|
1
|
Kumar S, Tomooka Y and Noda M:
Identification of a set of genes with developmentally
down-regulated expression in the mouse brain. Biochem Biophys Res
Commun. 185:1155–1161. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Law SF, Estojak J, Wang B, Mysliwiec T,
Kruh G and Golemis EA: Human enhancer of filamentation a novel
p130cas-like docking protein, associates with focal adhesion kinase
and induces pseudohyphal growth in Saccharomyces cerevisiae. Mol
Cell Biol. 16:3327–3337. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Minegishi M, Tachibana K, Sato T, Iwata S,
Nojima Y and Morimoto C: Structure and function of Cas-L, a 105-kD
Crk-associated substrate-related protein that is involved in beta-1
integrin-mediated signaling in lymphocytes. J Exp Med.
184:1365–1375. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kim M, Gans JD, Nogueira C, Wang A, Paik
JH, Feng B, Brennan C, Hahn WC, Cordon-Cardo C, Wagner SN, et al:
Comparative oncogenomics identifies NEDD9 as a melanoma metastasis
gene. Cell. 125:1269–1281. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Sakai R, Iwamatsu A, Hirano N, Ogawa S,
Tanaka T, Mano H, Yazaki Y and Hirai H: A novel signaling molecule,
p130, forms stable complexes in vivo with v-Crk and v-Src in a
tyrosine phosphorylation dependent manner. EMBO J. 13:3748–3756.
1994.PubMed/NCBI
|
|
6
|
Alexandropoulos K and Baltimore D:
Coordinate activation of c-Src by SH3- and SH2-binding sites on
anovel, p130Cas-related protein, Sin. Genes Dev. 10:1341. 1995.
View Article : Google Scholar
|
|
7
|
Alexandropoulos K, Donlin LT, Xing L and
Regelmann AG: Sin: Good or bad? A T lymphocyte perspective. Immunol
Rev. 192:181–195. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Ishino M, Ohba T, Sasaki H and Sasaki T:
Molecular cloning of a cDNA encoding a phosphoprotein, Efs, which
contains a Src homology 3 domain and associates with Fyn. Oncogene.
11:2331–2338. 1995.PubMed/NCBI
|
|
9
|
Abassi YA, Rehn M, Ekman N, Alitalo K and
Vuori K: p130Cas Couples the tyrosine kinase Bmx/Etk with
regulation of the actin cytoskeleton and cell migration. J Biol
Chem. 278:35636–35643. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Li SS: Specificity and versatility of SH3
and other proline-recognition domains: Structural basis and
implications for cellular signal transduction. Biochem J.
390:641–653. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Machida K and Mayer BJ: The SH2 domain:
Versatile signaling module and pharmaceutical target. Biochim
Biophys Acta. 1747:1–25. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Canutescu AA and Dunbrack RL Jr: MollDE: A
homology modeling framework you can click with. Bioinformatics.
21:2914–2916. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Law SF, Zhang YZ, Fashena S, Toby G,
Estojak J and Golemis EA: Dimerization of the docking/adaptor
protein HEF1/NEDD9/CAS-L via a carboxy-terminal helix-loop-helix
domain. Exp Cell Res. 252:224–235. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Law SF, Zhang YZ, Klein-Szanto AJ and
Golemis EA: Cell-cycle regulated processing of HEF1 to multiple
protein forms differentially targeted to multiple subcellular
compartments. Mol Cell Biol. 18:3540–3551. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Law SF, Estojak J, Wang B, Mysliwiec T,
Kruh G and Golemis EA: Human Enhancer of Filamentation 1 a novel
p130cas-like docking protein, associates withfocal adhesion kinase
and induces pseudohyphal growth in Saccharomyces cerevisiae. Mol
Cell Biol. 16:3327–3337. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Sima N, Cheng X, Ye F, Ma D, Xie X and Lü
W: The overexpression of scaffolding protein NEDD9 promotes
migration and invasion in cervical cancer via tyrosine
phosphorylated FAK and SRC. PLoS One. 8:e745942013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ruest PJ, Shin NY, Polte TR, Zhang X and
Hanks SK: Mechanisms of CAS substrate domain tyrosine
phosphorylation by FAK and Src. Mol Cell Biol. 21:7641–7652. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kim M, Gans JD, Nogueira C, Wang A, Paik
JH, Feng B, Brennan C, Hahn WC, Cordon-Cardo C, Wagner SN, et al:
Comparative oncogenomics identifies NEDD9 as a melanoma metastasis
gene. Cell. 125:1269–1281. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Bargon SD, Gunning PW and O'Neill GM: The
Cas family docking protein, HEF1, promotes the formation of
neurite-like membrane extensions. Biochim Biophys Acta.
1746:143–154. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zheng M and McKeown-Longo PJ: Regulation
of HEF1/NEDD9/CAS-L expression and phosphorylation by TGF-beta 1
and cell adhesion. J Biol Chem. 277:39599–39608. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Merrill RA, See AW, Wertheim ML and
Clagett-Dame M: Crk-associated substrate (Cas) family member,
NEDD9, is regulated in human neuroblastoma cells and in the
embryonic hindbrain by all-trans retinoic acid. Dev Dyn.
231:564–575. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Merrill RA, Ahrens JM, Kaiser ME,
Federhart KS, Poon VY and Clagett-Dame M: All-trans retinoic
acid-responsive genes identified in the human SH-SY5Y neuroblastoma
cell line and their regulated expression in the nervous system of
early embryos. Biol Chem. 385:605–614. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Sasaki T, Iwata S, Okano HJ, Urasaki Y,
Hamada J, Tanaka H, Dang NH, Okano H and Morimoto C: Nedd9 protein,
a Cas-L homologue, is upregulated after transient global ischemia
in rats. Possible involvement of Nedd9 in the differentiation of
neurons after ischemia. Stroke. 36:2457–2462. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Donninger H, Bonome T, Radonovich M,
Pise-Masison CA, Brady J, Shih JH, Barrett JC and Birrer MJ: Whole
genome expression profiling of advance stage papillary serous
ovarian cancer reveals activated pathways. Oncogene. 23:8065–8077.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Boyer LA, Lee TI, Cole MF, Johnstone SE,
Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG,
et al: Core transcriptional regulatory circuitry in human embryonic
stem cells. Cell. 122:947–956. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Pugacheva EN and Golemis EA: The focal
adhesion scaffolding protein HEF1 regulates activation of the
Aurora-A and Nek2 kinases at the centrosome. Nat Cell Biol.
7:937–946. 2005. View
Article : Google Scholar : PubMed/NCBI
|
|
27
|
Law SF, O'Neill GM, Fashena SJ, Einarson
MB and Golemis EA: The docking protein HEF1 is an apoptotic
mediator at focal adhesion sites. Mol Cell Biol. 20:5184–5195.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Nourry C, Maksumova L, Pang M, Liu X and
Wang T: Direct interaction between Smad3, APC10, CDH1 and HEF1 in
proteasomal Degradation of HEF1. BMC Cell Biol. 5:202004.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Liu X, Elia AE, Law SF, Golemis EA, Farley
J and Wang T: A novel ability of Smad3 to regulate proteasomal
degradation of a cas family member, HEF1. EMBO J. 19:6759–6769.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Feng L, Guedes S and Wang T:
Atrophin-1-interacting protein 4/human Itch is a ubiquitin E3
ligase for human enhancer of filamentation 1 in transforming growth
factor-beta signaling pathways. J Biol Chem. 279:29681–29690. 2009.
View Article : Google Scholar
|
|
31
|
Inamoto S, Iwata S, Inamoto T, Nomura S,
Sasaki T, Urasaki Y, Hosono O, Kawasaki H, Tanaka H, Dang NH, et
al: Crk-associated substrate lymphocyte type regulates transforming
growth factor-beta signaling by inhibiting Smad6 and Smad7.
Oncogene. 26:893–904. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wang T: The 26S proteasome system in the
signaling pathways of TGF-beta superfamily. Front Biosci.
8:1109–1127. 2003. View
Article : Google Scholar
|
|
33
|
Wozniak MA, Modzelewska K, Kwong L and
Keely PJ: Focal adhesion regulation of cell behavior. Biochim
Biophys Acta. 1692:103–119. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Seo S, Asai T, Saito T, Suzuki T,
Morishita Y, Nakamoto T, Ichikawa M, Yamamoto G, Kawazu M, Yamagata
T, et al: Crk-associated substrate lymphocyte type is required for
lymphocyte trafficking and marginal zone B cell maintenance. J
Immunol. 175:3492–3501. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu
W, Giri DD, Viale A, Olshen AB, Gerald WL and Massagué J: Genes
that mediate breast cancer metastasis to lung. Nature. 436:518–524.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Natarajan M, Stewart JE, Golemis EA,
Pugacheva EN, Alexandropoulos K, Cox BD, Wang W, Grammer JR and
Gladson CL: HEF1 is a necessary and specific downstream effector of
FAK that promotes the migration of glioblastoma cells. Oncogene.
25:1721–1732. 2006. View Article : Google Scholar
|
|
37
|
Fashena SJ, Einarson MB, O'Neill GM,
Patriotis C and Golemis EA: Dissection of HEF1-dependent functions
in motility and transcriptional regulation. J Cell Sci. 115:99–111.
2002.PubMed/NCBI
|
|
38
|
O'Neill GM and Golemis EA: Proteolysis of
the docking protein HEF1 and implications for focal adhesion
dynamics. Mol Cell Biol. 21:5094–5108. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Webb DJ, Donais K, Whitmore LA, Thomas SM,
Turner CE, Parsons JT and Horwitz AF: FAK-Src signalling through
paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell
Biol. 6:154–161. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
40
|
Van Seventer GA, Salman HJ, Law SF, et al:
Focal adhesion kinase regulates beta1 integrin dependent migration
through an HEF1/NEDD9/CAS-L effector pathway. Eur J Imm.
31:1417–1427. 2001. View Article : Google Scholar
|
|
41
|
Ohashi Y, Iwata S, Kamiguchi K and
Morimoto C: Tyrosine phosphorylation of Crk-associated substrate
lymphocyte-type is a critical element in TCR- and beta1
integrin-induced T lymphocyte migration. J Immunol. 163:3727–3734.
1999.PubMed/NCBI
|
|
42
|
Iwata S, Souta-Kuribara A, Yamakawa A,
Sasaki T, Shimizu T, Hosono O, Kawasaki H, Tanaka H, Dang NH,
Watanabe T, et al: HTLV-I Tax induces and associates with
Crk-associated substrate lymphocyte type (Cas-L). Oncogene.
24:1262–1271. 2005. View Article : Google Scholar
|
|
43
|
Klemke RL, Leng J, Molander R, Brooks PC,
Vuori K and Cheresh DA: CAS/Crk coupling serves as a 'molecular
switch' for induction of cell migration. J Cell Biol. 140:961–972.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ridley AJ: Rho proteins: Linking signaling
with membrane trafficking. Traffic. 2:303–310. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Smith LG and Li R: Actin polymerization:
Riding the wave. Curr Biol. 14:R109–R111. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Cai D, Iyer A, Felekkis KN, Near RI, Luo
Z, Chernoff J, Albanese C, Pestell RG and Lerner A: AND-34/BCAR3, a
GDP exchange factor whose overexpression confers anti estrogen
resistance, activates Rac, PAK1 and the cyclin D1 promoter. Cancer
Res. 63:6802–6808. 2003.PubMed/NCBI
|
|
47
|
Tamada M, Sheetz MP and Sawada Y:
Activation of a signaling cascade by cytoskeleton stretch. Dev
Cell. 7:709–718. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Cai D, Felekkis KN, Near RI, O'Neill GM,
van Seventer JM, Golemis EA and Lerner A: The GDP exchange factor
AND-34 is expressed in B cells, associates with HEF1 and activates
Cdc42. J Immunol. 170:969–978. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Gotoh T, Cai D, Tian X, Feig LA and Lerner
A: p130Cas regulates the activity of AND-34, a novel Ral, Rap1 and
R-Ras guanine nucleotide exchange factor. J Biol Chem.
275:30118–30123. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Sakakibara A, Hattori S, Nakamura S and
Katagiri T: A novel hematopoietic adaptor protein, Chat-H,
positively regulates T cell receptor-mediated interleukin-2
production by Jurkat cells. J Biol Chem. 278:6012–6017. 2003.
View Article : Google Scholar
|
|
51
|
Sakakibara A and Hattori S: Chat, a
Cas/HEF1-associated adaptor protein that integrates multiple
signaling pathways. J Biol Chem. 275:6404–6410. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lucas JT Jr, Salimath BP, Slomiany MG and
Rosenzweig SA: Regulation of invasive behavior by vascular
endothelial growth factor is HEF1-dependent. Oncogene.
29:4449–4459. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Gervais FG, Thornberry NA, Ruffolo SC,
Nicholson DW and Roy S: Caspases cleave focal adhesion kinase
during apoptosis to generate a FRNK-like polypeptide. J Biol Chem.
273:17102–17108. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kook S, Shim SR, Choi SJ, Ahnn J, Kim JI,
Eom SH, Jung YK, Paik SG and Song WK: Caspase-mediated cleavage of
p130Cas in etoposide-induced apoptotic Rat-1 cells. Mol Biol Cell.
11:929–939. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Stupack DG, Puente XS, Boutsaboualoy S,
Storgard CM and Cheresh DA: Apoptosis of adherent cells by
recruitment of caspase-8 to unligated integrins. J Cell Biol.
155:459–470. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Frisch SM: Anoikis. Methods Enzymol.
322:472–429. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Chang JX, Gao F, Zhao GQ and Zhang GJ:
Role of NEDD9 in invasion and metastasis of lung adenocarcinoma.
Exp Ther Med. 4:795–800. 2012.PubMed/NCBI
|
|
58
|
Biscardi JS, Belsches AP and Parsons SJ:
Characterization of human epidermal growth factor receptor and
c-Src interactions in human breast tumor cells. Mol Carcinog.
21:261–272. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Pugacheva EN and Golemis EA: HEF1-aurora A
interactions: Points of dialog between the cell cycle and cell
attachment signaling networks. Cell Cycle. 5:384–391. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Dadke D, Jarnik M, Pugacheva EN, Singh MK
and Golemis EA: Deregulation of HEF1 impairs M-phase progression by
disrupting the RhoA activation cycle. Mol Biol Cell. 17:1204–1217.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Fritz G and Kaina B: Rho GTPases:
Promising cellular targets for novel anticancer drugs. Curr Cancer
Drug Targets. 6:1–14. 2006.PubMed/NCBI
|
|
62
|
Honda H, Oda H, Nakamoto T, Honda Z, Sakai
R, Suzuki T, Saito T, Nakamura K, Nakao K, Ishikawa T, et al:
Cardiovascular anomaly, impaired actin bundling and resistance to
Src-induced transformation in mice lacking p130Cas. Nat Genet.
19:361–365. 1998. View
Article : Google Scholar : PubMed/NCBI
|
|
63
|
Dail M, Kalo MS, Seddon JA, Côté JF, Vuori
K and Pasquale EB: SHEP1 function in cell migration is impaired by
a single amino acid mutation that disrupts association with the
scaffolding protein cas but not with Ras GTPases. J Biol Chem.
279:41892–41902. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Speranza MC, Frattini V, Pisati F, Kapetis
D, Porrati P, Eoli M, Pellegatta S and Finocchiaro G: NEDD9, a
novel target of miR-145, increases the invasiveness of
glioblastoma. Oncotarget. 3:723–734. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Chang JX, Gao F, Zhao GQ and Zhang GJ:
Expression and clinical significance of NEDD9 in lung tissues. Med
Oncol. 29:2654–2660. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Liu Y, Wang D, Zhao KL, Zhu JW, Yin HB,
Wei YZ, Wu ZJ, Cheng GJ, Wang F, Ni F, et al: NEDD9 overexpression
correlates with poor prognosis in gastric cancer. Tumour Biol.
35:6351–6356. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Kato-Stankiewicz J, Hakimi I, Zhi G, Zhang
J, Serebriiskii I, Guo L, Edamatsu H, Koide H, Menon S, Eckl R, et
al: Inhibitors of Ras/Raf-1 interaction identified by two-hybrid
screening revert Ras-dependent transformation phenotypes in human
cancer cells. Proc Natl Acad Sci USA. 99:14398–14403. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Druker BJ: Perspectives on the development
of a molecularly targeted agent. Cancer Cell. 1:31–36. 2002.
View Article : Google Scholar : PubMed/NCBI
|