|
1
|
Gerlich WH: Medical virology of hepatitis
B: How it began and where we are now. Virol J. 10:2392013.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Zoulim F: Hepatitis B virus resistance to
antiviral drugs: Where are we going? Liver Int. 31(Suppl 1):
111–116. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Wursthorn K, Lutgehetmann M, Dandri M,
Volz T, Buggisch P, Zollner B, Longerich T, Schirmacher P, Metzler
F, Zankel M, et al: Peginterferon alpha-2b plus adefovir induce
strong cccDNA decline and HBsAg reduction in patients with chronic
hepatitis B. Hepatology. 44:675–684. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Lucifora J, Xia Y, Reisinger F, Zhang K,
Stadler D, Cheng X, Sprinzl MF, Koppensteiner H, Makowska Z, Volz
T, et al: Specific and nonhepatotoxic degradation of nuclear
hepatitis B virus cccDNA. Science. 343:1221–1228. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Wedekind JE, Dance GS, Sowden MP and Smith
HC: Messenger RNA editing in mammals: New members of the APOBEC
family seeking roles in the family business. Trends Genet.
19:207–216. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Deng Y, Du Y, Zhang Q, Han X and Cao G:
Human cytidine deaminases facilitate hepatitis B virus evolution
and link inflammation and hepatocellular carcinoma. Cancer Lett.
343:161–171. 2014. View Article : Google Scholar
|
|
7
|
Dickerson SK, Market E, Besmer E and
Papavasiliou FN: AID mediates hypermutation by deaminating single
stranded DNA. J Exp Med. 197:1291–1296. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Rogozin IB, Basu MK, Jordan IK, Pavlov YI
and Koonin EV: APOBEC4, a new member of the AID/APOBEC family of
polynucleotide (deoxy) cytidine deaminases predicted by
computational analysis. Cell Cycle. 4:1281–1285. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Liao W, Hong SH, Chan BH, Rudolph FB,
Clark SC and Chan L: APOBEC-2, a cardiac- and skeletal
muscle-specific member of the cytidine deaminase supergene family.
Biochem Biophys Res Commun. 260:398–404. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Teng B, Burant CF and Davidson NO:
Molecular cloning of an apolipoprotein B messenger RNA editing
protein. Science. 260:1816–1819. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Jarmuz A, Chester A, Bayliss J, Gisbourne
J, Dunham I, Scott J and Navaratnam N: An anthropoid-specific locus
of orphan C to U RNA-editing enzymes on chromosome 22. Genomics.
79:285–296. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Conticello SG, Thomas CJ, Petersen-Mahrt
SK and Neuberger MS: Evolution of the AID/APOBEC family of
polynucleotide (deoxy) cytidine deaminases. Mol Biol Evol.
22:367–377. 2005. View Article : Google Scholar
|
|
13
|
Vieira VC and Soares MA: The role of
cytidine deaminases on innate immune responses against human viral
infections. Biomed Res Int. 2013:6830952013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Severi F, Chicca A and Conticello SG:
Analysis of reptilian APOBEC1 suggests that RNA editing may not be
its ancestral function. Mol Biol Evol. 28:1125–1129. 2011.
View Article : Google Scholar
|
|
15
|
Rösler C, Köck J, Kann M, Malim MH, Blum
HE, Baumert TF and von Weizsäcker F: APOBEC-mediated interference
with hepadnavirus production. Hepatology. 42:301–309. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Suspène R, Guétard D, Henry M, Sommer P,
Wain-Hobson S and Vartanian JP: Extensive editing of both hepatitis
B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in
vivo. Proc Natl Acad Sci USA. 102:8321–8326. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Henry M, Guétard D, Suspène R, Rusniok C,
Wain-Hobson S and Vartanian JP: Genetic editing of HBV DNA by
monodomain human APOBEC3 cytidine deaminases and the recombinant
nature of APOBEC3 G. PLoS One. 4:e42772009. View Article : Google Scholar
|
|
18
|
Baumert TF, Rösler C, Malim MH and von
Weizsäcker F: Hepatitis B virus DNA is subject to extensive editing
by the human deaminase APOBEC3C. Hepatology. 46:682–689. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Gonzalez MC, Suspène R, Henry M, Guétard
D, Wain-Hobson S and Vartanian JP: Human APOBEC1 cytidine deaminase
edits HBV DNA. Retrovirology. 6:962009. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Köck J and Blum HE: Hypermutation of
hepatitis B virus genomes by APOBEC3 G, APOBEC3C and APOBEC3H. J
Gen Virol. 89:1184–1191. 2008. View Article : Google Scholar
|
|
21
|
Vartanian JP, Henry M, Marchio A, Suspène
R, Aynaud MM, Guétard D, Cervantes-Gonzalez M, Battiston C,
Mazzaferro V, Pineau P, et al: Massive APOBEC3 editing of hepatitis
B viral DNA in cirrhosis. PLoS Pathog. 6:e10009282010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Li D, Liu J, Kang F, Guan W, Gao X, Wang Y
and Sun D: Core-APOBEC3C chimerical protein inhibits hepatitis B
virus replication. J Biochem. 150:371–374. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zhang W, Zhang X, Tian C, Wang T, Sarkis
PT, Fang Y, Zheng S, Yu XF and Xu R: Cytidine deaminase APOBEC3B
interacts with heterogeneous nuclear ribonucleoprotein K and
suppresses hepatitis B virus expression. Cell Microbiol.
10:112–121. 2008.
|
|
24
|
Bonvin M and Greeve J: Effects of point
mutations in the cytidine deaminase domains of APOBEC3B on
replication and hypermu-tation of hepatitis B virus in vitro. J Gen
Virol. 88:3270–3274. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Jost S, Turelli P, Mangeat B, Protzer U
and Trono D: Induction of antiviral cytidine deaminases does not
explain the inhibition of hepatitis B virus replication by
interferons. J Virol. 81:10588–10596. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Bonvin M, Achermann F, Greeve I, Stroka D,
Keogh A, Inderbitzin D, Candinas D, Sommer P, Wain-Hobson S,
Vartanian JP and Greeve J: Interferon-inducible expression of
APOBEC3 editing enzymes in human hepatocytes and inhibition of
hepatitis B virus replication. Hepatology. 43:1364–1374. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Nguyen DH, Gummuluru S and Hu J:
Deamination-independent inhibition of hepatitis B virus reverse
transcription by APOBEC3G. J Virol. 81:4465–4472. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhang T, Cai J, Chang J, Yu D, Wu C, Yan
T, Zhai K, Bi X, Zhao H, Xu J, et al: Evidence of associations of
APOBEC3B gene deletion with susceptibility to persistent HBV
infection and hepatocellular carcinoma. Hum Mol Genet.
22:1262–1269. 2013. View Article : Google Scholar
|
|
29
|
Bransteitter R, Pham P, Scharff MD and
Goodman MF: Activation-induced cytidine deaminase deaminates
deoxy-cytidine on single-stranded DNA but requires the action of
RNase. Proc Natl Acad Sci USA. 100:4102–4107. 2003. View Article : Google Scholar
|
|
30
|
Muramatsu M, Sankaranand VS, Anant S,
Sugai M, Kinoshita K, Davidson NO and Honjo T: Specific expression
of activation-induced cytidine deaminase (AID), a novel member of
the RNA-editing deaminase family in germinal center B cells. J Biol
Chem. 274:18470–18476. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Vonica A, Rosa A, Arduini BL and Brivanlou
AH: APOBEC2, a selective inhibitor of TGFβ signaling, regulates
left-right axis specification during early embryogenesis. Dev Biol.
350:13–23. 2011. View Article : Google Scholar :
|
|
32
|
Sato Y, Probst HC, Tatsumi R, Ikeuchi Y,
Neuberger MS and Rada C: Deficiency in APOBEC2 leads to a shift in
muscle fiber type, diminished body mass and myopathy. J Biol Chem.
285:7111–7118. 2010. View Article : Google Scholar :
|
|
33
|
Etard C, Roostalu U and Strahle U: Lack of
Apobec2-related proteins causes a dystrophic muscle phenotype in
zebrafish embryos. J Cell Biol. 189:527–539. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Koning FA, Newman EN, Kim EY, Kunstman KJ,
Wolinsky SM and Malim MH: Defining APOBEC3 expression patterns in
human tissues and hematopoietic cell subsets. J Virol.
83:9474–9485. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Tanaka Y, Marusawa H, Seno H, Matsumoto Y,
Ueda Y, Kodama Y, Endo Y, Yamauchi J, Matsumoto T, Takaori-Kondo A,
et al: Anti-viral protein APOBEC3G is induced by interferon-alpha
stimulation in human hepatocytes. Biochem Biophys Res Commun.
341:314–319. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Refsland EW, Stenglein MD, Shindo K, Albin
JS, Brown WL and Harris RS: Quantitative profiling of the full
APOBEC3 mRNA repertoire in lymphocytes and tissues: Implications
for HIV-1 restriction. Nucleic Acids Res. 38:4274–4284. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Xu R, Zhang X, Zhang W, Fang Y, Zheng S
and Yu XF: Association of human APOBEC3 cytidine deaminases with
the generation of hepatitis virus B x antigen mutants and
hepatocellular carcinoma. Hepatology. 46:1810–1820. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Stenglein MD, Burns MB, Li M, Lengyel J
and Harris RS: APOBEC3 proteins mediate the clearance of foreign
DNA from human cells. Nat Struct Mol Biol. 17:222–229. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Peng G, Lei KJ, Jin W, Greenwell-Wild T
and Wahl SM: Induction of APOBEC3 family proteins, a defensive
maneuver underlying interferon-induced anti-HIV-1 activity. J Exp
Med. 203:41–46. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Wang FX, Huang J and Zhang H, Ma X and
Zhang H: APOBEC3G upregulation by alpha interferon restricts human
immunodeficiency virus type 1 infection in human peripheral
plasmacytoid dendritic cells. J Gen Virol. 89:722–730. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Stopak KS, Chiu YL, Kropp J, Grant RM and
Greene WC: Distinct patterns of cytokine regulation of APOBEC3G
expression and activity in primary lymphocytes, macrophages and
dendritic cells. J Biol Chem. 282:3539–3546. 2007. View Article : Google Scholar
|
|
42
|
Argyris EG, Acheampong E, Wang F, Huang J,
Chen K, Mukhtar M and Zhang H: The interferon-induced expression of
APOBEC3G in human blood-brain barrier exerts a potent intrinsic
immunity to block HIV-1 entry to central nervous system. Virology.
367:440–451. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Endo Y, Marusawa H, Kinoshita K, Morisawa
T, Sakurai T, Okazaki IM, Watashi K, Shimotohno K, Honjo T and
Chiba T: Expression of activation-induced cytidine deaminase in
human hepatocytes via NF-kappaB signaling. Oncogene. 26:5587–5595.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Matsumoto T, Marusawa H, Endo Y, Ueda Y,
Matsumoto Y and Chiba T: Expression of APOBEC2 is transcriptionally
regulated by NF-kappaB in human hepatocytes. FEBS Lett.
580:731–735. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Endo Y, Marusawa H, Kou T, Nakase H, Fujii
S, Fujimori T, Kinoshita K, Honjo T and Chiba T: Activation-induced
cytidine deaminase links between inflammation and the development
of colitis-associated colorectal cancers. Gastroenterology.
135:889–898. 898 e1–e3. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kou T, Marusawa H, Kinoshita K, Endo Y,
Okazaki IM, Ueda Y, Kodama Y, Haga H, Ikai I and Chiba T:
Expression of activation-induced cytidine deaminase in human
hepatocytes during hepatocarcinogenesis. Int J Cancer. 120:469–476.
2007. View Article : Google Scholar
|
|
47
|
Smith HC, Bennett RP, Kizilyer A,
McDougall WM and Prohaska KM: Functions and regulation of the
APOBEC family of proteins. Semin Cell Dev Biol. 23:258–268. 2012.
View Article : Google Scholar
|
|
48
|
Backus JW, Schock D and Smith HC: Only
cytidines 5′ of the apolipoprotein B mRNA mooring sequence are
edited. Biochim Biophys Acta. 1219:1–14. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Yang Y, Sowden MP and Smith HC: Induction
of cytidine to uridine editing on cytoplasmic apolipoprotein B mRNA
by overexpressing APOBEC-1. J Biol Chem. 275:22663–22669. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Lau PP, Xiong WJ, Zhu HJ, Chen SH and Chan
L: Apolipoprotein B mRNA editing is an intranuclear event that
occurs posttranscriptionally coincident with splicing and
polyadenylation. J Biol Chem. 266:20550–20554. 1991.PubMed/NCBI
|
|
51
|
Sowden MP and Smith HC: Commitment of
apolipoprotein B RNA to the splicing pathway regulates
cytidine-to-uridine editing-site utilization. Biochem J.
359:697–705. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Papavasiliou FN and Schatz DG: Somatic
hypermutation of immunoglobulin genes: Merging mechanisms for
genetic diversity. Cell. 109(Suppl): S35–S44. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lada AG, Krick CF, Kozmin SG, Mayorov VI,
Karpova TS, Rogozin IB and Pavlov YI: Mutator effects and mutation
signatures of editing deaminases produced in bacteria and yeast.
Biochemistry (Mosc). 76:131–146. 2011. View Article : Google Scholar
|
|
54
|
Stavnezer J: Complex regulation and
function of activation-induced cytidine deaminase. Trends Immunol.
32:194–201. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Patenaude AM and Di Noia JM: The
mechanisms regulating the subcellular localization of AID. Nucleus.
1:325–331. 2010. View Article : Google Scholar
|
|
56
|
Bennett RP, Presnyak V, Wedekind JE and
Smith HC: Nuclear Exclusion of the HIV-1 host defense factor
APOBEC3G requires a novel cytoplasmic retention signal and is not
dependent on RNA binding. J Biol Chem. 283:7320–7327. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Smith HC: APOBEC3G: A double agent in
defense. Trends Biochem Sci. 36:239–244. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Chiu YL, Soros VB, Kreisberg JF, Stopak K,
Yonemoto W and Greene WC: Cellular APOBEC3G restricts HIV-1
infection in resting CD4+ T cells. Nature. 435:108–114. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
McDougall WM and Smith HC: Direct evidence
that RNA inhibits APOBEC3G ssDNA cytidine deaminase activity.
Biochem Biophys Res Commun. 412:612–617. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Soros VB, Yonemoto W and Greene WC: Newly
synthesized APOBEC3G is incorporated into HIV virions, inhibited by
HIV RNA and subsequently activated by RNase H. PLoS Pathog.
3:e152007. View Article : Google Scholar
|
|
61
|
Wang X, Dolan PT, Dang Y and Zheng YH:
Biochemical differentiation of APOBEC3F and APOBEC3G proteins
associated with HIV-1 life cycle. J Biol Chem. 282:1585–1594. 2007.
View Article : Google Scholar :
|
|
62
|
Niewiadomska AM, Tian C, Tan L, Wang T,
Sarkis PT and Yu XF: Differential inhibition of long interspersed
element 1 by APOBEC3 does not correlate with
high-molecular-mass-complex formation or P-body association. J
Virol. 81:9577–9583. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Tan L, Sarkis PT, Wang T, Tian C and Yu
XF: Sole copy of Z2-type human cytidine deaminase APOBEC3H has
inhibitory activity against retrotransposons and HIV-1. FASEB J.
23:279–287. 2009. View Article : Google Scholar :
|
|
64
|
Gerelsaikhan T, Tavis JE and Bruss V:
Hepatitis B virus nucleocapsid envelopment does not occur without
genomic DNA synthesis. J Virol. 70:4269–4274. 1996.PubMed/NCBI
|
|
65
|
Lewin SR, Ribeiro RM, Walters T, Lau GK,
Bowden S, Locarnini S and Perelson AS: Analysis of hepatitis B
viral load decline under potent therapy: Complex decay profiles
observed. Hepatology. 34:1012–1020. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Nowak MA, Bonhoeffer S, Hill AM, Boehme R,
Thomas HC and McDade H: Viral dynamics in hepatitis B virus
infection. Proc Natl Acad Sci USA. 93:4398–4402. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Tran A, Kremsdorf D, Capel F, Housset C,
Dauguet C, Petit MA and Brechot C: Emergence of and takeover by
hepatitis B virus (HBV) with rearrangements in the pre-S/S and
pre-C/C genes during chronic HBV infection. J Virol. 65:3566–3574.
1991.PubMed/NCBI
|
|
68
|
Beggel B, Münk C, Däumer M, Hauck K,
Häussinger D, Lengauer T and Erhardt A: Full genome ultra-deep
pyrosequencing associates G-to-A hypermutation of the hepatitis B
virus genome with the natural progression of hepatitis B. J Viral
Hepat. 20:882–889. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Noguchi C, Ishino H, Tsuge M, Fujimoto Y,
Imamura M, Takahashi S and Chayama K: G to A hypermutation of
hepatitis B virus. Hepatology. 41:626–633. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Hannoun C, Horal P and Lindh M: Long-term
mutation rates in the hepatitis B virus genome. J Gen Virol.
81:75–83. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Mangeat B, Turelli P, Caron G, Friedli M,
Perrin L and Trono D: Broad antiretroviral defence by human
APOBEC3G through lethal editing of nascent reverse transcripts.
Nature. 424:99–103. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Har ris RS, Bishop KN, Sheehy AM, Craig
HM, Petersen-Mahrt SK, Watt IN, Neuberger MS and Malim MH: DNA
deamination mediates innate immunity to retroviral infection. Cell.
113:803–809. 2003. View Article : Google Scholar
|
|
73
|
Schrofelbauer B, Yu Q, Zeitlin SG and
Landau NR: Human immunodeficiency virus type 1 Vpr induces the
degradation of the UNG and SMUG uracil-DNA glycosylases. J Virol.
79:10978–10987. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Kaiser SM and Emerman M: Uracil DNA
glycosylase is dispensable for human immunodeficiency virus type 1
replication and does not contribute to the antiviral effects of the
cytidine deaminase Apobec3G. J Virol. 80:875–882. 2006. View Article : Google Scholar :
|
|
75
|
Turelli P, Mangeat B, Jost S, Vianin S and
Trono D: Inhibition of hepatitis B virus replication by APOBEC3G.
Science. 303:18292004. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lei YC, Tian YJ, Ding HH, Wang BJ, Yang Y,
Hao YH, Zhao XP, Lu MJ, Gong FL and Yang DL: N-terminal and
C-terminal cytosine deaminase domain of APOBEC3G inhibit hepatitis
B virus replication. World J Gastroenterol. 12:7488–7496.
2006.PubMed/NCBI
|
|
77
|
Liang G, Kitamura K, Wang Z, Liu G,
Chowdhury S, Fu W, Koura M, Wakae K, Honjo T and Muramatsu M: RNA
editing of hepatitis B virus transcripts by activation-induced
cytidine deaminase. Proc Natl Acad Sci USA. 110:2246–2251. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Nassal M: The arginine-rich domain of the
hepatitis B virus core protein is required for pregenome
encapsidation and productive viral positive-strand DNA synthesis
but not for virus assembly. J Virol. 66:4107–4116. 1992.PubMed/NCBI
|
|
79
|
Schlicht HJ, Bartenschlager R and Schaller
H: The duck hepatitis B virus core protein contains a highly
phosphorylated C terminus that is essential for replication but not
for RNA packaging. J Virol. 63:2995–3000. 1989.PubMed/NCBI
|
|
80
|
Nguyen DH and Hu J: Reverse transcriptase-
and RNA packaging signal-dependent incorporation of APOBEC3G into
hepatitis B virus nucleocapsids. J Virol. 82:6852–6861. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhao D, Wang X, Lou G, Peng G, Li J, Zhu
H, Chen F, Li S, Liu D, Chen Z and Yang Z: APOBEC3G directly binds
Hepatitis B virus core protein in cell and cell free systems. Virus
Res. 151:213–219. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Tuzun E, Sharp AJ, Bailey JA, Kaul R,
Morrison VA, Pertz LM, Haugen E, Hayden H, Albertson D, Pinkel D,
et al: Fine-scale structural variation of the human genome. Nat
Genet. 37:727–732. 2005. View
Article : Google Scholar : PubMed/NCBI
|
|
83
|
McCarroll SA, Hadnott TN, Perry GH, Sabeti
PC, Zody MC, Barrett JC, Dallaire S, Gabriel SB, Lee C, Daly MJ, et
al: Common deletion polymorphisms in the human genome. Nat Genet.
38:86–92. 2006. View
Article : Google Scholar : PubMed/NCBI
|
|
84
|
Kidd JM, Newman TL, Tuzun E, Kaul R and
Eichler EE: Population stratification of a common APOBEC gene
deletion polymorphism. PLoS Genet. 3:e632007. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Abe H, Ochi H, Maekawa T, Hatakeyama T,
Tsuge M, Kitamura S, Kimura T, Miki D, Mitsui F, Hiraga N, et al:
Effects of structural variations of APOBEC3A and APOBEC3B genes in
chronic hepatitis B virus infection. Hepatol Res. 39:1159–1168.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Ezzikouri S, Kitab B, Rebbani K, Marchio
A, Wain-Hobson S, Dejean A, Vartanian JP, Pineau P and Benjelloun
S: Polymorphic APOBEC3 modulates chronic hepatitis B in Moroccan
population. J Viral Hepat. 20:678–686. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wang X, Abudu A, Son S, Dang Y, Venta PJ
and Zheng YH: Analysis of human APOBEC3H haplotypes and anti-human
immunodeficiency virus type 1 activity. J Virol. 85:3142–3152.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Harari A, Ooms M, Mulder LC and Simon V:
Polymorphisms and splice variants influence the antiretroviral
activity of human APOBEC3H. J Virol. 83:295–303. 2009. View Article : Google Scholar :
|
|
89
|
Roberts SA, Lawrence MS, Klimczak LJ,
Grimm SA, Fargo D, Stojanov P, Kiezun A, Kryukov GV, Carter SL,
Saksena G, et al: An APOBEC cytidine deaminase mutagenesis pattern
is widespread in human cancers. Nat Genet. 45:970–976. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Alexandrov LB, Nik-Zainal S, Wedge DC,
Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A,
Børresen-Dale AL, et al: Signatures of mutational processes in
human cancer. Nature. 500:415–421. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Burns MB, Temiz NA and Harris RS: Evidence
for APOBEC3B mutagenesis in multiple human cancers. Nat Genet.
45:977–983. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Pasqualucci L, Bhagat G, Jankovic M,
Compagno M, Smith P, Muramatsu M, Honjo T, Morse HC III,
Nussenzweig MC and Dalla-Favera R: AID is required for germinal
center-derived lymphomagenesis. Nat Genet. 40:108–112. 2008.
View Article : Google Scholar
|
|
93
|
Chiba T and Marusawa H: A novel mechanism
for inflammation-associated carcinogenesis; an important role of
activation-induced cytidine deaminase (AID) in mutation induction.
J Mol Med (Berl). 87:1023–1027. 2009. View Article : Google Scholar
|
|
94
|
Takai A, Toyoshima T, Uemura M, Kitawaki
Y, Marusawa H, Hiai H, Yamada S, Okazaki IM, Honjo T, Chiba T and
Kinoshita K: A novel mouse model of hepatocarcinogenesis triggered
by AID causing deleterious p53 mutations. Oncogene. 28:469–478.
2009. View Article : Google Scholar
|
|
95
|
Yamanaka S, Balestra ME, Ferrell LD, Fan
J, Arnold KS, Taylor S, Taylor JM and Innerarity TL: Apolipoprotein
B mRNA-editing protein induces hepatocellular carcinoma and
dysplasia in transgenic animals. Proc Natl Acad Sci USA.
92:8483–8487. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Yamanaka S, Poksay KS, Arnold KS and
Innerarity TL: A novel translational repressor mRNA is edited
extensively in livers containing tumors caused by the transgene
expression of the apoB mRNA-editing enzyme. Genes Dev. 11:321–333.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Okuyama S, Marusawa H, Matsumoto T, Ueda
Y, Matsumoto Y, Endo Y, Takai A and Chiba T: Excessive activity of
apolipoprotein B mRNA editing enzyme catalytic polypeptide 2
(APOBEC2) contributes to liver and lung tumorigenesis. Int J
Cancer. 130:1294–1301. 2012. View Article : Google Scholar
|
|
98
|
Landry S, Narvaiza I, Linfesty DC and
Weitzman MD: APOBEC3A can activate the DNA damage response and
cause cell-cycle arrest. EMBO Rep. 12:444–450. 2011. View Article : Google Scholar : PubMed/NCBI
|