|
1
|
Azad N and Lemay G: Management of chronic
heart failure in the older population. J Geriatr Cardiol.
11:329–337. 2014.
|
|
2
|
Johansen H, Strauss B, Arnold JM, Moe G
and Liu P: On the rise: The current and projected future burden of
congestive heart failure hospitalization in Canada. Can J Cardiol.
19:430–435. 2003.PubMed/NCBI
|
|
3
|
Kishi T: Heart failure as an autonomic
nervous system dysfunction. J Cardiol. 59:117–122. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Triposkiadis F, Karayannis G, Giamouzis G,
Skoularigis J, Louridas G and Butler J: The sympathetic nervous
system in heart failure physiology, pathophysiology and clinical
implications. J Am Coll Cardiol. 54:1747–1762. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Guyenet PG: The sympathetic control of
blood pressure. Nat Rev Neurosci. 7:335–346. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Potts JT, Paton JF, Mitchell JH, Garry MG,
Kline G, Anguelov PT and Lee SM: Contraction-sensitive skeletal
muscle afferents inhibit arterial baroreceptor signalling in the
nucleus of the solitary tract: Role of intrinsic GABA interneurons.
Neuroscience. 119:201–214. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Schreihofer AM and Guyenet PG: The
baroreflex and beyond: Control of sympathetic vasomotor tone by
GABAergic neurons in the ventrolateral medulla. Clin Exp Pharmacol
Physiol. 29:514–521. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Affleck VS, Coote JH and Pyner S: The
projection and synaptic organisation of NTS afferent connections
with presympathetic neurons, GABA and nNOS neurons in the
paraventricular nucleus of the hypothalamus. Neuroscience.
219:48–61. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Braga VA, Medeiros IA, Ribeiro TP,
França-Silva MS, Botelho-Ono MS and Guimarães DD:
Angiotensin-II-induced reactive oxygen species along the
SFO-PVN-RVLM pathway: Implications in neurogenic hypertension. Braz
J Med Biol Res. 44:871–876. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Kumagai H, Oshima N, Matsuura T, Iigaya K,
Imai M, Onimaru H, Sakata K, Osaka M, Onami T, Takimoto C, et al:
Importance of rostral ventrolateral medulla neurons in determining
efferent sympathetic nerve activity and blood pressure. Hypertens
Res. 35:132–141. 2012. View Article : Google Scholar :
|
|
11
|
Tagawa T and Dampney RA: AT(1) receptors
mediate excitatory inputs to rostral ventrolateral medulla pressor
neurons from hypothalamus. Hypertension. 34:1301–1307. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Shafton AD, Ryan A and Badoer E: Neurons
in the hypothalamic paraventricular nucleus send collaterals to the
spinal cord and to the rostral ventrolateral medulla in the rat.
Brain Res. 801:239–243. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Nunn N, Womack M, Dart C and
Barrett-Jolley R: Function and pharmacology of spinally-projecting
sympathetic pre-autonomic neurones in the paraventricular nucleus
of the hypothalamus. Curr Neuropharmacol. 9:262–277. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Sun SY, Wang W, Zucker IH and Schultz HD:
Enhanced peripheral chemoreflex function in conscious rabbits with
pacing-induced heart failure. J Appl Physiol (1985). 86:1264–1272.
1999.
|
|
15
|
Reid IA: Interactions between ANG II,
sympathetic nervous system and baroreceptor reflexes in regulation
of blood pressure. Am J Physiol. 262:E763–E778. 1992.PubMed/NCBI
|
|
16
|
Liu JL, Murakami H, Sanderford M, Bishop
VS and Zucker IH: ANG II and baroreflex function in rabbits with
CHF and lesions of the area postrema. Am J Physiol. 277:H342–H350.
1999.PubMed/NCBI
|
|
17
|
Llewellyn TL, Sharma NM, Zheng H and Patel
KP: Effects of exercise training on SFO-mediated sympathoexcitation
during chronic heart failure. Am J Physiol Heart Circ Physiol.
306:H121–H131. 2014. View Article : Google Scholar :
|
|
18
|
Parsons KK and Coffman TM: The
reninangiotensin system: It's all in your head. J Clin Invest.
117:873–876. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
19
|
Lavoie JL, Cassell MD, Gross KW and
Sigmund CD: Adjacent expression of renin and angiotensinogen in the
rostral ventro-lateral medulla using a dual-reporter transgenic
model. Hypertension. 43:1116–1119. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lavoie JL, Cassell MD, Gross KW and
Sigmund CD: Localization of renin expressing cells in the brain, by
use of a REN-eGFP transgenic model. Physiol Genomics. 16:240–246.
2004. View Article : Google Scholar
|
|
21
|
Veerasingham SJ and Raizada MK: Brain
renin-angiotensin system dysfunction in hypertension: Recent
advances and perspectives. Br J Pharmacol. 139:191–202. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zheng H, Li YF, Wang W and Patel KP:
Enhanced angiotensin-mediated excitation of renal sympathetic nerve
activity within the paraventricular nucleus of anesthetized rats
with heart failure. Am J Physiol Regul Integr Comp Physiol.
297:R1364–R1374. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Gao L, Wang WZ, Wang W and Zucker IH:
Imbalance of angiotensin type 1 receptor and angiotensin II type 2
receptor in the rostral ventrolateral medulla: Potential mechanism
for sympathetic overactivity in heart failure. Hypertension.
52:708–714. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wang WZ, Gao L, Wang HJ, Zucker IH and
Wang W: Interaction between cardiac sympathetic afferent reflex and
chemoreflex is mediated by the NTS AT1 receptors in heart failure.
Am J Physiol Heart Circ Physiol. 295:H1216–H1226. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Tan J, Wang H and Leenen FH: Increases in
brain and cardiac AT1 receptor and ACE densities after myocardial
infarct in rats. Am J Physiol Heart Circ Physiol. 286:H1665–H1671.
2004. View Article : Google Scholar
|
|
26
|
Wei SG, Yu Y, Zhang ZH, Weiss RM and
Felder RB: Mitogen-activated protein kinases mediate upregulation
of hypothalamic angiotensin II type 1 receptors in heart failure
rats. Hypertension. 52:679–686. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Isegawa K, Hirooka Y, Katsuki M, Kishi T
and Sunagawa K: Angiotensin II type 1 receptor expression in
astrocytes is upregulated leading to increased mortality in mice
with myocardial infarction-induced heart failure. Am J Physiol
Heart Circ Physiol. 307:H1448–H1455. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ramchandra R, Hood SG, Watson AM, Allen AM
and May CN: Central angiotensin type 1 receptor blockade decreases
cardiac but not renal sympathetic nerve activity in heart failure.
Hypertension. 59:634–641. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Li Z, Iwai M, Wu L, Shiuchi T, Jinno T,
Cui TX and Horiuchi M: Role of AT2 receptor in the brain in
regulation of blood pressure and water intake. Am J Physiol Heart
Circ Physiol. 284:H116–H121. 2003. View Article : Google Scholar
|
|
30
|
Gao J, Zhang H, Le KD, Chao J and Gao L:
Activation of central angiotensin type 2 receptors suppresses
norepinephrine excretion and blood pressure in conscious rats. Am J
Hypertens. 24:724–730. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Gao J, Zucker IH and Gao L: Activation of
central angiotensin type 2 receptors by compound 21 improves
arterial baroreflex sensitivity in rats with heart failure. Am J
Hypertens. 27:1248–1256. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Gao L, Wang W, Wang W, Li H, Sumners C and
Zucker IH: Effects of angiotensin type 2 receptor overexpression in
the rostral ventrolateral medulla on blood pressure and urine
excretion in normal rats. Hypertension. 51:521–527. 2008.
View Article : Google Scholar
|
|
33
|
Kang J, Posner P and Sumners C:
Angiotensin II type 2 receptor stimulation of neuronal K+ currents
involves an inhibitory GTP binding protein. Am J Physiol.
267:C1389–C1397. 1994.PubMed/NCBI
|
|
34
|
Qi J, Zhang DM, Suo YP, Song XA, Yu XJ,
Elks C, Lin YX, Xu YY, Zang WJ, Zhu Z and Kang YM:
Renin-angiotensin system modulates neurotransmitters in the
paraventricular nucleus and contributes to angiotensin II-induced
hypertensive response. Cardiovasc Toxicol. 13:48–54. 2013.
View Article : Google Scholar
|
|
35
|
Chen Q and Pan HL: Signaling mechanisms of
angiotensin II-induced attenuation of GABAergic input to
hypothalamic presympathetic neurons. J Neurophysiol. 97:3279–3287.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Hu L, Zhu DN, Yu Z, Wang JQ, Sun ZJ and
Yao T: Expression of angiotensin II type 1 (AT(1)) receptor in the
rostral ventrolateral medulla in rats. J Appl Physiol (1985).
92:2153–2161. 2002. View Article : Google Scholar
|
|
37
|
Paton JF, Deuchars J, Ahmad Z, Wong LF,
Murphy D and Kasparov S: Adenoviral vector demonstrates that
angiotensin II-induced depression of the cardiac baroreflex is
mediated by endothelial nitric oxide synthase in the nucleus
tractus solitarii of the rat. J Physiol. 531:445–458. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Paton JF, Boscan P, Murphy D and Kasparov
S: Unravelling mechanisms of action of angiotensin II on
cardiorespiratory function using in vivo gene transfer. Acta
Physiol Scand. 173:127–137. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Chan SH, Hsu KS, Huang CC, Wang LL, Ou CC
and Chan JY: NADPH oxidase-derived superoxide anion mediates
angiotensin II-induced pressor effect via activation of p38
mitogen-activated protein kinase in the rostral ventrolateral
medulla. Circ Res. 97:772–780. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Gao L, Li Y, Schultz HD, Wang WZ, Wang W,
Finch M, Smith LM and Zucker IH: Downregulated Kv4.3 expression in
the RVLM as a potential mechanism for sympathoexcitation in rats
with chronic heart failure. Am J Physiol Heart Circ Physiol.
298:H945–H955. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kang YM, Ma Y, Zheng JP, Elks C, Sriramula
S, Yang ZM and Francis J: Brain nuclear factor-kappa B activation
contributes to neurohumoral excitation in angiotensin II-induced
hypertension. Cardiovasc Res. 82:503–512. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Gao L, Wang W, Li YL, Schultz HD, Liu D,
Cornish KG and Zucker IH: Superoxide mediates sympathoexcitation in
heart failure: Roles of angiotensin II and NAD(P)H oxidase. Circ
Res. 95:937–944. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wang G, Anrather J, Glass MJ, Tarsitano
MJ, Zhou P, Frys KA, Pickel VM and Ladecola C: Nox2, Ca2+ and
protein kinase C play a role in angiotensin II-induced free radical
production in nucleus tractus solitarius. Hypertension. 48:482–489.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Liu D, Gao L, Roy SK, Cornish KG and
Zucker IH: Role of oxidant stress on AT1 receptor expression in
neurons of rabbits with heart failure and in cultured neurons. Circ
Res. 103:186–193. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Nishihara M, Hirooka Y, Matsukawa R, Kishi
T and Sunagawa K: Oxidative stress in the rostral ventrolateral
medulla modulates excitatory and inhibitory inputs in spontaneously
hypertensive rats. J Hypertens. 30:97–106. 2012. View Article : Google Scholar
|
|
46
|
Gao L, Wang W, Liu DM and Zucker IH:
Exercise training normalizes sympathetic outflow by central
antioxidant mechanisms in rabbits with pacing-induced chronic heart
failure. Circulation. 115:3095–3102. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Li Y, Zhang W and Stern JE: Nitric oxide
inhibits the firing activity of hypothalamic paraventricular
neurons that innervate the medulla oblongata: Role of GABA.
Neuroscience. 118:585–601. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Krukoff TL and Khalili P: Stress-induced
activation of nitric oxide-producing neurons in the rat brain. J
Comp Neurol. 377:509–519. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lin LH, Taktakishvili O and Talman WT:
Identification and localization of cell types that express
endothelial and neuronal nitric oxide synthase in the rat nucleus
tractus solitarii. Brain Res. 1171:42–51. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Chan SH, Wang LL and Chan JY: Differential
engagements of glutamate and GABA receptors in cardiovascular
actions of endogenous nNOS or iNOS at rostral ventrolateral medulla
of rats. Br J Pharmacol. 138:584–593. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Patel KP, Li YF and Hirooka Y: Role of
nitric oxide in central sympathetic outflow. Exp Biol Med
(Maywood). 226:814–824. 2001.
|
|
52
|
Wang Y, Patel KP, Cornish KG, Channon KM
and Zucker IH: nNOS gene transfer to RVLM improves baroreflex
function in rats with chronic heart failure. Am J Physiol Heart
Circ Physiol. 285:H1660–H1667. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Sakai K, Hirooka Y, Shigematsu H, Kishi T,
Ito K, Shimokawa H, Takeshita A and Sunagawa K: Overexpression of
eNOS in brain stem reduces enhanced sympathetic drive in mice with
myocardial infarction. Am J Physiol Heart Circ Physiol.
289:H2159–H2166. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wang Y, Liu XF, Cornish KG, Zucker IH and
Patel KP: Effects of nNOS antisense in the paraventricular nucleus
on blood pressure and heart rate in rats with heart failure. Am J
Physiol Heart Circ Physiol. 288:H205–H213. 2005. View Article : Google Scholar
|
|
55
|
Zhang K, Li YF and Patel KP: Blunted
nitric oxide-mediated inhibition of renal nerve discharge within
PVN of rats with heart failure. Am J Physiol Heart Circ Physiol.
281:H995–H1004. 2001.PubMed/NCBI
|
|
56
|
Hirooka Y, Shigematsu H, Kishi T, Kimura
Y, Ueta Y and Takeshita A: Reduced nitric oxide synthase in the
brainstem contributes to enhanced sympathetic drive in rats with
heart failure. J Cardiovasc Pharmacol. 42(Suppl 1): S111–S115.
2003. View Article : Google Scholar
|
|
57
|
Zucker IH, Schultz HD, Li YF, Wang Y, Wang
W and Patel KP: The origin of sympathetic outflow in heart failure:
The roles of angiotensin II and nitric oxide. Prog Biophys Mol
Biol. 84:217–232. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Jaffrey SR, Snowman AM, Eliasson MJ, Cohen
NA and Snyder SH: CAPON: A protein associated with neuronal nitric
oxide synthase that regulates its interactions with PSD95. Neuron.
20:115–124. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Sharma NM, Zheng H, Mehta PP, Li YF and
Patel KP: Decreased nNOS in the PVN leads to increased
sympathoexcitation in chronic heart failure: Role for CAPON and Ang
II. Cardiovasc Res. 92:348–357. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sharma NM, Llewellyn TL, Zheng H and Patel
KP: Angiotensin II-mediated posttranslational modification of nNOS
in the PVN of rats with CHF: Role for PIN. Am J Physiol Heart Circ
Physiol. 305:H843–H855. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Horn T, Smith PM, McLaughlin BE, Bauce L,
Marks GS, Pittman QJ and Ferguson AV: Nitric oxide actions in
paravenstricular nucleus: Cardiovascular and neurochemical
implications. Am J Physiol. 266:R306–R313. 1994.PubMed/NCBI
|
|
62
|
Zhang K and Patel KP: Effect of nitric
oxide within the para-ventricular nucleus on renal sympathetic
nerve discharge: Role of GABA. Am J Physiol. 275:R728–R734.
1998.
|
|
63
|
Li YF, Mayhan WG and Patel KP:
NMDA-mediated increase in renal sympathetic nerve discharge within
the PVN: Role of nitric oxide. Am J Physiol Heart Circ Physiol.
281:H2328–H2336. 2001.
|
|
64
|
Zheng H, Liu X, Li Y, Sharma NM and Patel
KP: Gene transfer of neuronal nitric oxide synthase to the
paraventricular nucleus reduces the enhanced glutamatergic tone in
rats with chronic heart failure. Hypertension. 58:966–973. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kishi T, Hirooka Y, Sakai K, Shigematsu H,
Shimokawa H and Takeshita A: Overexpression of eNOS in the RVLM
causes hypotension and bradycardia via GABA release. Hypertension.
38:896–901. 2001.PubMed/NCBI
|
|
66
|
Martins-Pinge MC, Garcia MR, Zoccal DB,
Crestani CC and Pinge-Filho P: Differential influence of iNOS and
nNOS inhibitors on rostral ventrolateral medullary mediated
cardiovascular control in conscious rats. Auton Neurosci.
131:65–69. 2007. View Article : Google Scholar
|
|
67
|
Sharma NM, Zheng H, Li YF and Patel KP:
Nitric oxide inhibits the expression of AT1 receptors in neurons.
Am J Physiol Cell Physiol. 302:C1162–C1173. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Guo ZL, Tjen-A-Looi SC, Fu LW and
Longhurst JC: Nitric oxide in rostral ventrolateral medulla
regulates cardiac-sympathetic reflexes: Role of synthase isoforms.
Am J Physiol Heart Circ Physiol. 297:H1478–H1486. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wang S, Paton JF and Kasparov S:
Differential sensitivity of excitatory and inhibitory synaptic
transmission to modulation by nitric oxide in rat nucleus tractus
solitarii. Exp Physiol. 92:371–382. 2007. View Article : Google Scholar
|
|
70
|
Dias AC, Vitela M, Colombari E and Mifflin
SW: Nitric oxide modulation of glutamatergic, baroreflex and
cardiopulmonary transmission in the nucleus of the solitary tract.
Am J Physiol Heart Circ Physiol. 288:H256–H262. 2005. View Article : Google Scholar
|
|
71
|
Ramchandra R, Hood SG and May CN: Central
exogenous nitric oxide decreases cardiac sympathetic drive and
improves baroreflex control of heart rate in ovine heart failure.
Am J Physiol Regul Integr Comp Physiol. 307:R271–R280. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Rauchhaus M, Doehner W, Francis DP, Davos
C, Kemp M, Liebenthal C, Niebauer J, Hooper J, Volk HD, Coats AJ
and Anker SD: Plasma cytokine parameters and mortality in patients
with chronic heart failure. Circulation. 102:3060–3067. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Utsuyama M and Hirokawa K: Differential
expression of various cytokine receports in the brain after
stimulation with LPS in young and old mice. Exp Gerontol.
37:411–420. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wei SG, Zhang ZH, Beltz TG, Yu Y, Johnson
AK and Felder RB: Subfornical organ mediates sympathetic and
hemo-dynamic responses to blood-borne proinflammatory cytokines.
Hypertension. 62:118–125. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Felder RB, Yu Y, Zhang ZH and Wei SG:
Pharmacological treatment for heart failure: A view from the brain.
Clin Pharmacol Ther. 86:216–220. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Yu Y, Zhang ZH, Wei SG, Serrats J, Weiss
RM and Felder RB: Brain perivascular macrophages and the
sympathetic response to inflammation in rats after myocardial
infarction. Hypertension. 55:652–659. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zhang ZH, Yu Y, Wei SG and Felder RB:
Centrally administered lipopolysaccharide elicits sympathetic
excitation via NAD(P)H oxidase-dependent mitogen-activated protein
kinase signaling. J Hypertens. 28:806–816. 2010. View Article : Google Scholar :
|
|
78
|
Francis J, Zhang ZH, Weiss RM and Felder
RB: Neural regulation of the proinflammatory cytokine response to
acute myocardial infarction. Am J Physiol Heart Circ Physiol.
287:H791–H797. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Kang YM, Zhang ZH, Xue B, Weiss RM and
Felder RB: Inhibition of brain proinflammatory cytokine synthesis
reduces hypothalamic excitation in rats with ischemia-induced heart
failure. Am J Physiol Heart Circ Physiol. 295:H227–H236. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Kang YM, Ma Y, Elks C, Zheng JP, Yang ZM
and Francis J: Cross-talk between cytokines and renin-angiotensin
in hypo-thalamic paraventricular nucleus in heart failure: Role of
nuclear factor-kappaB. Cardiovasc Res. 79:671–678. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Guggilam A, Cardinale JP, Mariappan N,
Sriramula S, Haque M and Francis J: Central TNF inhibition results
in attenuated neurohumoral excitation in heart failure: A role for
superoxide and nitric oxide. Basic Res Cardiol. 106:273–286. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Allen RG and Tresini M: Oxidative stress
and gene regulation. Free Radic Biol Med. 28:463–499. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Akira S and Takeda K: Toll-like receptor
signalling. Nat Rev Immunol. 4:499–511. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Ogawa K, Hirooka Y, Kishi T and Sunagawa
K: Brain AT1 receptor activates the sympathetic nervous system
through toll-like receptor 4 in mice with heart failure. J
Cardiovasc Pharmacol. 58:543–549. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Kang YM, He RL, Yang LM, Qin DN, Guggilam
A, Elks C, Yan N, Guo Z and Francis J: Brain tumour necrosis
factor-alpha modulates neurotransmitters in hypothalamic
paraventricular nucleus in heart failure. Cardiovasc Res.
83:737–746. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wei SG, Zhang ZH, Yu Y and Felder RB:
Central SDF-1/CXCL12 expression and its cardiovascular and
sympathetic effects: The role of angiotensin II, TNF-α and MAPK
signaling. Am J Physiol Heart Circ Physiol. 307:H1643–H1654. 2014.
View Article : Google Scholar : PubMed/NCBI
|