|
1
|
Rapposelli S: Novel adenosine
5′-triphosphate-sensitive potassium channel ligands: a patent
overview (2005–2010). Expert Opin Ther Pat. 21:355–379. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Delaney JT, Muhammad R, Blair MA, Kor K,
Fish FA, Roden DM and Darbar D: A KCNJ8 mutation associated with
early repolarization and atrial fibrillation. Europace.
14:1428–1432. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Yamada S, Kane GC, Behfar A, Liu XK, Dyer
RB, Faustino RS, Miki T, Seino S and Terzic A: Protection conferred
by myocardial ATP-sensitive K+ channels in pressure
overload-induced congestive heart failure revealed in KCNJ11
Kir6.2-null mutant. J Physiol. 577:1053–1065. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Fatima N, Schooley JF Jr, Claycomb WC and
Flagg TP: Promoter DNA methylation regulates murine SUR1 (Abcc8)
and SUR2 (Abcc9) expression in HL-1 cardiomyocytes. PLoS One.
7:e415332012. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Shi Y, Wu Z, Cui N, Shi W, Yang Y, Zhang
X, Rojas A, Ha BT and Jiang C: PKA phosphorylation of SUR2B subunit
underscores vascular KATP channel activation by
beta-adrenergic receptors. Am J Physiol Regul Integr Comp Physiol
ATP. 293:R1205–R1214. 2007. View Article : Google Scholar
|
|
6
|
Zhou M, He HJ, Suzuki R, Liu KX, Tanaka O,
Sekiguchi M, Itoh H, Kawahara K and Abe H: Localization of
sulfonylurea receptor subunits, SUR2A and SUR2B, in rat heart. J
Histochem Cytochem. 55:795–804. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Shyng S and Nichols CG: Octameric
stoichiometry of the KATP channel complex. J Gen
Physiol. 110:655–664. 1997. View Article : Google Scholar
|
|
8
|
Nakaya H: Role of ATP-sensitive
K+ channels in cardiac arrhythmias. J Cardiovasc
Pharmacol Ther. 19:237–243. 2014. View Article : Google Scholar
|
|
9
|
Kang Y, Ng B, Leung YM, He Y, Xie H,
Lodwick D, Norman RI, Tinker A, Tsushima RG and Gaisano HY:
Syntaxin-1A actions on sulfonylurea receptor 2A can block acidic
pH-induced cardiac K(ATP) channel activation. J Biol Chem.
281:19019–19028. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Damaj L, le Lorch M, Verkarre V, Werl C,
Hubert L, Nihoul-Fékété C, Aigrain Y, de Keyzer Y, Romana SP,
Bellanne-Chantelot C, et al: Chromosome 11p15 paternal isodisomy in
focal forms of neonatal hyperinsulinism. J Clin Endocrinol Metab.
93:4941–4947. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Inagaki N, Gonoi T, Clement JP IV, Namba
N, Inazawa J, Gonzalez G, Aguilar-Bryan L, Seino S and Bryan J:
Reconstitution of IKATP: an inward rectifier subunit
plus the sulfonylurea receptor. Science. 270:1166–1170. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Park S and Terzic A: Quaternary structure
of KATP channel SUR2A nucleotide binding domains resolved by
synchrotron radiation X-ray scattering. Struct Biol. 169:243–251.
2010. View Article : Google Scholar
|
|
13
|
Durell SR and Guy HR: A family of putative
Kir potassium channels in prokaryotes. BMC Evol Biol. 1:142001.
View Article : Google Scholar
|
|
14
|
Aggarwal NT, Shi NQ and Makielski JC:
ATP-sensitive potassium currents from channels formed by Kir6 and a
modified cardiac mitochondrial SUR2 variant. Channels (Austin).
7:493–502. 2013. View Article : Google Scholar
|
|
15
|
Chan KW, Zhang H and Logothetis DE:
N-terminal trans-membrane domain of the SUR controls trafficking
and gating of Kir6 channel subunits. EMBO J. 22:3833–3843. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Mori H and Ito K: The long alpha-helix of
SecA is important for the ATPase coupling of translocation. J Biol
Chem. 281:36249–36256. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Baczko I, Husti Z, Lang V, Leprán I and
Light PE: Sarcolemmal KATP channel modulators and cardiac
arrhythmias. Curr Med Chem. 18:3640–3661. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Nichols CG, Singh GK and Grange DK:
KATP channels and cardiovascular disease: Suddenly a
syndrome. Circ Res. 112:1059–1072. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Nichols CG: KATP channels as
molecular sensors of cellular metabolism. Nature. 440:470–476.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Haissaguerre M, Chatel S, Sacher F,
Weerasooriya R, Probst V, Loussouarn G, Horlitz M, Liersch R,
Schulze-Bahr E, Wilde A, et al: Ventricular fibrillation with
prominent early repolarization associated with a rare variant of
KCNJ8/KATP channel. J Cardiovasc Electrophysiol.
20:93–98. 2009. View Article : Google Scholar
|
|
21
|
Fox JE, Magga J, Giles WR and Light PE:
Acyl coenzyme A esters differentially activate cardiac and
beta-cell adenosine triphosphate-sensitive potassium channels in a
side-chain length-specific manner. Metabolism. 52:1313–1319. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
John SA, Weiss JN and Ribalet B: ATP
sensitivity of ATP-sensitive K+ channels: Role of the
gamma phosphate group of ATP and the R50 residue of mouse Kir6.2. J
Physiol. 568:931–940. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Antcliff JF, Haider S, Proks P, Sansom MS
and Ashcroft FM: Functional analysis of a structural model of the
ATP-binding site of the KATP channel Kir6.2 subunit.
EMBO J. 24:229–239. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Enkvetchakul D and Nichols CG: Gating
mechanism of KATP channels: Function fits form. J Gen
Physiol. 122:471–480. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Ribalet B, John SA and Weiss JN: Molecular
basis for Kir6.2 channel inhibition by adenine nucleotides. Biophys
J. 84:266–276. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Trapp S, Haider S, Jones P, Sansom MS and
Ashcroft FM: Identification of residues contributing to the ATP
binding site of Kir6.2. EMBO J. 22:2903–2912. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Enkvetchakul D, Jeliazkova I,
Bhattacharyya J and Nichols CG: Control of inward rectifier K
channel activity by lipid tethering of cytoplasmic domains. J Gen
Physiol. 130:329–334. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ribalet B, John SA, Xie LH and Weiss JN:
ATP-sensitive K+ channels: Regulation of bursting by the
sulphonylurea receptor, PIP2 and regions of Kir6.2. J Physiol.
571:303–317. 2006. View Article : Google Scholar
|
|
29
|
Pegan S, Arrabit C, Zhou W, Kwiatkowski W,
Collins A, Slesinger PA and Choe S: Cytoplasmic domain structures
of Kir2.1 and Kir3.1 show sites for modulating gating and
rectification. Nat Neurosci. 8:279–287. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Hund TJ and Mohler PJ: Differential roles
for SUR subunits in KATP channel membrane targeting and
regulation. Am J Physiol Heart Circ Physiol. 300:H33–H35. 2011.
View Article : Google Scholar
|
|
31
|
Cui N, Kang Y, He Y, Leung YM, Xie H,
Pasyk EA, Gao X, Sheu L, Hansen JB, Wahl P, et al: H3 domain of
syntaxin 1A inhibits KATP channels by its actions on the
sulfonylurea receptor 1 nucleotide-binding folds-1 and -2. J Biol
Chem. 279:53259–53265. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ueda K, Inagaki N and Seino S: MgADP
antagonism to Mg2+-independent ATP binding of the sulfonylurea
receptor SUR1. J Biol Chem. 272:22983–22986. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Babenko AP and Bryan J: Sur domains that
associate with and gate KATP pores define a novel
gatekeeper. J Biol Chem. 278:41577–41580. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Tsounapi P, Satio M, Dimitriadis F,
Kitatani K, Kinoshita Y, Shomori K, Takenaka A and Satoh K: The
role of K ATP channels on ischemia-reperfusion injury in the rat
testis. Life Sci. 90:649–656. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Glukhov AV, Flagg TP, Fedorov VV, Efimov
IR and Nichols CG: Differential K (ATP) channel pharmacology in
intact mouse heart. J Mol Cell Cardiol. 48:152–160. 2010.
View Article : Google Scholar
|
|
36
|
Glukhov AV, Uchida K, Efimov IR and
Nichols CG: Functional roles of KATP channel subunits in
metabolic inhibition. J Mol Cell Cardiol. 62:90–98. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Marinovic J, Ljubkovic M, Stadnicka A,
Bosnjak ZJ and Bienengraeber M: Role of sarcolemmal ATP-sensitive
potassium channel in oxidative stress-induced apoptosis:
Mitochondrial connection. Am J Physiol Heart Circ Physiol.
294:H1317–H1325. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhang DM, Chai Y, Erickson JR, Brown JH,
Bers DM and Lin YF: Intracellular signalling mechanism responsible
for modulation of sarcolemmal ATP-sensitive potassium channels by
nitric oxide in ventricular cardiomyocytes. J Physiol. 592:971–990.
2014. View Article : Google Scholar :
|
|
39
|
Voitychuk OI, Strutynskyi RB, Yagupolskii
LM, Tinker A, Moibenko OO and Shuba YM: Sarcolemmal cardiac K(ATP)
channels as a target for the cardioprotective effects of the
fluorine-containing pinacidil analogue, flocalin. Br J Pharmacol.
162:701–711. 2011. View Article : Google Scholar :
|
|
40
|
Xie C, Hu J, Motloch LJ, Karam BS and Akar
FG: The classically cardioprotective agent diazoxide elicits
arrhythmias in type 2 diabetes mellitus. J Am Coll Cardiol.
66:1144–1156. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Liu Y, Ren G, O'Rourke B, Marban E and
Seharaseyon J: Pharmacological comparison of native mitochondrial K
(ATP) channels with molecularly defined surface K (ATP) channels.
Mol Pharmacol. 59:225–230. 2001.PubMed/NCBI
|
|
42
|
Suzuki M, Sasaki N, Miki T, Sakamoto N,
Ohmoto-Sekine Y, Tamagawa M, Seino S, Marbán E and Nakaya H: Role
of sarcolemmal K(ATP) channels in cardioprotection against
ischemia/reperfusion injury in mice. J Clin Invest. 109:509–516.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Foster DB, Rucker JJ and Marban E: Is
Kir6.1 a subunit of mitoK(ATP)? Biochem Biophys Res Commun.
366:649–656. 2008. View Article : Google Scholar :
|
|
44
|
Pu JL, Ye B, Kroboth SL, McNally EM,
Makielski JC and Shi NQ: Cardiac sulfonylurea receptor short
form-based channels confer a glibenclamide-insensitive
KATP activity. J Mol Cell Cardiol. 44:188–200. 2008.
View Article : Google Scholar
|
|
45
|
Mykytenko J, Reeves JG, Kin H, Wang NP,
Zatta AJ, Jiang R, Guyton RA, Vinten-Johansen J and Zhao ZQ:
Persistent beneficial effect of postconditioning against infarct
size: Role of mitochondrial K(ATP) channels during reperfusion.
Basic Res Cardiol. 103:472–484. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Hensley N, Dietrich J, Nyhan D, Mitter N,
Yee MS and Brady M: Hypertrophic cardiomyopathy: a review. Anesth
Analg. 120:554–569. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Teekakirikul P, Padera RF, Seidman JG and
Seidman CE: Hypertrophic cardiomyopathy: Translating cellular cross
talk into therapeutics. J Cell Biol. 199:417–421. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Vakrou S and Abraham MR: Hypertrophic
cardiomyopathy: a heart in need of an energy bar? Front Physiol.
19:3092014.
|
|
49
|
Sodder VH, Bowie LD and Cameron JS:
Trypsin alters ATP sensitivity of KATP channels in
control and hypertrophied myocytes. Eur J Pharmacol. 315:115–118.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Rajesh KG, Sasaguri S, Suzuki R, Xing Y
and Maeda H: Ischemic preconditioning prevents reperfusion heart
injury in cardiac hypertrophy by activation of mitochondrial
KATP channels. Int J Cardiol. 96:41–49. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Xia Y, Rajapurohitam V, Cook MA and
Karmazyn M: Inhibition of phenylephrine induced hypertrophy in rat
neonatal cardio-myocytes by the mitochondrial KATP
channel opener diazoxide. J Mol Cell Cardiol. 37:1063–1067. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Yuan F, Brandt NR, Pinto JM, Wasserlauf
BJ, Myerburg RJ and Bassett AL: Hypertrophy decreases cardiac
KATP channel responsiveness to exogenous and locally
generated (glycolytic) ATP. J Mol Cell Cardiol. 29:2837–2848. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Stoller D, Kakkar R, Smelley M, Chalupsky
K, Earley JU, Shi NQ, Makielski JC and McNally EM: Mice lacking
sulfonylurea receptor 2 (SUR2) ATP-sensitive potassium channels are
resistant to acute cardiovascular stress. J Mol Cell Cardiol.
43:445–454. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Shimokawa J, Yokoshiki H and Tsutsui H:
Impaired activation of ATP-sensitive K+ channels in
endocardial myocytes from left ventricular hypertrophy. Am J
Physiol Heart Circ Physiol. 293:H3643–H3649. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Gao S, Long CL, Wang RH and Wang H: K
(ATP) activation prevents progression of cardiac hypertrophy to
failure induced by pressure overload via protecting endothelial
function. Cardiovasc Res. 83:444–456. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Hu X, Xu X, Huang Y, Fassett J, Flagg TP,
Zhang Y, Nichols CG, Bache RJ and Chen Y: Disruption of sarcolemmal
ATP-sensitive potassium channel activity impairs the cardiac
response to systolic overload. Circ Res. 103:1009–1017. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Sanbe A: Dilated cardiomyopathy: A disease
of the myocardium. Biol Pharm Bull. 36:18–22. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Luk A, Ahn E, Soor GS, Soor GS and Butany
J: Dilated cardiomyopathy: a review. J Clin Pathol. 62:219–225.
2009. View Article : Google Scholar
|
|
59
|
Bienengraeber M, Olson TM, Selivanov VA,
Kathmann EC, O'Cochlain F, Gao F, Karger AB, Ballew JD, Hodgson DM,
Zingman LV, et al: ABCC9 mutations identified in human dilated
cardiomyopathy disrupt catalytic KATP channel gating.
Nat Genet. 36:382–387. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
60
|
Farid TA, Nair K, Massé S, Azam MA, Maguy
A, Lai PF, Umapathy K, Dorian P, Chauhan V, Varró A, et al: Role of
KATP channels in the maintenance of ventricular
fibrillation in cardiomyopathic human hearts. Circ Res.
109:1309–1318. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Grover GJ and Garlid KD: ATP-Sensitive
potassium channels: A review of their cardioprotective
pharmacology. J Mol Cell Cardiol. 32:677–695. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Yamada S, Nelson TJ, Crespo-Diaz RJ,
Perez-Terzic C, Liu XK, Miki T, Seino S, Behfar A and Terzic A:
Embryonic stem cell therapy of heart failure in genetic
cardiomyopathy. Stem Cells. 26:2644–2653. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Cheung CY, Tso AW, Cheung BM, Xu A, Fong
CH, Ong KL, Law LS, Wat NM, Janus ED, Sham PC, et al: The KCNJ11
E23 K polymorphism and progression of glycaemia in Southern
Chinese: A long-term prospective study. PLoS One. 6:e285982011.
View Article : Google Scholar
|
|
64
|
Xi HL, Liu JF, Li L and Wan J:
Relationship between dilated cardiomyopathy and the E23K and I337V
polymorphisms in the Kir6.2 subunit of the KATP channel.
Genet Mol Res. 12:4383–4392. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kalogeropoulos A, Georgiopoulou V,
Kritchevsky SB, Psaty BM, Smith NL, Newman AB, Rodondi N,
Satterfield S, Bauer DC, Bibbins-Domingo K, et al: Epidemiology of
incident heart failure in a contemporary elderly cohort: The
health, aging and body composition study. Arch Intern Med.
169:708–715. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Elrod JW and Molkentin JD: Physiologic
functions of cyclophilin D and the mitochondrial permeability
transition pore. Circ J. 77:1111–1122. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Rousou AJ, Ericsson M, Federman M,
Levitsky S and McCully JD: Opening of mitochondrial KATP
channels enhances cardioprotection through the modulation of
mitochondrial matrix volume, calcium accumulation and respiration.
Am J Physiol Heart Circ Physiol. 287:H1967–H1976. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
McPherson R and Davies RW: Inflammation
and coronary artery disease: Insights from genetic studies. Can J
Cardiol. 28:662–666. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Safranow K, Dziedziejko V, Rzeuski R,
Czyzycka E, Wojtarowicz A, Bińczak-Kuleta A, Jakubowska K,
Olszewska M, Ciechanowicz A, Kornacewicz-Jach Z, et al: Plasma
concentrations of TNF-alpha and its soluble receptors sTNFR1 and
sTNFR2 in patients with coronary artery disease. Tissue Antigens.
74:386–392. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhou F, Yao HH, Wu JY, Ding JH, Sun T and
Hu G: Opening of microglial K(ATP) channels inhibits
rotenone-induced neuroinflammation. J Cell Mol Med. 12:1559–1570.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Kaspar RW, Allen HD and Montanaro F:
Current understanding and management of dilated cardiomyopathy in
Duchenne and Becker muscular dystrophy. J Am Acad Nurse Pract.
21:241–249. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Townsend D, Yasuda S and Metzger J:
Cardiomyopathy of Duchenne muscular dystrophy: Pathogenesis and
prospect of membrane sealants as a new therapeutic approach. Expert
Rev Cardiovasc Ther. 5:99–109. 2007. View Article : Google Scholar
|
|
73
|
Graciotti L, Becker J, Granata AL,
Procopio AD, Tessarollo L and Fulgenzi G: Dystrophin is required
for the normal function of the cardio-protective K(ATP) channel in
cardiomyocytes. PLoS One. 6:e270342011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Pappachan JM, Varughese GI, Sriraman R and
Arunagirinathan G: Diabetic cardiomyopathy: Pathophysiology,
diagnostic evaluation and management. World J Diabetes. 4:177–189.
2013.PubMed/NCBI
|
|
75
|
Gloyn AL, Weedon MN, Owen KR, Turner MJ,
Knight BA, Hitman G, Walker M, Levy JC, Sampson M, Halford S, et
al: Large-scale association studies of variants in genes encoding
the pancreatic beta-cell KATP channel subunits Kir6.2
(KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is
associated with type 2 diabetes. Diabetes. 52:568–572. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Mannikko R, Flanagan SE, Sim X, Segal D,
Hussain K, Ellard S, Hattersley AT and Ashcroft FM: Mutations of
the same conserved glutamate residue in NBD2 of the sulfonylurea
receptor 1 subunit of the KATP channel can result in
either hyperinsulinism or neonatal diabetes. Diabetes.
60:1813–1822. 2011. View Article : Google Scholar
|
|
77
|
Fancher IS, Dick GM and Hollander JM:
Diabetes mellitus reduces the function and expression of
ATP-dependent K(+) channels in cardiac mitochondria. Life Sci.
92:664–668. 2013. View Article : Google Scholar :
|
|
78
|
Chen ZC, Cheng YZ, Chen LJ, Cheng KC, Li Y
and Cheng J: Increase of ATP-sensitive potassium (K(ATP)) channels
in the heart of type-1 diabetic rats. Cardiovasc Diabetol.
11:82012. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Li GS, Wang F, Kang D and Li C: Keshan
disease: An endemic cardiomyopathy in China. Hum Pathol.
16:602–609. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Lei C, Niu X, Ma X and Wei J: Is selenium
deficiency really the cause of Keshan disease? Environ Geochem
Health. 33:183–188. 2011. View Article : Google Scholar
|
|
81
|
Chen J: An original discovery: Selenium
deficiency and Keshan disease (an endemic heart disease). Asia Pac
J Clin Nutr. 21:320–326. 2012.PubMed/NCBI
|
|
82
|
Liu ZW, Niu XL, Chen KL, Xing YJ, Wang X,
Qiu C and Gao DF: Selenium attenuates adriamycin-induced cardiac
dysfunction via restoring expression of ATP-sensitive potassium
channels in rats. Biol Trace Elem Res. 153:220–228. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Pereira SP, Pereira GC, Pereira CV,
Carvalho FS, Cordeiro MH, Mota PC, Ramalho-Santos J, Moreno AJ and
Oliveira PJ: Dioxin-induced acute cardiac mitochondrial oxidative
damage and increased activity of ATP-sensitive potassium channels
in Wistar rats. Environ Pollut. 180:281–290. 2013. View Article : Google Scholar : PubMed/NCBI
|