Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
November-2015 Volume 12 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2015 Volume 12 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

MicroRNA‑21 regulates cell proliferation and apoptosis in H2O2‑stimulated rat spinal cord neurons

  • Authors:
    • Genlong Jiao
    • Bin Pan
    • Zhigang Zhou
    • Lin Zhou
    • Zhizhong Li
    • Ziyong Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China, Department of Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
  • Pages: 7011-7016
    |
    Published online on: August 28, 2015
       https://doi.org/10.3892/mmr.2015.4265
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Oxidative stress can alter the expression level of microRNAs (miRNAs) and has a role in oxidative damage generated by reactive oxygen species (ROS). While previous studies have demonstrated that miR‑146a, miR‑21 and miR‑150 are essential for ROS production in heart disease, the role of these miRNAs in spinal cord injuries has not yet been examined. The present study focused on examining the role of miR‑146a, miR‑21 and miR‑150 during H2O2 stimulation in rat neuronal spinal cord (RN‑sc) cells. RN‑sc cells were treated with H2O2, and cells were harvested for reverse transcription quantitative polymerase chain reaction (RT‑qPCR) to detect the expression levels of miR‑146a, miR‑21 and miR‑150. The results demonstrated that miR‑146a, miR‑21 and miR‑150 expression was upregulated during H2O2 treatment. T-cell death and apoptosis were investigated using an MTT assay and flow cytometric analysis, respectively. Following miR‑21 silencing, H2O2‑induced cell death and apoptosis were reduced in RN‑sc cells, while miR‑150 silencing had no effect. Furthermore, Smad7 was identified as a direct target of miR‑21 using a Luciferase reporter assay, RT-qPCR and western blot analysis. In addition, while H2O2 downregulated Smad7 protein expression, this was reversed by inhibiting miR‑21 expression. Based on previous studies, it was predicted that miR‑21 has a role in ROS production through regulating Smad7 in rat spinal cord neurons.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Cha HJ, Kim OY, Lee GT, Lee KS, Lee JH, Park IC, Lee SJ, Kim YR, Ahn KJ, An IS, et al: Identification of ultraviolet B radiation-induced microRNAs in normal human dermal papilla cells. Mol Med Rep. 10:1663–1670. 2014.PubMed/NCBI

2 

Fatemi N, Sanati MH, Shamsara M, Moayer F, Zavarehei MJ, Pouya A, Sayyahpour F, Ayat H and Gourabi H: TBHP-induced oxidative stress alters microRNAs expression in mouse testis. J Assist Reprod Genet. 31:1287–1293. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Zhang J, Du YY, Lin YF, Chen YT, Yang L, Wang HJ and Ma D: The cell growth suppressor, mir-126, targets IRS-1. Biochem Biophys Res Commun. 377:136–140. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Luzi E, Marini F, Sala SC, Tognarini I, Galli G and Brandi ML: Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J Bone Miner Res. 23:287–295. 2008. View Article : Google Scholar : PubMed/NCBI

5 

Yu B, Chapman EJ, Yang Z, Carrington JC and Chen X: Transgenically expressed viral RNA silencing suppressors interfere with microRNA methylation in Arabidopsis. FEBS Lett. 580:3117–3120. 2006. View Article : Google Scholar : PubMed/NCBI

6 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI

7 

Wang Q, Chen W, Bai L, Chen W, Padilla MT, Lin AS, Shi S, Wang X and Lin Y: Receptor-interacting protein 1 increases chemoresistance by maintaining inhibitor of apoptosis protein levels and reducing reactive oxygen species through a microRNA-146a-mediated catalase pathway. J Biol Chem. 289:5654–5663. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Li SZ, Hu YY, Zhao J, Zhao YB, Sun JD, Yang YF, Ji CC, Liu ZB, Cao WD, Qu Y, et al: MicroRNA-34a induces apoptosis in the human glioma cell line, A172, through enhanced ROS production and NOX2 expression. Biochem Biophys Res Commun. 444:6–12. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Bao B, Azmi AS, Li Y, Ahmad A, Ali S, Banerjee S, Kong D and Sarkar FH: Targeting CSCs in tumor microenvironment: The potential role of ROS-associated miRNAs in tumor aggressiveness. Curr Stem Cell Res Ther. 9:22–35. 2014. View Article : Google Scholar

10 

Magenta A, Greco S, Gaetano C and Martelli F: Oxidative stress and microRNAs in vascular diseases. Int J Mol Sci. 14:17319–17346. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Aranda JF, Madrigal-Matute J, Rotllan N and Fernández-Hernando C: MicroRNA modulation of lipid metabolism and oxidative stress in cardiometabolic diseases. Free Radic Biol Med. 64:31–39. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Simone NL, Soule BP, Ly D, Saleh AD, Savage JE, Degraff W, Cook J, Harris CC, Gius D and Mitchell JB: Ionizing radiation-induced oxidative stress alters miRNA expression. PLoS One. 4:e63772009. View Article : Google Scholar : PubMed/NCBI

13 

Magenta A, Cencioni C, Fasanaro P, Zaccagnini G, Greco S, Sarra-Ferraris G, Antonini A, Martelli F and Capogrossi MC: miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ. 18:1628–1639. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Tan G, Shi Y and Wu ZH: MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN. Biochem Biophys Res Commun. 417:546–551. 2012. View Article : Google Scholar :

15 

Strickertsson JA, Rasmussen LJ and Friis-Hansen L: Enterococcus faecalis infection and reactive oxygen species downregulates the miR-17-92 cluster in gastric adenocarcinoma cell culture. Genes (Basel). 5:726–738. 2014.

16 

Donadelli M, Dando I, Fiorini C and Palmieri M: Regulation of miR-23b expression and its dual role on ROS production and tumour development. Cancer Lett. 349:107–113. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Campagnolo DI, Bartlett JA and Keller SE: Influence of neurological level on immune function following spinal cord injury: A review. J Spinal Cord Med. 23:121–128. 2000.PubMed/NCBI

18 

Wu B and Ren X: Promoting axonal myelation for improving neurological recovery in spinal cord injury. J Neurotrauma. 26:1847–1856. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Young W: Secondary injury mechanisms in acute spinal cord injury. J Emerg Med. 11(Suppl 1): 13–22. 1993.PubMed/NCBI

20 

Lin Y, Vreman HJ, Wong RJ, Tjoa T, Yamauchi T and Noble-Haeusslein LJ: Heme oxygenase-1 stabilizes the blood-spinal cord barrier and limits oxidative stress and white matter damage in the acutely injured murine spinal cord. J Cereb Blood Flow Metab. 27:1010–1021. 2007.

21 

Genovese T, Mazzon E, Esposito E, Muià C, Di Paola R, Bramanti P and Cuzzocrea S: Beneficial effects of FeTSPP, a peroxynitrite decomposition catalyst, in a mouse model of spinal cord injury. Free Radic Biol Med. 43:763–780. 2007. View Article : Google Scholar : PubMed/NCBI

22 

Genovese T, Mazzon E, Esposito E, Di Paola R, Murthy K, Neville L, Bramanti P and Cuzzocrea S: Effects of a metalloporphyrinic peroxynitrite decomposition catalyst, ww-85, in a mouse model of spinal cord injury. Free Radic Res. 43:631–645. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Bao F and Liu D: Peroxynitrite generated in the rat spinal cord induces neuron death and neurological deficits. Neuroscience. 115:839–849. 2002. View Article : Google Scholar : PubMed/NCBI

24 

Bao F and Liu D: Peroxynitrite generated in the rat spinal cord induces apoptotic cell death and activates caspase-3. Neuroscience. 116:59–70. 2003. View Article : Google Scholar : PubMed/NCBI

25 

Bao F and Liu D: Hydroxyl radicals generated in the rat spinal cord at the level produced by impact injury induce cell death by necrosis and apoptosis: Protection by a metalloporphyrin. Neuroscience. 126:285–295. 2004. View Article : Google Scholar : PubMed/NCBI

26 

Li X, Kong M, Jiang D, Qian J, Duan Q and Dong A: MicroRNA-150 aggravates H2O2-induced cardiac myocyte injury by downregulating c-myb gene. Acta Biochim Biophys Sin (Shanghai). 45:734–741. 2013. View Article : Google Scholar

27 

Cheng Y, Liu X, Zhang S, Lin Y, Yang J and Zhang C: MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol. 47:5–14. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Tu H, Sun H, Lin Y, Ding J, Nan K, Li Z, Shen Q and Wei Y: Oxidative stress upregulates PDCD4 expression in patients with gastric cancer via miR-21. Curr Pharm Des. 20:1917–1923. 2014. View Article : Google Scholar

29 

Xu LF, Wu ZP, Chen Y, Zhu QS, Hamidi S and Navab R: MicroRNA-21 (miR-21) regulates cellular proliferation, invasion, migration and apoptosis by targeting PTEN, RECK and Bcl-2 in lung squamous carcinoma, Gejiu city, China. PLoS One. 9:e1036982014. View Article : Google Scholar

30 

Wei C, Li L, Kim IK, Sun P and Gupta S: NF-κB mediated miR-21 regulation in cardiomyocytes apoptosis under oxidative stress. Free Radic Res. 48:282–291. 2014. View Article : Google Scholar

31 

Yu H, Huang J, Wang S, Zhao G, Jiao X and Zhu L: Overexpression of Smad7 suppressed ROS/MMP9-dependent collagen synthesis through regulation of heme oxygenase-1. Mol Biol Rep. 40:5307–5314. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Jiao G, Pan B, Zhou Z, Zhou L, Li Z and Zhang Z: MicroRNA‑21 regulates cell proliferation and apoptosis in H2O2‑stimulated rat spinal cord neurons. Mol Med Rep 12: 7011-7016, 2015.
APA
Jiao, G., Pan, B., Zhou, Z., Zhou, L., Li, Z., & Zhang, Z. (2015). MicroRNA‑21 regulates cell proliferation and apoptosis in H2O2‑stimulated rat spinal cord neurons. Molecular Medicine Reports, 12, 7011-7016. https://doi.org/10.3892/mmr.2015.4265
MLA
Jiao, G., Pan, B., Zhou, Z., Zhou, L., Li, Z., Zhang, Z."MicroRNA‑21 regulates cell proliferation and apoptosis in H2O2‑stimulated rat spinal cord neurons". Molecular Medicine Reports 12.5 (2015): 7011-7016.
Chicago
Jiao, G., Pan, B., Zhou, Z., Zhou, L., Li, Z., Zhang, Z."MicroRNA‑21 regulates cell proliferation and apoptosis in H2O2‑stimulated rat spinal cord neurons". Molecular Medicine Reports 12, no. 5 (2015): 7011-7016. https://doi.org/10.3892/mmr.2015.4265
Copy and paste a formatted citation
x
Spandidos Publications style
Jiao G, Pan B, Zhou Z, Zhou L, Li Z and Zhang Z: MicroRNA‑21 regulates cell proliferation and apoptosis in H2O2‑stimulated rat spinal cord neurons. Mol Med Rep 12: 7011-7016, 2015.
APA
Jiao, G., Pan, B., Zhou, Z., Zhou, L., Li, Z., & Zhang, Z. (2015). MicroRNA‑21 regulates cell proliferation and apoptosis in H2O2‑stimulated rat spinal cord neurons. Molecular Medicine Reports, 12, 7011-7016. https://doi.org/10.3892/mmr.2015.4265
MLA
Jiao, G., Pan, B., Zhou, Z., Zhou, L., Li, Z., Zhang, Z."MicroRNA‑21 regulates cell proliferation and apoptosis in H2O2‑stimulated rat spinal cord neurons". Molecular Medicine Reports 12.5 (2015): 7011-7016.
Chicago
Jiao, G., Pan, B., Zhou, Z., Zhou, L., Li, Z., Zhang, Z."MicroRNA‑21 regulates cell proliferation and apoptosis in H2O2‑stimulated rat spinal cord neurons". Molecular Medicine Reports 12, no. 5 (2015): 7011-7016. https://doi.org/10.3892/mmr.2015.4265
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team