|
1
|
Ueda J, Gosho M, Inui Y, Matsuda T,
Sakakibara M, Mabe K, Nakajima S, Shimoyama T, Yasuda M, Kawai T,
et al: Prevalence of Helicobacter pylori infection by birth year
and geographic area in Japan. Helicobacter. 19:105–110. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Shiota S, Murakami K, Okimoto T, Kodama M
and Yamaoka Y: Serum Helicobacter pylori CagA antibody titer as a
useful marker for advanced inflammation in the stomach in Japan. J
Gastroenterol Hepatol. 29:67–73. 2014. View Article : Google Scholar
|
|
3
|
Bhuiyan TR, Islam MM, Uddin T, Chowdhury
MI, Janzon A, Adamsson J, Lundin SB, Qadri F and Lundgren A: Th1
and Th17 responses to Helicobacter pylori in Bangladeshi infants,
children and adults. PLoS One. 9:e939432014. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Guo S, He L, Zhang J, Zhou L, Ding Z,
Zhang J, Yu F, Wang G, Zhou J, Guan D, et al: Antibiotic resistance
of Helicobacter pylori in children and macrolide-resistant
genotypes in Helicobacter pylori. Zhonghua Yi Xue Za Zhi.
94:563–566. 2014.In Chinese. PubMed/NCBI
|
|
5
|
Yu Y, Su L, Wang X, Wang X and Xu C:
Association between Helicobacter pylori infection and pathological
changes in the gastric mucosa in Chinese children. Intern Med.
53:83–88. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Basiri Z, Safaralizadeh R, Bonyadi MJ,
Somi MH, Mahdavi M and Latifi-Navid S: Helicobacter pylori vacA d1
Genotype predicts risk of gastric adenocarcinoma and peptic ulcers
in Northwestern Iran. Asian Pac J Cancer Prev. 15:1575–1579. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zhang L, Sung JJ, Yu J, Ng SC, Wong SH,
Cho CH, Ng SS, Chan FK and Wu WK: Xenophagy in Helicobacter pylori-
and Epstein-Barr virus-induced gastric cancer. J Pathol.
233:103–112. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Sokolova O, Maubach G and Naumann M: MEKK3
and TAK1 synergize to activate IKK complex in Helicobacter pylori
infection. Biochim Biophys Acta. 1843:715–724. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Devi S, Ansari SA, Vadivelu J, Mégraud F,
Tenguria S and Ahmed N: Helicobacter pylori antigen HP0986 (TieA)
interacts with cultured gastric epithelial cells and induces IL8
secretion via NF-κB mediated pathway. Helicobacter. 19:26–36. 2014.
View Article : Google Scholar
|
|
10
|
Peng LS, Zhuang Y, Li WH, Zhou YY, Wang
TT, Chen N, Cheng P, Li BS, Guo H, Yang SM, et al: Elevated
interleukin-32 expression is associated with Helicobacter
pylori-related gastritis. PLoS One. 9:e882702014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhao Y, Wang JW, Tanaka T, Hosono A, Ando
R, Tokudome S, Soeripto, Triningsih FX, Triono T, Sumoharjo S, et
al: Association between TNF-α and IL-1β genotypes vs Helicobacter
pylori infection in Indonesia. World J Gastroenterol. 19:8758–8763.
2013. View Article : Google Scholar :
|
|
12
|
Allison CC, Ferrand J, McLeod L, Hassan M,
Kaparakis-Liaskos M, Grubman A, Bhathal PS, Dev A, Sievert W,
Jenkins BJ and Ferrero RL: Nucleotide oligomerization domain 1
enhances IFN-γ signaling in gastric epithelial cells during
Helicobacter pylori infection and exacerbates disease severity. J
Immunol. 190:3706–3715. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Abdollahi H, Shams S, Zahedi MJ, Darvish
Moghadam S, Hayatbakhsh MM and Jafarzadeh A: IL-10, TNF-α and IFN-γ
levels in serum and stomach mucosa of Helicobacter pylori-infected
patients. Iran J Allergy Asthma Immunol. 10:267–271.
2011.PubMed/NCBI
|
|
14
|
Nakagawa H, Tamura T, Mitsuda Y, Goto Y,
Kamiya Y, Kondo T, Wakai K and Hamajima N: Significant association
between serum interleukin-6 and Helicobacter pylori antibody levels
among H. pylori-positive Japanese adults. Mediators Inflamm.
2013:1423582013. View Article : Google Scholar
|
|
15
|
Zhang X, Yang Y, Zhu R, Bai J, Tian Y, Li
X, Peng Z, He Y, Chen L, Fang D, et al: H. pylori induces the
expression of Hath1 in gastric epithelial cells via
interleukin-8/STAT3 phosphorylation while suppressing Hes1. J Cell
Biochem. 113:3740–3751. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zhang MS, Zhang KJ, Zhang J, Jiao XL, Chen
D and Zhang DL: Phospholipases A-II (PLA2-II) induces acute
pancreatitis through activation of the transcription factor
NF-kappaB. Eur Rev Med Pharmacol Sci. 18:1163–1169. 2014.PubMed/NCBI
|
|
17
|
Cuadrado A, Martin-Moldes Z, Ye J and
Lastres-Becker I: Transcription factors NRF2 and NF-κB are
coordinated effectors of the Rho family, GTP-binding protein RAC1
during inflammation. J Biol Chem. 289:15244–15258. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Saravanan S, Islam VI, Babu NP, Pandikumar
P, Thirugnanasambantham K, Chellappandian M, Raj CS, Paulraj MG and
Ignacimuthu S: Swertiamarin attenuates inflammation mediators via
modulating NF-κB/IκB and JAK2/STAT3 transcription factors in
adjuvant induced arthritis. Eur J Pharm Sci. 56:70–86. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kim GD, Oh J, Park HJ, Bae K and Lee SK:
Magnolol inhibits angiogenesis by regulating ROS-mediated apoptosis
and the PI3K/AKT/mTOR signaling pathway in mES/EB-derived
endothelial-like cells. Int J Oncol. 43:600–610. 2013.PubMed/NCBI
|
|
20
|
Tan GK and Tabata Y: Chondroitin-6-sulfate
attenuates inflammatory responses in murine macrophages via
suppression of NF-κB nuclear translocation. Acta Biomater.
10:2684–2692. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chen JP, Wu MS, Kuo SH and Liao F: IL-22
negatively regulates Helicobacter pylori-induced CCL20 expression
in gastric epithelial cells. PLoS One. 9:e973502014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kang DW, Hwang WC, Park MH, Ko GH, Ha WS,
Kim KS, Lee YC, Choi KY and Min DS: Rebamipide abolishes
Helicobacter pylori CagA-induced phospholipase D1 expression via
inhibition of NFκB and suppresses invasion of gastric cancer cells.
Oncogene. 32:3531–3542. 2013. View Article : Google Scholar
|
|
23
|
Lamb A, Yang XD, Tsang YH, Li JD, Higashi
H, Hatakeyama M, Peek RM, Blanke SR and Chen LF: Helicobacter
pylori CagA activates NF-kappaB by targeting TAK1 for
TRAF6-mediated Lys 63 ubiquitination. EMBO Rep. 10:1242–1249. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Chen H, Li J, Jiao L, Petersen RB, Li J,
Peng A, Zheng L and Huang K: Apelin inhibits the development of
diabetic nephropathy by regulating histone acetylation in Akita
mouse. J Physiol. 592:505–521. 2014. View Article : Google Scholar :
|
|
25
|
Yang H, Lee SM, Gao B, Zhang J and Fang D:
Histone deacetylase sirtuin 1 deacetylates IRF1 protein and
programs dendritic cells to control Th17 protein differentiation
during autoimmune inflammation. J Biol Chem. 288:37256–37266. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Qiu W, Zhou J, Zhu G, Zhao D, He F, Zhang
J, Lu Y, Yu T, Liu L and Wang Y: Sublytic C5b-9 triggers glomerular
mesangial cell apoptosis via XAF1 gene activation mediated by
p300-dependent IRF-1 acetylation. Cell Death Dis. 5:e11762014.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Hah YS, Cheon YH, Lim HS, Cho HY, Park BH,
Ka SO, Lee YR, Jeong DW, Kim HO, Han MK and Lee SI: Myeloid
deletion of SIRT1 aggravates serum transfer arthritis in mice via
nuclear factor-κB activation. PLoS One. 9:e877332014. View Article : Google Scholar
|
|
28
|
Hwang YJ, Lee EW, Song J, Kim HR, Jun YC
and Hwang KA: MafK positively regulates NF-κB activity by enhancing
CBP-mediated p65 acetylation. Sci Rep. 3:32422013. View Article : Google Scholar
|
|
29
|
Cuccurazzu B, Bortolotto V, Valente MM,
Ubezio F, Koverech A, Canonico PL and Grilli M: Upregulation of
mGlu2 receptors via NF-κB p65 acetylation is involved in the
Proneurogenic and antidepressant effects of acetyl-L-carnitine.
Neuropsychopharmacology. 38:2220–2230. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Puttagunta R, Tedeschi A, Sória MG,
Hervera A, Lindner R, Rathore KI, Gaub P, Joshi Y, Nguyen T,
Sehmandke A, et al: PCAF-dependent epigenetic changes promote
axonal regeneration in the central nervous system. Nat Commun.
5:35272014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Hu P, Wang X, Zhang B, Zhang S, Wang Q and
Wang Z: Fluorescence polarization for the evaluation of
small-molecule inhibitors of PCAF BRD/Tat-AcK50 association. Chem
Med Chem. 9:928–931. 2014. View Article : Google Scholar
|
|
32
|
Zhu LH, Sun LH, Hu YL, Jiang Y, Liu HY,
Shen XY, Jin XY, Zhen X, Sun HX and Yan GJ: PCAF impairs
endometrial receptivity and embryo implantation by down-regulating
β3-integrin expression via HOXA10 acetylation. J Clin Endocrinol
Metab. 98:4417–4428. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zheng X, Gai X, Ding F, Lu Z, Tu K, Yao Y
and Liu Q: Histone acetyltransferase PCAF up-regulated cell
apoptosis in hepatocellular carcinoma via acetylating histone H4
and inactivating AKT signaling. Mol Cancer. 12:962013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhao J, Gong AY, Zhou R, Liu J, Eischeid
AN and Chen XM: Downregulation of PCAF by miR-181a/b provides
feedback regulation to TNF-α-induced transcription of
proinflammatory genes in liver epithelial cells. J Immunol.
188:1266–1274. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Bastiaansen AJ, Ewing MM, de Boer HC, van
der Pouw Kraan TC, de Vries MR, Peters EA, Welten SM, Arens R,
Moore SM, Faber JE, et al: Lysine acetyltransferase PCAF is a key
regulator of arteriogenesis. Arterioscler Thromb Vasc Biol.
33:1902–1910. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ong SP, Lee LM, Leong YF, Ng ML and Chu
JJ: Dengue virus infection mediates HMGB1 release from monocytes
involving PCAF acetylase complex and induces vascular leakage in
endothelial cells. PLoS One. 7:e419322012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Li W, Cun W, Liu L, Hong M, Wang L, Wang
L, Dong C and Li Q: The transactivating effect of HSV-1 ICP0 is
enhanced by its interaction with the PCAF component of histone
acetyltransferase. Arch Virol. 154:1755–1764. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Hou F, Wang L, Wang H, Gu J, Li M, Zhang
J, Ling X, Gao X and Luo C: Elevated gene expression of S100A12 is
correlated with the predominant clinical inflammatory factors in
patients with bacterial pneumonia. Mol Med Rep. 11:4345–4352.
2015.PubMed/NCBI
|
|
39
|
Talaiezadeh A, Hajiani E and Tarshizi MA:
The relative frequency of the Helicobacter pylori Infection in
proximal gastric cancers. Pol Przegl Chir. 85:657–662. 2013.
|
|
40
|
Zhu Y, Zhou X, Wu J, Su J and Zhang G:
Risk factors and prevalence of Helicobacter pylori infection in
persistent high incidence area of gastric carcinoma in Yangzhong
City. Gastroenterol Res Pract. 2014:4813652014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Repetto O, Zanussi S, Casarotto M,
Canzonieri V, De Paoli P, Cannizzaro R and De Re V: Differential
proteomics of Helicobacter pylori associated with autoimmune
atrophic gastritis. Mol Med. 20:57–71. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Satkunanathan S, Kumar N, Bajorek M,
Purbhoo MA and Culley FJ: Respiratory syncytial virus infection,
TLR3 ligands and proinflammatory cytokines induce CD161 ligand LLT1
expression on the respiratory epithelium. J Virol. 88:2366–2373.
2014. View Article : Google Scholar :
|
|
43
|
Mota A, Areias J and Cardoso MF: Chronic
liver disease and cirrhosis among patients with hepatitis B virus
infection in northern Portugal with reference to the viral
genotypes. J Med Virol. 83:71–77. 2011. View Article : Google Scholar
|
|
44
|
Srivastava R, Kashyap A, Kumar M, Nath G
and Jain AK: Mucosal IgA & IL-1β in Helicobacter pylori
infection. Indian J Clin Biochem. 28:19–23. 2013. View Article : Google Scholar :
|
|
45
|
Kim DJ, Park JH, Franchi L, Backert S and
Núñez G: The Cag pathogenicity island and interaction between
TLR2/NOD2 and NLRP3 regulate IL-1β production in Helicobacter
pylori infected dendritic cells. Eur J Immunol. 43:2650–2658. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Bartchewsky W Jr, Martini MR, Masiero M,
Squassoni AC, Alvarez MC, Ladeira MS, Salvatore D, Trevisan M,
Pedrazzoli J Jr and Ribeiro ML: Effect of Helicobacter pylori
infection on IL-8, IL-1beta and COX-2 expression in patients with
chronic gastritis and gastric cancer. Scand J Gastroenterol.
44:153–161. 2009. View Article : Google Scholar
|
|
47
|
Augustine MV, Leonard MB, Thayu M,
Baldassano RN, de Boer IH, Shults J, Denson LA, DeBoer MD,
Herskovitz R and Denburg MR: Changes in vitamin D-related mineral
metabolism after induction with anti-tumor necrosis factor-α
therapy in crohn's disease. J Clin Endocrinol Metab. 99:E991–E998.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lv Q, Yin Y, Li X, Shan G2, Wu X, Liang D,
Li Y and Zhang X: The status of rheumatoid factor and anti-cyclic
citrullinated peptide antibody are not associated with the effect
of anti-TNF α agent treatment in patients with rheumatoid
arthritis: A meta-analysis. PLoS One. 9:e894422014. View Article : Google Scholar
|
|
49
|
Schuett H, Oestreich R, Waetzig GH, Annema
W, Luchtefeld M, Hillmer A, Bavendiek U, von Felden J, Divchev D,
Kempf T, et al: Transsignaling of interleukin-6 crucially
contributes to atherosclerosis in mice. Arterioscler Thromb Vasc
Biol. 32:281–290. 2012. View Article : Google Scholar
|
|
50
|
Abbas Z, Yakoob J, Usman MW, Shakir T,
Hamid S and Jafri W: Effect of Helicobacter pylori and its
virulence factors on portal hypertensive gastropathy and
interleukin (IL)-8, IL-10 and tumor necrosis factor-alpha levels.
Saudi J Gastroenterol. 20:120–127. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Figura N, Palazzuoli A, Vaira D, Campagna
M, Moretti E, Iacoponi F, Giordano N, Clemente S, Nuti R and
Ponzetto A: Cross-sectional study: CagA-positive Helicobacter
pylori infection, acute coronary artery disease and systemic levels
of B-type natriuretic peptide. J Clin Pathol. 67:251–257. 2014.
View Article : Google Scholar
|
|
52
|
Peng Q, Liu H, Shi S and Li M: Lycium
ruthenicum polysaccharide attenuates inflammation through
inhibiting TLR4/NF-κB signaling pathway. Int J Biol Macromol.
67:330–335. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Luo JG, Zhao XL, Xu WC, Zhao XJ, Wang JN,
Lin XW, Sun T and Fu ZJ: Activation of spinal NF-κB/p65 contributes
to peripheral inflammation and hyperalgesia in rat adjuvant-induced
arthritis. Arthritis Rheumatol. 66:896–906. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Heymann MC, Winkler S, Luksch H, Flecks S,
Franke M, Ruß S, Ozen S, Yilmaz E, Klein C, Kallinich T, et al:
Human procaspase-1 variants with decreased enzymatic activity are
associated with febrile episodes and may contribute to inflammation
via RIP2 and NF-κB signaling. J Immunol. 192:4379–4385. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Corn JE and Vucic D: Ubiquitin in
inflammation: The right linkage makes all the difference. Nat
Struct Mol Biol. 21:297–300. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Liu Z, Qin T, Zhou J, Taylor A, Sparrow JR
and Shang F: Impairment of the ubiquitin-proteasome pathway in RPE
alters the expression of inflammation related genes. Adv Exp Med
Biol. 801:237–250. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Khan YM, Kirkham P, Barnes PJ and Adcock
IM: Brd4 Is essential for IL-1β-induced inflammation in human
airway epithelial cells. PLoS One. 9:e950512014. View Article : Google Scholar
|
|
58
|
Herbert C, Shadie AM, Bunting MM, Tedla N,
Garthwaite L, Freeman A, Yoo H, Park SH and Kumar RK:
Anti-inflammatory and anti-remodelling effects of ISU201, a
modified form of the extracellular domain of human BST2, in
experimental models of asthma: Association with inhibition of
histone acetylation. PLoS One. 9:e904362014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Qiao G, Ying H, Zhao Y, Liang Y, Guo H,
Shen H, Li Z, Solway J, Tao E, Chiang YJ, et al: E3 ubiquitin
ligase Cbl-b suppresses proallergic T cell development and allergic
airway inflammation. Cell Rep. 6:709–723. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Soe NN, Sowden M, Baskaran P, Kim Y, Nigro
P, Smolock EM and Berk BC: Acetylation of cyclophilin A is required
for its secretion and vascular cell activation. Cardiovasc Res.
101:444–453. 2014. View Article : Google Scholar :
|
|
61
|
Chan C, Wang Y, Chow PK, Chung AY, Ooi LL
and Lee CG: Altered binding site selection of p53 transcription
cassettes by hepatitis B virus X protein. Mol Cell Biol.
33:485–497. 2013. View Article : Google Scholar :
|
|
62
|
Kiernan R, Brès V, Ng RW, Coudart MP, El
Messaoudi S, Sardet C, Jin DY, Emiliani S and Benkirane M:
Post-activation turn-off of NF-kappa B-dependent transcription is
regulated by acetylation of p65. J Biol Chem. 278:2758–2766. 2003.
View Article : Google Scholar
|