Bull. 26:241–246.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Maus M, Medgyesi D, Kövesdi D, Csuka D,
Koncz G and Sármay G: Grb2 associated binder 2 couples B-cell
receptor to cell survival. Cell Signal. 21:220–227. 2009.
View Article : Google Scholar
|
|
19
|
Sármay G, Angyal A, Kertész A, Maus M and
Medgyesi D: The multiple function of Grb2 associated binder (Gab)
adaptor/scaffolding protein in immune cell signaling. Immunol Lett.
104:76–82. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Pyarajan S, Matejovic G, Pratt JC, Baksh S
and Burakoff SJ: Interleukin-3 (IL-3)-induced c-fos activation is
modulated by Gab2-calcineurin interaction. J Biol Chem.
283:23505–23509. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Tripathi A and Sodhi A: Growth
hormone-induced production of cytokines in murine peritoneal
macrophages in vitro: Role of JAK/STAT, PI3K, PKC and MAP kinases.
Immunobiology. 214:430–440. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Neel BG, Gu H and Pao L: The 'Shp'ing
news: SH2 domain-containing tyrosine phosphatases in cell
signaling. Trends Biochem Sci. 28:284–293. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Gu H, Pratt JC, Burakoff SJ and Neel BG:
Cloning of p97/Gab2, the major SHP2-binding protein in
hematopoietic cells, reveals a novel pathway for cytokine-induced
gene activation. Mol Cell. 2:729–740. 1998. View Article : Google Scholar
|
|
24
|
Maroun CR, Naujokas MA, Holgado-Madruga M,
Wong AJ and Park M: The tyrosine phosphatase SHP-2 is required for
sustained activation of extracellular signal-regulated kinase and
epithelial morphogenesis downstream from the met receptor tyrosine
kinase. Mol Cell Biol. 20:8513–8525. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yu M, Luo J, Yang W, Wang Y, Mizuki M,
Kanakura Y, Besmer P, Neel BG and Gu H: The scaffolding adapter
Gab2, via Shp-2, regulates kit-evoked mast cell proliferation by
activating the Rac/JNK pathway. J Biol Chem. 281:28615–28626. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhang TT, Li H, Cheung SM, Costantini JL,
Hou S, Al-Alwan M and Marshall AJ: Phosphoinositide
3-kinase-regulated adapters in lymphocyte activation. Immunol Rev.
232:255–272. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Montagner A, Yart A, Dance M, Perret B,
Salles JP and Raynal P: A novel role for Gab1 and SHP2 in epidermal
growth factor-induced Ras activation. J Biol Chem. 280:5350–5360.
2005. View Article : Google Scholar
|
|
28
|
Holgado-Madruga M, Emlet DR, Moscatello
DK, Godwin AK and Wong AJ: A Grb2-associated docking protein in
EGF- and insulin-receptor signalling. Nature. 379:560–564. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Gual P, Shigematsu S, Kanzaki M, Grémeaux
T, Gonzalez T, Pessin JE, Le Marchand-Brustel Y and Tanti JF: A
Crk-II/TC10 signaling pathway is required for osmotic
shock-stimulated glucose transport. J Biol Chem. 277:43980–43986.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Crouin C, Arnaud M, Gesbert F, Camonis J
and Bertoglio J: A yeast two-hybrid study of human p97/Gab2
interactions with its SH2 domain-containing binding partners. FEBS
lett. 495:148–153. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhao C, Ma H, Bossy-Wetzel E, Lipton SA,
Zhang Z and Feng GS: GC-GAP, a Rho family GTPase-activating protein
that interacts with signaling adapters Gab1 and Gab2. J Biol Chem.
278:34641–34653. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Simister PC and Feller SM: Order and
disorder in large multi-site docking proteins of the Gab
family-implications for signalling complex formation and inhibitor
design strategies. Mol Biosyst. 8:33–46. 2012. View Article : Google Scholar
|
|
33
|
Nyga R, Pecquet C, Harir N, Gu H,
Dhennin-Duthille I, Régnier A, Gouilleux-Gruart V, Lassoued K and
Gouilleux F: Activated STAT5 proteins induce activation of the PI
3-kinase/Akt and Ras/MAPK pathways via the Gab2 scaffolding
adapter. Biochem J. 390:359–366. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ni S, Zhao C, Feng GS, Paulson RF and
Correll PH: A novel Stat3 binding motif in Gab2 mediates
transformation of primary hematopoietic cells by the Stk/Ron
receptor tyrosine kinase in response to Friend virus infection. Mol
Cell Biol. 27:3708–3715. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Fleuren ED, O'Toole S, Millar EK, McNeil
C, Lopez-Knowles E, Boulghourjian A, Croucher DR, Schramek D,
Brummer T, Penninger JM, et al: Overexpression of the oncogenic
signal transducer Gab2 occurs early in breast cancer development.
Int J Cancer. 127:1486–1492. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Bocanegra M, Bergamaschi A, Kim YH, Miller
MA, Rajput AB, Kao J, Langerød A, Han W, Noh DY, Jeffrey SS, et al:
Focal amplification and oncogene dependency of GAB2 in breast
cancer. Oncogene. 29:774–779. 2010. View Article : Google Scholar
|
|
37
|
Herrera Abreu MT, Hughes WE, Mele K, Lyons
RJ, Rickwood D, Browne BC, Bennett HL, Vallotton P, Brummer T and
Daly RJ: Gab2 regulates cytoskeletal organization and migration of
mammary epithelial cells by modulating RhoA activation. Mol Biol
Cell. 22:105–116. 2011. View Article : Google Scholar
|
|
38
|
Zhang X, Lavoie G, Fort L, Huttlin EL,
Tcherkezian J, Galan JA, Gu H, Gygi SP, Carreno S and Roux PP: Gab2
phosphorylation by RSK inhibits Shp2 recruitment and cell motility.
Mol Cell Biol. 33:1657–1670. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ke Y, Wu D, Princen F, Nguyen T, Pang Y,
Lesperance J, Muller WJ, Oshima RG and Feng GS: Role of Gab2 in
mammary tumorigenesis and metastasis. Oncogene. 26:4951–4960. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Qian P, Zuo Z, Wu Z, Meng X, Li G, Wu Z,
Zhang W, Tan S, Pandey V, Yao Y, et al: Pivotal role of reduced
let-7g expression in breast cancer invasion and metastasis. Cancer
Res. 71:6463–6474. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Nasrazadani A and Van Den Berg CL: c-Jun
N-terminal Kinase 2 regulates multiple receptor tyrosine kinase
pathways in mouse mammary tumor growth and metastasis. Genes
Cancer. 2:31–45. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Yajima I, Kumasaka MY, Thang ND, Goto Y,
Takeda K, Yamanoshita O, Iida M, Ohgami N, Tamura H, Kawamoto Y, et
al: RAS/RAF/MEK/ERK and PI3K/PTEN/AKT signaling in malignant
melanoma progression and therapy. Dermatol Res Pract.
2012:3541912012.
|
|
43
|
McCubrey JA, Steelman LS, Abrams SL, Lee
JT, Chang F, Bertrand FE, Navolanic PM, Terrian DM, Franklin RA,
D'Assoro AB, et al: Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT
pathways in malignant transformation and drug resistance. Adv
Enzyme Regul. 46:249–279. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Chernoff KA, Bordone L, Horst B, Simon K,
Twadell W, Lee K, Cohen JA, Wang S, Silvers DN, Brunner G, et al:
GAB2 amplifi-cations refine molecular classification of melanoma.
Clin Cancer Res. 15:4288–4291. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Horst B, Gruvberger-Saal SK, Hopkins BD,
Bordone L, Yang Y, Chernoff KA, Uzoma I, Schwipper V, Liebau J,
Nowak NJ, et al: Gab2-mediated signaling promotes melanoma
metastasis. Am J Pathol. 174:1524–1533. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Davies H, Bignell GR, Cox C, Stephens P,
Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W,
et al: Mutations of the BRAF gene in human cancer. Nature.
417:949–954. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Yang Y, Wu J, Demir A, Castillo-Martin M,
Melamed RD, Zhang G, Fukunaga-Kanabis M, Perez-Lorenzo R, Zheng B,
Silvers DN, et al: GAB2 induces tumor angiogenesis in NRAS-driven
melanoma. Oncogene. 32:3627–3637. 2013. View Article : Google Scholar
|
|
48
|
Brown LA, Kalloger SE, Miller MA, Shih
IeM, McKinney SE, Santos JL, Swenerton K, Spellman PT, Gray J,
Gilks CB, et al: Amplification of 11q13 in ovarian carcinoma. Genes
Chromosomes Cancer. 47:481–489. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wang Y, Sheng Q, Spillman MA, Behbakht K
and Gu H: Gab2 regulates the migratory behaviors and E-cadherin
expression via activation of the PI3K pathway in ovarian cancer
cells. Oncogene. 31:2512–2520. 2012. View Article : Google Scholar :
|
|
50
|
Sheng Q, Liu X, Fleming E, Yuan K, Piao H,
Chen J, Moustafa Z, Thomas RK, Greulich H, Schinzel A, et al: An
activated ErbB3/NRG1 autocrine loop supports in vivo proliferation
in ovarian cancer cells. Cancer Cell. 17:298–310. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Dunn GP, Cheung HW, Agarwalla PK, Thomas
S, Zektser Y, Karst AM, Boehm JS, Weir BA, Berlin AM, Zou L, et al:
In vivo multiplexed interrogation of amplified genes identifies
GAB2 as an ovarian cancer oncogene. Proc Natl Acad Sci USA.
111:1102–1107. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Davis SJ, Sheppard KE, Pearson RB,
Campbell IG, Gorringe KL and Simpson KJ: Functional analysis of
genes in regions commonly amplified in high-grade serous and
endometrioid ovarian cancer. Clin Cancer Res. 19:1411–1421. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Aumann K, Lassmann S, Schöpflin A, May AM,
Wöhrle FU, Zeiser R, Waller CF, Hauschke D, Werner M and Brummer T:
The immunohistochemical staining pattern of Gab2 correlates with
distinct stages of chronic myeloid leukemia. Hum Pathol.
42:719–726. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ding J, Romani J, Zaborski M, MacLeod RA,
Nagel S, Drexler HG and Quentmeier H: Inhibition of PI3K/mTOR
overcomes nilotinib resistance in BCR-ABL1 positive leukemia cells
through translational down-regulation of MDM2. PLoS One.
8:e835102013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wohrle FU, Halbach S, Aumann K, Schwemmers
S, Braun S, Auberger P, Schramek D, Penninger JM, Laßmann S, Werner
M, et al: Gab2 signaling in chronic myeloid leukemia cells confers
resistance to multiple Bcr-Abl inhibitors. Leukemia. 27:118–129.
2013. View Article : Google Scholar
|
|
56
|
Brummer T, Larance M, Herrera Abreu MT,
Lyons RJ, Timpson P, Emmerich CH, Fleuren ED, Lehrbach GM, Schramek
D, Guilhaus M, et al: Phosphorylation-dependent binding of 14–3 –3
terminates signalling by the Gab2 docking protein. EMBO J.
27:2305–2316. 2008. View Article : Google Scholar
|
|
57
|
Wöhrle FU, Daly RJ and Brummer T: How to
Grb2 a Gab. Structure. 17:779–781. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Carlberg K and Rohrschneider LR:
Characterization of a novel tyrosine phosphorylated 100-kDa protein
that binds to SHP-2 and phosphatidylinositol 3′-kinase in myeloid
cells. J Biol Chem. 272:15943–15950. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Scherr M, Chaturvedi A, Battmer K,
Dallmann I, Schultheis B, Ganser A and Eder M: Enhanced sensitivity
to inhibition of SHP2, STAT5 and Gab2 expression in chronic myeloid
leukemia (CML). Blood. 107:3279–3287. 2006. View Article : Google Scholar
|
|
60
|
Zatkova A, Schoch C, Speleman F, Poppe B,
Mannhalter C, Fonatsch C and Wimmer K: GAB2 is a novel target of
11q amplification in AML/MDS. Genes Chromosomes Cancer. 45:798–807.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Adams SJ, Aydin IT and Celebi JT: GAB2 - a
scaffolding protein in cancer. Mol Cancer Res. 10:1265–1270. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Mali RS, Ma P, Zeng LF, Martin H, Ramdas
B, He Y, Sims E, Nabinger S, Ghosh J, Sharma N, et al: Role of SHP2
phosphatase in KIT-induced transformation: Identification of SHP2
as a druggable target in diseases involving oncogenic KIT. Blood.
120:2669–2678. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Sha F, Gencer EB, Georgeon S, Koide A,
Yasui N, Koide S and Hantschel O: Dissection of the BCR-ABL
signaling network using highly specific monobody inhibitors to the
SHP2 SH2 domains. Proc Natl Acad Sci USA. 110:14924–14929. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Halbach S, Rigbolt KT, Wöhrle FU, Diedrich
B, Gretzmeier C, Brummer T and Dengjel J: Alterations of Gab2
signalling complexes in imatinib and dasatinib treated chronic
myeloid leukaemia cells. Cell Commun Signal. 11:302013. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Samanta A, Perazzona B, Chakraborty S, Sun
X, Modi H, Bhatia R, Priebe W and Arlinghaus R: Janus kinase 2
regulates Bcr-Abl signaling in chronic myeloid leukemia. Leukemia.
25:463–472. 2011. View Article : Google Scholar :
|
|
66
|
Kotecha N, Flores NJ, Irish JM, Simonds
EF, Sakai DS, Archambeault S, Diaz-Flores E, Coram M, Shannon KM,
Nolan GP, et al: Single-cell profiling identifies aberrant STAT5
activation in myeloid malignancies with specific clinical and
biologic correlates. Cancer Cell. 14:335–343. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Nagao T, Kurosu T, Umezawa Y, Nogami A,
Oshikawa G, Tohda S, Yamamoto M and Miura O: Proliferation and
survival signaling from both Jak2-V617F and Lyn involving GSK3 and
mTOR/p70S6K/4EBP1 in PVTL-1 cell line newly established from acute
myeloid leukemia transformed from polycythemia vera. PLoS One.
9:e847462014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Heuser M, Sly LM, Argiropoulos B,
Kuchenbauer F, Lai C, Weng A, Leung M, Lin G, Brookes C, Fung S, et
al: Modeling the functional heterogeneity of leukemia stem cells:
Role of STAT5 in leukemia stem cell self-renewal. Blood.
114:3983–3993. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Lauchle JO, Braun BS, Loh ML and Shannon
K: Inherited predispositions and hyperactive Ras in myeloid
leukemogenesis. Pediatr Blood Cancer. 46:579–585. 2006. View Article : Google Scholar
|
|
70
|
Emanuel PD: Juvenile myelomonocytic
leukemia and chronic myelomonocytic leukemia. Leukemia.
22:1335–1342. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Tartaglia M, Niemeyer CM, Fragale A, Song
X, Buechner J, Jung A, Hählen K, Hasle H, Licht JD and Gelb BD:
Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia,
myelodysplastic syndromes and acute myeloid leukemia. Nat Genet.
34:148–150. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
72
|
Loh ML, Vattikuti S, Schubbert S, Reynolds
MG, Carlson E, Lieuw KH, Cheng JW, Lee CM, Stokoe D, Bonifas JM, et
al: Mutations in PTPN11 implicate the SHP-2 phosphatase in
leuke-mogenesis. Blood. 103:2325–2331. 2004. View Article : Google Scholar
|
|
73
|
Keilhack H, David FS, McGregor M, Cantley
LC and Neel BG: Diverse biochemical properties of Shp2 mutants.
Implications for disease phenotypes. J Biol Chem. 280:30984–30993.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Yu WM, Daino H, Chen J, Bunting KD and Qu
CK: Effects of a leukemia-associated gain-of-function mutation of
SHP-2 phosphatase on interleukin-3 signaling. J Biol Chem.
281:5426–5434. 2006. View Article : Google Scholar
|
|
75
|
Kontaridis MI, Swanson KD, David FS,
Barford D and Neel BG: PTPN11 (Shp2) mutations in LEOPARD syndrome
have dominant negative, not activating, effects. J Biol Chem.
281:6785–6792. 2006. View Article : Google Scholar
|
|
76
|
Mohi MG, Williams IR, Dearolf CR, Chan G,
Kutok JL, Cohen S, Morgan K, Boulton C, Shigematsu H, Keilhack H,
et al: Prognostic, therapeutic, and mechanistic implications of a
mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer
cell. 7:179–191. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Xu XL, Wang X, Chen ZL, Jin M, Yang W,
Zhao GF and Li JW: Overexpression of Grb2-associated binder 2 in
human lung cancer. Int J Biol Sci. 7:496–504. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Maulik G, Madhiwala P, Brooks S, Ma PC,
Kijima T, Tibaldi EV, Schaefer E, Parmar K and Salgia R: Activated
c-Met signals through PI3K with dramatic effects on cytoskeletal
functions in small cell lung cancer. J Cell Mol Med. 6:539–553.
2002. View Article : Google Scholar
|
|
79
|
Zhang X, Zhang Y, Tao B, Wang D, Cheng H,
Wang K, Zhou R, Xie Q and Ke Y: Docking protein Gab2 regulates
mucin expression and goblet cell hyperplasia through TYK2/STAT6
pathway. FASEB J. 26:4603–4613. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Shi L, Sun X, Zhang J, Zhao C, Li H, Liu
Z, Fang C, Wang X, Zhao C, Zhang X, et al: Gab2 expression in
glioma and its implications for tumor invasion. Acta Oncol.
52:1739–1750. 2013. View Article : Google Scholar
|
|
81
|
Lee SH, Jeong EG, Nam SW, Lee JY, Yoo NJ
and Lee SH: Increased expression of Gab2, a scaffolding adaptor of
the tyrosine kinase signalling, in gastric carcinomas. Pathology.
39:326–329. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Cheng Q, Yi B, Wang A and Jiang X:
Exploring and exploiting the fundamental role of microRNAs in tumor
pathogenesis. Onco Targets Ther. 6:1675–1684. 2013.PubMed/NCBI
|
|
83
|
Fan YL, Zheng M, Tang YL and Liang XH: A
new perspective of vasculogenic mimicry: EMT and cancer stem cells
(Review). Oncol Lett. 6:1174–1180. 2013.PubMed/NCBI
|