|
1
|
Fujimoto M and Hayashi T: New insights
into the role of mitochondria-associated endoplasmic reticulum
membrane. Int Rev Cell Mol Biol. 292:73–117. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Wagner M and Moore DD: Endoplasmic
reticulum stress and glucose homeostasis. Curr Opin Clin Nutr Metab
Care. 14:367–373. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Esposito V, Grosjean F, Tan J, Huang L,
Zhu L, Chen J, Xiong H, Striker GE and Zheng F: CHOP deficiency
results in elevated lipopolysaccharide-induced inflammation and
kidney injury. Am J Physiol Renal Physiol. 304:F440–F450. 2013.
View Article : Google Scholar :
|
|
4
|
Benali-Furet NL, Chami M, Houel L, De
Giorgi F, Vernejoul F, Lagorce D, Buscail L, Bartenschlager R,
Ichas F, Rizzuto R and Paterlini-Bréchot P: Hepatitis C virus core
triggers apoptosis in liver cells by inducing ER stress and ER
calcium depletion. Oncogene. 24:4921–4933. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Ozcan U, Cao Y, Yilmaz E, Lee AH, Iwakoshi
NN, Ozdelen E, Tuncman G, Görgün C, Glimcher LH and Hotamisligil
GS: Endoplasmic reticulum stress links obesity, insulin action, and
type 2 diabetes. Science. 306:457–461. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ji C and Kaplowitz NL: Betaine decreases
hyperhomocysteinemia, endoplasmic reticulum stress, and liver
injury in alcohol-fed mice. Gastroenterology. 124:1488–1499. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Duvigneau JC, Kozlov AV, Zifko C, Postl A,
Hartl RT, Miller I, Gille L, Staniek K, Moldzio R, Gregor W, et al:
Reperfusion does not induce oxidative stress but sustained
endoplasmic reticulum stress in livers of rats subjected to
traumatic-hemorrhagic shock. Shock. 33:289–298. 2010. View Article : Google Scholar
|
|
8
|
Emadali A, Nguyên DT, Rochon C, Tzimas GN,
Metrakos PP and Chevet E: Distinct endoplasmic reticulum stress
responses are triggered during human liver transplantation. J
Pathol. 207:111–118. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kim TH, Kim YW, Shin SM, Kim CW, Yu IJ and
Kim SG: Synergistic hepatotoxicity of N,N-dimethylformamide with
carbon tetrachloride in association with endoplasmic reticulum
stress. Chem Biol Interact. 184:492–501. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Ron D: Translational control in the
endoplasmic reticulum stress response. J Clin Invest.
110:1383–1388. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kaufman RJ: Orchestrating the unfolded
protein response in health and disease. J Clin Invest.
110:1389–1398. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Schröder M and Kaufman RJ: ER stress and
the unfolded protein response. Mutat Res. 569:29–63. 2005.
View Article : Google Scholar
|
|
13
|
Omori Y, Imai J, Watanabe M, Komatsu T,
Suzuki Y, Kataoka K, Watanabe S, Tanigami A and Sugano S: CREB-H: A
novel mammalian transcription factor belonging to the CREB/ATF
family and functioning via the box-B element with a liver-specific
expression. Nucleic Acids Res. 29:2154–2162. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
DenBoer LM, Hardy-Smith PW, Hogan MR,
Cockram GP, Audas TE and Lu R: Luman is capable of binding and
activating transcription from the unfolded protein response
element. Biochem Biophys Res Commun. 331:113–119. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Liang G, Audas TE, Li Y, Cockram GP, Dean
JD, Martyn AC, Kokame K and Lu R: Luman/CREB3 induces transcription
of the endoplasmic reticulum (ER) stress response protein Herp
through an ER stress response element. Mol Cell Biol. 26:7999–8010.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kondo S, Murakami T, Tatsumi K, Ogata M,
Kanemoto S, Otori K, Iseki K, Wanaka A and Imaizumi K: OASIS, a
CREB/ATF-family member, modulates UPR signalling in astrocytes. Nat
Cell Biol. 7:186–194. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Kondo S, Saito A, Hino S, Murakami T,
Ogata M, Kanemoto S, Nara S, Yamashita A, Yoshinaga K, Hara H and
Imaizumi K: BBF2H7, a novel transmembrane bZIP transcription
factor, is a new type of endoplasmic reticulum stress transducer.
Mol Cell Biol. 27:1716–1729. 2007. View Article : Google Scholar :
|
|
18
|
Nagamori I, Yabuta N, Fujii T, Tanaka H,
Yomogida K, Nishimune Y and Nojima H: Tisp40, a spermatid specific
bZip transcription factor, functions by binding to the unfolded
protein response element via the Rip pathway. Genes Cells.
10:575–594. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Stirling J and O'Hare P: CREB4, a
transmembrane bZip transcription factor and potential new substrate
for regulation and cleavage by S1P. Mol Biol Cell. 17:413–426.
2006. View Article : Google Scholar :
|
|
20
|
Luebke-Wheeler J, Zhang K, Battle M,
Si-Tayeb K, Garrison W, Chhinder S, Li J, Kaufman RJ and Duncan SA:
Hepatocyte nuclear factor 4alpha is implicated in endoplasmic
reticulum stress-induced acute phase response by regulating
expression of cyclic adenosine monophosphate responsive element
binding protein H. Hepatology. 48:1242–1250. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Bailey D, Barreca C and O'Hare P:
Trafficking of the bZIP transmembrane transcription factor CREB-H
into alternate pathways of ERAD and stress-regulated intramembrane
proteolysis. Traffic. 8:1796–1814. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zhang K, Shen X, Wu J, Sakaki K, Saunders
T, Rutkowski DT, Back SH and Kaufman RJ: Endoplasmic reticulum
stress activates cleavage of CREBH to induce a systemic
inflammatory response. Cell. 124:587–599. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Bailey D and O'Hare P: Transmembrane bZIP
transcription factors in ER stress signaling and the unfolded
protein response. Antioxid Redox Signal. 9:2305–2321. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Asada R, Kanemoto S, Kondo S, Saito A and
Imaizumi K: The signalling from endoplasmic reticulum-resident bZIP
transcription factors involved in diverse cellular physiology. J
Biochem. 149:507–518. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Chan CP, Mak TY, Chin KT, Ng IO and Jin
DY: N-linked glycosylation is required for optimal proteolytic
activation of membrane-bound transcription factor CREB-H. J Cell
Sci. 123:1438–1448. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Barbosa S, Fasanella G, Carreira S,
Llarena M, Fox R, Barreca C, Andrew D and O'Hare P: An orchestrated
program regulating secretory pathway genes and cargos by the
transmembrane transcription factor CREB-H. Traffic. 14:382–398.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Vecchi C, Montosi G, Zhang K, Lamberti I,
Duncan SA, Kaufman RJ and Pietrangelo A: ER stress controls iron
metabolism through induction of hepcidin. Science. 325:877–880.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Llarena M, Bailey D, Curtis H and O'Hare
P: Different mechanisms of recognition and ER retention by
transmembrane transcription factors CREB-H and ATF6. Traffic.
11:48–69. 2010. View Article : Google Scholar
|
|
29
|
Vecchi C, Montosi G, Garuti C, Corradini
E, Sabelli M, Canali S and Pietrangelo A: Gluconeogenic signals
regulate iron homeostasis via hepcidin in mice. Gastroenterology.
146:1060–1069. 2014. View Article : Google Scholar
|
|
30
|
Lee MW, Chanda D, Yang J, Oh H, Kim SS,
Yoon YS, Hong S, Park KG, Lee IK, Choi CS, et al: Regulation of
hepatic gluconeogenesis by an ER-bound transcription factor, CREBH.
Cell Metab. 11:331–339. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Chanda D, Kim DK, Li T, Kim YH, Koo SH,
Lee CH, Chiang JY and Choi HS: Cannabinoid receptor type 1 (CB1R)
signaling regulates hepatic gluconeogenesis via induction of
endoplasmic reticulum-bound transcription factor cAMP-responsive
element-binding protein H (CREBH) in primary hepatocytes. J Biol
Chem. 286:27971–27979. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Chanda D, Kim YH, Kim DK, Lee MW, Lee SY,
Park TS, Koo SH, Lee CH and Choi HS: Activation of cannabinoid
receptor type 1 (Cb1r) disrupts hepatic insulin receptor signaling
via cyclic AMP-response element-binding protein H (Crebh)-mediated
induction of Lipin1 gene. J Biol Chem. 287:38041–38049. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhang C, Wang G, Zheng Z, Maddipati KR,
Zhang X, Dyson G, Williams P, Duncan SA, Kaufman RJ and Zhang K:
Endoplasmic reticulum-tethered transcription factor cAMP responsive
element-binding protein, hepatocyte specific, regulates hepatic
lipogenesis, fatty acid oxidation, and lipolysis upon metabolic
stress in mice. Hepatology. 55:1070–1082. 2012. View Article : Google Scholar :
|
|
34
|
Lee JH, Giannikopoulos P, Duncan SA, Wang
J, Johansen CT, Brown JD, Plutzky J, Hegele RA, Glimcher LH and Lee
AH: The transcription factor cyclic AMP-responsive element-binding
protein H regulates triglyceride metabolism. Nat Med. 17:812–815.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Misra J, Chanda D, Kim DK, Cho SR, Koo SH,
Lee CH, Back SH and Choi HS: Orphan nuclear receptor Errγ induces
C-reactive protein gene expression through induction of ER-bound
Bzip transmembrane transcription factor CREBH. PLoS One.
9:e863422014. View Article : Google Scholar
|
|
36
|
Xu X, Park JG, So JS, Hur KY and Lee AH:
Transcriptional regulation of apolipoprotein A-IV by the
transcription factor CREBH. J Lipid Res. 55:850–859. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Shin DY, Chung J, Joe Y, Pae HO, Chang KC,
Cho GJ, Ryter SW and Chung HT: Pretreatment with CO-releasing
molecules suppresses hepcidin expression during inflammation and
endoplasmic reticulum stress through inhibition of the STAT3 and
CREBH pathways. Blood. 119:2523–2532. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Chanda D, Kim YH, Li T, Misra J, Kim DK,
Kim JR, Kwon J, Jeong WI, Ahn SH, Park TS, et al: Hepatic
cannabinoid receptor type 1 mediates alcohol-induced regulation of
bile acid enzyme genes expression via CREBH. PLoS One.
8:e688452013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kim DK, Ryu D, Koh M, Lee MW, Lim D, Kim
MJ, Kim YH, Cho WJ, Lee CH, Park TS, et al: Orphan nuclear receptor
estrogen-related receptor γ (ERRγ) is key regulator of hepatic
gluconeogenesis. J Biol Chem. 287:21628–21639. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kim DK, Kim JR, Koh M, Kim YD, Lee JM,
Chanda D, Park SB, Min JJ, Lee CH, Park TS, et al: Estrogen-related
receptor γ (ERRγ) is a novel transcriptional regulator of
phosphatidic acid phosphatase, LIPIN1, and inhibits hepatic insulin
signaling. J Biol Chem. 286:38035–38042. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kim DK, Kim YH, Jang HH, Park J, Kim JR,
Koh M, Jeong WI, Koo SH, Park TS, Yun CH, et al: Estrogen-related
receptor γ controls hepatic CB1 receptor-mediated CYP2E1 expression
and oxidative liver injury by alcohol. Gut. 62:1044–1054. 2013.
View Article : Google Scholar
|
|
42
|
Xie YB, Park JH, Kim DK, Hwang JH, Oh S,
Park SB, Shong M, Lee IK and Choi HS: Transcriptional corepressor
SMILE recruits SIRT1 to inhibit nuclear receptor estrogen
receptor-related receptor gamma transactivation. J Biol Chem.
284:28762–28774. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Xie YB, Nedumaran B and Choi HS: Molecular
characterization of SMILE as a novel corepressor of nuclear
receptors. Nucleic Acids Res. 37:4100–4115. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lu R and Misra V: Zhangfei: A second
cellular protein interacts with herpes simplex virus accessory
factor HCF in a manner similar to Luman and VP16. Nucleic Acids
Res. 28:2446–2454. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Xie YB, Lee OH, Nedumaran B, Seong HA, Lee
KM, Ha H, Lee IK, Yun Y and Choi HS: SMILE, a new orphan nuclear
receptor SHP-interacting protein, regulates SHP-repressed estrogen
receptor transactivation. Biochem J. 416:463–473. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Misra J, Chanda D, Kim DK, Li T, Koo SH,
Back SH, Chiang JY and Choi HS: Curcumin differentially regulates
endoplasmic reticulum stress through transcriptional corepressor
SMILE (small heterodimer partner-interacting leucine zipper
protein)-mediated inhibition of CREBH (cAMP responsive
element-binding protein H). J Biol Chem. 286:41972–41984. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Danno H, Ishii KA, Nakagawa Y, Mikami M,
Yamamoto T, Yabe S, Furusawa M, Kumadaki S, Watanabe K, Shimizu H,
et al: The liver-enriched transcription factor CREBH is
nutritionally regulated and activated by fatty acids and PPARalpha.
Biochem Biophys Res Commun. 391:1222–1227. 2010. View Article : Google Scholar
|
|
48
|
Gentile CL, Wang D, Pfaffenbach KT, Cox R,
Wei Y and Pagliasotti MJ: Fatty acids regulate CREBh via
transcriptional mechanisms that are dependent on proteasome
activity and insulin. Mol Cell Biochem. 344:99–107. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Vegiopoulos A and Herzig S:
Glucocorticoids, metabolism and metabolic diseases. Mol Cell
Endocrinol. 275:43–61. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Wong SW, Kwon MJ, Choi AM, Kim HP,
Nakahira K and Hwang DH: Fatty acids modulate Toll-like receptor 4
activation through regulation of receptor dimerization and
recruitment into lipid rafts in a reactive oxygen species-dependent
manner. J Biol Chem. 284:27384–27392. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Schaeffler A, Gross P, Buettner R,
Bollheimer C, Buechler C, Neumeier M, Kopp A, Schoelmerich J and
Falk W: Fatty acid-induced induction of Toll-like
receptor-4/nuclear factor-kappaB pathway in adipocytes links
nutritional signalling with innate immunity. Immunology.
126:233–245. 2009. View Article : Google Scholar :
|
|
52
|
Miura K and Ohnishi H: Role of gut
microbiota and Toll-like receptors in nonalcoholic fatty liver
disease. World J Gastroenterol. 20:7381–7391. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Pineda Torra I, Jamshidi Y, Flavell DM,
Fruchart JC and Staels B: Characterization of the human PPARalpha
promoter: Identification of a functional nuclear receptor response
element. Mol Endocrinol. 16:1013–1028. 2002.PubMed/NCBI
|
|
54
|
Hwang-Verslues WW and Sladek FM:
HNF4α-role in drug metabolism and potential drug target? Curr Opin
Pharmacol. 10:698–705. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Goldberg IJ, Scheraldi CA, Yacoub LK,
Saxena U and Bisgaier CL: Lipoprotein ApoC-II activation of
lipoprotein lipase. Modulation by apolipoprotein A-IV. J Biol Chem.
265:4266–4272. 1990.PubMed/NCBI
|
|
56
|
Jong MC, Hofker MH and Havekes LM: Role of
ApoCs in lipoprotein metabolism: Functional differences between
ApoC1, ApoC2, and ApoC3. Arterioscler Thromb Vasc Biol. 19:472–484.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Marçais C, Verges B, Charrière S, Pruneta
V, Merlin M, Billon S, Perrot L, Drai J, Sassolas A, Pennacchio LA,
et al: Apoa5 Q139X truncation predisposes to late-onset
hyperchylomicronemia due to lipoprotein lipase impairment. J Clin
Invest. 115:2862–2869. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Merkel M, Eckel RH and Goldberg IJ:
Lipoprotein lipase: Genetics, lipid uptake, and regulation. J Lipid
Res. 43:1997–2006. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Pennacchio LA, Olivier M, Hubacek JA,
Cohen JC, Cox DR, Fruchart JC, Krauss RM and Rubin EM: An
apolipoprotein influencing triglycerides in humans and mice
revealed by comparative sequencing. Science. 294:169–173. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Nishimura T, Nakatake Y, Konishi M and
Itoh N: Identification of a novel FGF, FGF-21, preferentially
expressed in the liver. Biochim Biophys Acta. 1492:203–206. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Dushay J, Chui PC, Gopalakrishnan GS,
Varela-Rey M, Crawley M, Fisher FM, Badman MK, Martinez-Chantar ML
and Maratos-Flier E: Increased fibroblast growth factor 21 in
obesity and nonalcoholic fatty liver disease. Gastroenterology.
139:456–463. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Chavez AO, Molina-Carrion M, Abdul-Ghani
MA, Folli F, Defronzo RA and Tripathy D: Circulating fibroblast
growth factor-21 is elevated in impaired glucose tolerance and type
2 diabetes and correlates with muscle and hepatic insulin
resistance. Diabetes Care. 32:1542–1546. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Li H, Dong K, Fang Q, Hou X, Zhou M, Bao
Y, Xiang K, Xu A and Jia W: High serum level of fibroblast growth
factor 21 is an independent predictor of non-alcoholic fatty liver
disease: A 3-year prospective study in China. J Hepatol.
58:557–563. 2013. View Article : Google Scholar
|
|
64
|
Matsusue K, Kusakabe T, Noguchi T,
Takiguchi S, Suzuki T, Yamano S and Gonzalez FJ: Hepatic steatosis
in leptin-deficient mice is promoted by the PPARgamma target gene
Fsp27. Cell Metab. 7:302–311. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Puri V, Konda S, Ranjit S, Aouadi M,
Chawla A, Chouinard M, Chakladar A and Czech MP: Fat-specific
protein 27, a novel lipid droplet protein that enhances
triglyceride storage. J Biol Chem. 282:34213–34218. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Jambunathan S, Yin J, Khan W, Tamori Y and
Puri V: FSP27 promotes lipid droplet clustering and then fusion to
regulate triglyceride accumulation. PLoS One. 6:e286142011.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Reue K: The lipin family: Mutations and
metabolism. Curr Opin Lipidol. 20:165–170. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Song KH, Park AY, Kim JE and Ma JY:
Identification and characterization of cyclic AMP response
element-binding protein H response element in the human
apolipoprotein A5 gene promoter. BioMed Res Int. 2013:8924912013.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kim H, Mendez R, Zheng Z, Chang L, Cai J,
Zhang R and Zhang K: Liver-enriched transcription factor CREBH
interacts with peroxisome proliferator-activated receptor α to
regulate metabolic hormone FGF21. Endocrinology. 155:769–782. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Xu X, Park JG, So JS and Lee AH:
Transcriptional activation of Fsp27 by the liver-enriched
transcription factor CREBH promotes lipid droplet growth and
hepatic steatosis. Hepatology. 61:857–869. 2015. View Article : Google Scholar
|
|
71
|
Hall RK and Granner DK: Insulin regulates
expression of metabolic genes through divergent signaling pathways.
J Basic Clin Physiol Pharmacol. 10:119–133. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Hanson RW and Reshef L: Regulation of
phosphoenolpyruvate carboxykinase (GTP) gene expression. Annu Rev
Biochem. 66:581–611. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Facchini FS, Hua NW and Stoohs RA: Effect
of iron depletion in carbohydrate-intolerant patients with clinical
evidence of nonalcoholic fatty liver disease. Gastroenterology.
122:931–939. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Fernández-Real JM, Peñarroja G, Castro A,
García-Bragado F, Hernández-Aguado I and Ricart W: Blood letting in
high-ferritin type 2 diabetes: Effects on insulin sensitivity and
beta-cell function. Diabetes. 51:1000–1004. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Valenti L, Moscatiello S, Vanni E,
Fracanzani AL, Bugianesi E, Fargion S and Marchesini G: Venesection
for non-alcoholic fatty liver disease unresponsive to lifestyle
counseling–a propensity score-adjusted observational study. QJM.
104:141–149. 2011. View Article : Google Scholar
|
|
76
|
Jeong WI, Osei-Hyiaman D, Park O, Liu J,
Bátkai S, Mukhopadhyay P, Horiguchi N, Harvey-White J, Marsicano G,
Lutz B, et al: Paracrine activation of hepatic CB1 receptors by
stellate cell-derived endocannabinoids mediates alcoholic fatty
liver. Cell Metab. 7:227–235. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Min AK, Jeong JY, Go Y, Choi YK, Kim YD,
Lee IK and Park KG: cAMP response element binding protein H
mediates fenofibrate-induced suppression of hepatic lipogenesis.
Diabetologia. 56:412–422. 2013. View Article : Google Scholar
|
|
78
|
Gabay C and Kushner I: Acute-phase
proteins and other systemic responses to inflammation. N Engl J
Med. 340:448–454. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Medzhitov R and Janeway CR Jr: Decoding
the patterns of self and nonself by the innate immune system.
Science. 296:298–300. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Yoo JY and Desiderio S: Innate and
acquired immunity intersect in a global view of the acute-phase
response. Proc Natl Acad Sci USA. 100:1157–1162. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Kaplan J, Ward DM and De Domenico I: The
molecular basis of iron overload disorders and iron-linked anemias.
Int J Hematol. 93:14–20. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kawano Y and Cohen DE: Mechanisms of
hepatic triglyceride accumulation in non-alcoholic fatty liver
disease. J Gastroenterol. 48:434–441. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Musso G, Gambino R and Cassader M: Recent
insights into hepatic lipid metabolism in non-alcoholic fatty liver
disease (NAFLD). Prog Lipid Res. 48:1–26. 2009. View Article : Google Scholar
|
|
84
|
Donnelly KL, Smith CI, Schwarzenberg SJ,
Jessurun J, Boldt MD and Parks EJ: Sources of fatty acids stored in
liver and secreted via lipoproteins in patients with nonalcoholic
fatty liver disease. J Clin Invest. 115:1343–1351. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Postic C and Girard J: Contribution of de
novo fatty acid synthesis to hepatic steatosis and insulin
resistance: Lessons from genetically engineered mice. J Clin
Invest. 118:829–838. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Tiwari S and Siddiqi SA: Intracellular
trafficking and secretion of VLDL. Arterioscler Thromb Vasc Biol.
32:1079–1086. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Jornayvaz FR and Shulman GI:
Diacylglycerol activation of protein kinase Cε and hepatic insulin
resistance. Cell Metab. 15:574–584. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Neuschwander-Tetri BA: Hepatic
lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis:
The central role of nontriglyceride fatty acid metabolites.
Hepatology. 52:774–788. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Zámbó V, Simon-Szabó L, Szelényi P,
Kereszturi E, Bánhegyi G and Csala M: Lipotoxicity in the liver.
World J Hepatol. 5:550–557. 2013.PubMed/NCBI
|
|
90
|
Gregor MF, Yang L, Fabbrini E, Mohammed
BS, Eagon JC, Hotamisligil GS and Klein S: Endoplasmic reticulum
stress is reduced in tissues of obese subjects after weight loss.
Diabetes. 58:693–700. 2009. View Article : Google Scholar :
|
|
91
|
Puri P, Mirshahi F, Cheung O, Natarajan R,
Maher JW, Kellum JM and Sanyal AJ: Activation and dysregulation of
the unfolded protein response in nonalcoholic fatty liver disease.
Gastroenterology. 134:568–576. 2008. View Article : Google Scholar
|
|
92
|
Sharma NK, Das SK, Mondal AK, Hackney OG,
Chu WS, Kern PA, Rasouli N, Spencer HJ, Yao-Borengasser A and
Elbein SC: Endoplasmic reticulum stress markers are associated with
obesity in nondiabetic subjects. J Clin Endocrinol Metab.
93:4532–4541. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Wang D, Wei Y and Pagliassotti MJ:
Saturated fatty acids promote endoplasmic reticulum stress and
liver injury in rats with hepatic steatosis. Endocrinology.
147:943–951. 2006. View Article : Google Scholar
|
|
94
|
Brunt EM, Janney CG, Di Bisceglie AM,
Neuschwander-Tetri BA and Bacon BR: Nonalcoholic steatohepatitis: A
proposal for grading and staging the histological lesions. Am J
Gastroenterol. 94:2467–2474. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Kleiner DE, Brunt EM, Van Natta M, Behling
C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS,
Unalp-Arida A, et al Nonalcoholic Steatohepatitis Clinical Research
Network: Design and validation of a histological scoring system for
nonalcoholic fatty liver disease. Hepatology. 41:1313–1321. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Sakaguchi S, Takahashi S, Sasaki T,
Kumagai T and Nagata K: Progression of alcoholic and non-alcoholic
steatohepatitis: Common metabolic aspects of innate immune system
and oxidative stress. Drug Metab Pharmacokinet. 26:30–46. 2011.
View Article : Google Scholar
|
|
97
|
Shimomura I, Bashmakov Y and Horton JD:
Increased levels of nuclear SREBP-1c associated with fatty livers
in two mouse models of diabetes mellitus. J Biol Chem.
274:30028–30032. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
de Luca C and Olefsky JM: Inflammation and
insulin resistance. FEBS Lett. 582:97–105. 2008. View Article : Google Scholar
|
|
99
|
Polyzos SA, Kountouras J and Zavos C:
Nonalcoholic fatty liver disease: The pathogenetic roles of insulin
resistance and adipocytokines. Curr Mol Med. 9:299–314. 2009.
View Article : Google Scholar : PubMed/NCBI
|