|
1
|
Lagos-Quintana M, Rauhut R, Lendeckel W
and Tuschl T: Identification of novel genes coding for small
expressed RNAs. Science. 294:853–858. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Lau NC, Lim LP, Weinstein EG and Bartel
DP: An abundant class of tiny RNAs with probable regulatory roles
in Caenorhabditis elegans. Science. 294:858–862. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Lee RC and Ambros V: An extensive class of
small RNAs in Caenorhabditis elegans. Science. 294:862–864. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Selbach M, Schwanhäusser B, Thierfelder N,
Fang Z, Khanin R and Rajewsky N: Widespread changes in protein
synthesis induced by microRNAs. Nature. 455:58–63. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Baek D, Villén J, Shin C, Camargo FD, Gygi
SP and Bartel DP: The impact of microRNAs on protein output.
Nature. 455:64–71. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ambros V: MicroRNA pathways in flies and
worms: Growth, death, fat, stress and timing. Cell. 113:673–676.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J,
Lee J, Provost P, Rådmark O, Kim S and Kim VN: The nuclear RNase
III Drosha initiates microRNA processing. Nature. 425:415–419.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Cullen BR: Transcription and processing of
human microRNA precursors. Mol Cell. 16:861–865. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Lund E, Güttinger S, Calado A, Dahlberg JE
and Kutay U: Nuclear export of microRNA precursors. Science.
303:95–98. 2004. View Article : Google Scholar
|
|
11
|
Mishra PJ and Bertino JR: MicroRNA
polymorphisms: The future of pharmacogenomics, molecular
epidemiology and individualized medicine. Pharmacogenomics.
10:399–416. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Calin GA, Sevignani C, Dumitru CD, Hyslop
T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M
and Croce CM: Human microRNA genes are frequently located at
fragile sites and genomic regions involved in cancers. Proc Natl
Acad Sci USA. 101:2999–3004. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Medina PP, Nolde M and Slack FJ: OncomiR
addiction in an in vivo model of microRNA-21-induced pre-B-cell
lymphoma. Nature. 467:86–90. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Mishra PJ, Mishra PJ, Banerjee D and
Bertino JR: MiRSNPs or MiR-polymorphisms, new players in microRNA
mediated regulation of the cell: Introducing microRNA
pharmacogenomics. Cell Cycle. 7:853–858. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ryan BM, Robles AI and Harris CC: Genetic
variation in microRNA networks: The implications for cancer
research. Nat Rev Cancer. 10:389–402. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Salzman DW and Weidhaas JB: SNPing cancer
in the bud: MicroRNA and microRNA-target site polymorphisms as
diagnostic and prognostic biomarkers in cancer. Pharmacol Ther.
137:55–63. 2013. View Article : Google Scholar :
|
|
17
|
Noh H, Hong S, Dong Z, Pan ZK, Jing Q and
Huang S: Impaired MicroRNA processing facilitates breast cancer
cell invasion by upregulating Urokinase-Type plasminogen activator
expression. Genes Cancer. 2:140–150. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Sung H, Lee KM, Choi JY, Han S, Lee JY, Li
L, Park SK, Yoo KY, Noh DY, Ahn SH and Kang D: Common genetic
polymorphisms of microRNA biogenesis pathway genes and risk of
breast cancer: A case-control study in Korea. Breast Cancer Res
Treat. 130:939–951. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Jiang Y, Chen J, Wu J, Hu Z, Qin Z, Liu X,
Guan X, Wang Y, Han J, Jiang T, et al: Evaluation of genetic
variants in microRNA biosynthesis genes and risk of breast cancer
in Chinese women. Int J Cancer. 133:2216–2224. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Sung H, Jeon S, Lee KM, Han S, Song M,
Choi JY, Park SK, Yoo KY, Noh DY, Ahn SH and Kang D: Common genetic
polymorphisms of microRNA biogenesis pathway genes and breast
cancer survival. Bmc Cancer. 12:1952012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Sung H, Zhang B, Choi JY, Long J, Park SK,
Yoo KY, Noh DY, Ahn SH, Zheng W and Kang D: Common genetic variants
in the microRNA biogenesis pathway are not associated with breast
cancer risk in Asian women. Cancer Epidemiol Biomarkers Prev.
21:1385–1387. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Lin J, Horikawa Y, Tamboli P, Clague J,
Wood CG and Wu X: Genetic variations in microRNA-related genes are
associated with survival and recurrence in patients with renal cell
carcinoma. Carcinogenesis. 31:1805–1812. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Weng Y, Chen Y, Chen J, Liu Y and Bao T:
Common genetic variants in the microRNA biogenesis pathway are
associated with malignant peripheral nerve sheath tumor risk in a
Chinese population. Cancer Epidemiol. 37:913–916. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ke HL, Chen M, Ye Y, Hildebrandt MA, Wu
WJ, Wei H, Huang M, Chang DW, Dinney CP and Wu X: Genetic
variations in micro-RNA biogenesis genes and clinical outcomes in
non-muscle-invasive bladder cancer. Carcinogenesis. 34:1006–1011.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yi R, Doehle BP, Qin Y, Macara IG and
Cullen BR: Overexpression of exportin 5 enhances RNA interference
mediated by short hairpin RNAs and microRNAs. Rna. 11:220–226.
2005. View Article : Google Scholar
|
|
26
|
Zeng Y and Cullen BR: Structural
requirements for pre-microRNA binding and nuclear export by
Exportin 5. Nucleic Acids Res. 32:4776–4785. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ding C, Li C, Wang H, Li B and Guo Z: A
miR-SNP of the XPO5 gene is associated with advanced non-small-cell
lung cancer. Onco Targets Ther. 6:877–881. 2013.PubMed/NCBI
|
|
28
|
Guo Z, Wang H, Li Y, Li B, Li C and Ding
C: A microRNA-related single nucleotide polymorphism of the XPO5
gene is associated with survival of small cell lung cancer
patients. Biomed Rep. 1:545–548. 2013.
|
|
29
|
Liu S, An J, Lin J, Liu Y, Bao L, Zhang W
and Zhao JJ: Single nucleotide polymorphisms of microRNA processing
machinery genes and outcome of hepatocellular carcinoma. PLoS One.
9:e927912014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Leaderer D, Hoffman AE, Zheng T, Fu A,
Weidhaas J, Paranjape T and Zhu Y: Genetic and epigenetic
association studies suggest a role of microRNA biogenesis gene
exportin-5 (XPO5) in breast tumorigenesis. Int J Mol Epidemiol
Genet. 2:9–18. 2011.PubMed/NCBI
|
|
31
|
Ma H, Yuan H, Yuan Z, Yu C, Wang R, Jiang
Y, Hu Z, Shen H and Chen N: Genetic variations in key microRNA
processing genes and risk of head and neck cancer: A case-control
study in Chinese population. PLoS One. 7:e475442012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Chen J, Qin Z, Pan S, Jiang J, Liu L, Liu
J, Chen X, Hu Z and Shen H: Genetic variants in RAN, DICER and HIWI
of microRNA biogenesis genes and risk of cervical carcinoma in a
Chinese population. Chin J Cancer Res. 25:565–571. 2013.PubMed/NCBI
|
|
33
|
Liu L, An J, Liu J, Wen J, Zhai X, Liu Y,
Pan S, Jiang J, Wen Y, Liu Z, et al: Potentially functional genetic
variants in microRNA processing genes and risk of HBV-related
hepatocellular carcinoma. Mol Carcinog. 52(Suppl 1): E148–E154.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Liu J, Liu J, Wei M, He Y, Liao B, Liao G,
Li H and Huang J: Genetic variants in the microRNA machinery gene
GEMIN4 are associated with risk of prostate cancer: A case-control
study of the Chinese Han population. Dna Cell Biol. 31:1296–1302.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Liang D, Meyer L, Chang DW, Lin J, Pu X,
Ye Y, Gu J, Wu X and Lu K: Genetic variants in MicroRNA
biosynthesis pathways and binding sites modify ovarian cancer risk,
survival and treatment response. Cancer Res. 70:9765–9776. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Horikawa Y, Wood CG, Yang H, Zhao H, Ye Y,
Gu J, Lin J, Habuchi T and Wu X: Single nucleotide polymorphisms of
microRNA machinery genes modify the risk of renal cell carcinoma.
Clin Cancer Res. 14:7956–7962. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wan D, He M, Wang J, Qiu X, Zhou W, Luo Z,
Chen J and Gu J: Two variants of the human hepatocellular
carcinoma-associated HCAP1 gene and their effect on the growth of
the human liver cancer cell line Hep3B. Genes Chromosomes Cancer.
39:48–58. 2004. View Article : Google Scholar
|
|
38
|
Adams BD, Claffey KP and White BA:
Argonaute-2 expression is regulated by epidermal growth factor
receptor and mitogen-activated protein kinase signaling and
correlates with a transformed phenotype in breast cancer cells.
Endocrinology. 150:14–23. 2009. View Article : Google Scholar :
|
|
39
|
Kim MS, Oh JE, Kim YR, Park SW, Kang MR,
Kim SS, Ahn CH, Yoo NJ and Lee SH: Somatic mutations and losses of
expression of microRNA regulation-related genes AGO2 and TNRC6A in
gastric and colorectal cancers. J Pathol. 221:139–146. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Zhou Y, Chen L, Barlogie B, Stephens O, Wu
X, Williams DR, Cartron MA, van Rhee F, Nair B, Waheed S, et al:
High-risk myeloma is associated with global elevation of miRNAs and
overexpression of EIF2C2/AGO2. Proc Natl Acad Sci USA.
107:7904–7909. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Yang Q, Jie Z, Ye S, Li Z, Han Z, Wu J,
Yang C and Jiang Y: Genetic variations in miR-27a gene decrease
mature miR-27a level and reduce gastric cancer susceptibility.
Oncogene. 33:193–202. 2014. View Article : Google Scholar
|
|
42
|
Zhang N, Huo Q, Wang X, Chen X, Long L,
Jiang L, Ma T and Yang Q: A genetic variant in pre-miR-27a is
associated with a reduced breast cancer risk in younger Chinese
population. Gene. 529:125–130. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yang R, Schlehe B, Hemminki K, Sutter C,
Bugert P, Wappenschmidt B, Volkmann J, Varon R, Weber BH,
Niederacher D, et al: A genetic variant in the pre-miR-27a oncogene
is associated with a reduced familial breast cancer risk. Breast
Cancer Res Treat. 121:693–702. 2010. View Article : Google Scholar
|
|
44
|
Shi D, Li P, Ma L, Zhong D, Chu H, Yan F,
Lv Q, Qin C, Wang W, Wang M, et al: A genetic variant in
pre-miR-27a is associated with a reduced renal cell cancer risk in
a Chinese population. PLoS One. 7:e465662012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Xu J, Yin Z, Shen H, Gao W, Qian Y, Pei D,
Liu L and Shu Y: A genetic polymorphism in pre-miR-27a confers
clinical outcome of non-small cell lung cancer in a Chinese
population. PLoS One. 8:e791352013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Hezova R, Kovarikova A, Bienertova-Vasku
J, Sachlova M, Redova M, Vasku A, Svoboda M, Radova L, Kiss I,
Vyzula R and Slaby O: Evaluation of SNPs in miR-196-a2, miR-27a and
miR-146a as risk factors of colorectal cancer. World J
Gastroenterol. 18:2827–2831. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Xu Q, He CY, Liu JW and Yuan Y:
Pre-miR-27a rs895819A/G polymorphisms in cancer: A meta-analysis.
PLoS One. 8:e652082013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wang Z, Lai J, Wang Y, Nie W and Guan X:
The Hsa-miR-27a rs895819 (A>G) polymorphism and cancer
susceptibility. Gene. 521:87–90. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zhong S, Chen Z, Xu J, Li W and Zhao J:
Pre-mir-27a rs895819 polymorphism and cancer risk: A meta-analysis.
Mol Biol Rep. 40:3181–3186. 2013. View Article : Google Scholar
|
|
50
|
Xu W, Xu J, Liu S, Chen B, Wang X, Li Y,
Qian Y, Zhao W and Wu J: Effects of common polymorphisms rs11614913
in miR-196a2 and rs2910164 in miR-146a on cancer susceptibility: A
meta-analysis. PLoS One. 6:e204712011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wang J, Wang Q, Liu H, Shao N, Tan B,
Zhang G, Wang K, Jia Y, Ma W, Wang N and Cheng Y: The association
of miR-146a rs2910164 and miR-196a2 rs11614913 polymorphisms with
cancer risk: A meta-analysis of 32 studies. Mutagenesis.
27:779–788. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Srivastava K and Srivastava A:
Comprehensive review of genetic association studies and
meta-analyses on miRNA polymorphisms and cancer risk. PLoS One.
7:e509662012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wang PY, Gao ZH, Jiang ZH, Li XX, Jiang BF
and Xie SY: The associations of single nucleotide polymorphisms in
miR-146a, miR-196a and miR-499 with breast cancer susceptibility.
PLoS One. 8:e706562013. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Chen Z, Xu L, Ye X, Shen S, Li Z, Niu X
and Lu S: Polymorphisms of microRNA sequences or binding sites and
lung cancer: A meta-analysis and systematic review. PLoS One.
8:e610082013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Yuan Z, Zeng X, Yang D, Wang W and Liu Z:
Effects of common polymorphism rs11614913 in Hsa-miR-196a2 on lung
cancer risk. PLoS One. 8:e610472013. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Xu Y, Li L, Xiang X, Wang H, Cai W, Xie J,
Han Y, Bao S and Xie Q: Three common functional polymorphisms in
microRNA encoding genes in the susceptibility to hepatocellular
carcinoma: A systematic review and meta-analysis. Gene.
527:584–593. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wan D, Gu W, Xu G, Shen C, Ding D, Shen S,
Wang S, Gong X, He S and Zhi Q: Effects of common polymorphisms
rs2910164 in miR-146a and rs11614913 in miR-196a2 on susceptibility
to colorectal cancer: A systematic review meta-analysis. Clin
Transl Oncol. 16:792–800. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Guo J, Jin M, Zhang M and Chen K: A
genetic variant in miR-196a2 increase digestive system cancer
risks: A meta-analysis of 15 case-control studies. PLoS One.
7:e305852012. View Article : Google Scholar
|
|
59
|
Yoon KA, Yoon H, Park S, Jang HJ, Zo JI,
Lee HS and Lee JS: The prognostic impact of microRNA sequence
polymorphisms on the recurrence of patients with completely
resected non-small cell lung cancer. J Thorac Cardiovasc Surg.
144:794–807. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Hu Z, Chen J, Tian T, Zhou X, Gu H, Xu L,
Zeng Y, Miao R, Jin G, Ma H, et al: Genetic variants of miRNA
sequences and non-small cell lung cancer survival. J Clin Invest.
118:2600–2608. 2008.PubMed/NCBI
|
|
61
|
Li L, Chen XP and Li YJ: MicroRNA-146a and
human disease. Scand J Immunol. 71:227–231. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Bhaumik D, Scott GK, Schokrpur S, Patil
CK, Campisi J and Benz CC: Expression of microRNA-146 suppresses
NF-kappaB activity with reduction of metastatic potential in breast
cancer cells. Oncogene. 27:5643–5647. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Lin SL, Chiang A, Chang D and Ying SY:
Loss of mir-146a function in hormone-refractory prostate cancer.
RNA. 14:417–424. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Jazdzewski K, Murray EL, Franssila K,
Jarzab B, Schoenberg DR and de la Chapelle A: Common SNP in
pre-miR-146a decreases mature miR expression and predisposes to
papillary thyroid carcinoma. Proc Natl Acad Sci USA. 105:7269–7274.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Jiang H, He X, Li J, Xie Q, Lin J and
Chang Y: Association of a single-nucleotide polymorphism within the
miR-146a gene with susceptibility for acute-on-chronic hepatitis B
liver failure. Immunogenetics. 65:257–263. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhou X, Chen X, Hu L, Han S, Qiang F, Wu
Y, Pan L, Shen H, Li Y and Hu Z: Polymorphisms involved in the
miR-218-LAMB3 pathway and susceptibility of cervical cancer, a
case-control study in Chinese women. Gynecol Oncol. 117:287–290.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Kertesz M, Iovino N, Unnerstall U, Gaul U
and Segal E: The role of site accessibility in microRNA target
recognition. Nat Genet. 39:1278–1284. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Liu Z, Li G, Wei S, Niu J, El-Naggar AK,
Sturgis EM and Wei Q: Genetic variants in selected pre-microRNA
genes and the risk of squamous cell carcinoma of the head and neck.
Cancer. 116:4753–4760. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Chen QH, Wang QB and Zhang B: Ethnicity
modifies the association between functional microRNA polymorphisms
and breast cancer risk: A HuGE meta-analysis. Tumour Biol.
35:529–543. 2014. View Article : Google Scholar
|
|
70
|
Li Y, Liu J, Yuan C, Cui B, Zou X and Qiao
Y: High-risk human papillomavirus reduces the expression of
microRNA-218 in women with cervical intraepithelial neoplasia. J
Int Med Res. 38:1730–1736. 2010. View Article : Google Scholar
|
|
71
|
Shi TY, Chen XJ, Zhu ML, Wang MY, He J, Yu
KD, Shao ZM, Sun MH, Zhou XY, Cheng X, et al: A pri-miR-218 variant
and risk of cervical carcinoma in Chinese women. Bmc Cancer.
13:192013. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhang LS, Liang WB, Gao LB, Li HY, Li LJ,
Chen PY, Liu Y, Chen TY, Han JG, Wei YG, et al: Association between
pri-miR-218 polymorphism and risk of hepatocellular carcinoma in a
Han Chinese population. Dna Cell Biol. 31:761–765. 2012. View Article : Google Scholar
|
|
73
|
Cipollini M, Landi S and Gemignani F:
MicroRNA binding site polymorphisms as biomarkers in cancer
management and research. Pharmgenomics Pers Med. 7:173–191.
2014.PubMed/NCBI
|
|
74
|
Georges M, Clop A, Marcq F, Takeda H,
Pirottin D, Hiard S, Tordoir X, Caiment F, Meish F, Bibé B, et al:
Polymorphic microRNA-target interactions: A novel source of
phenotypic variation. Cold Spring Harb Symp Quant Biol. 71:343–350.
2006. View Article : Google Scholar
|
|
75
|
Pu X, Roth JA, Hildebrandt MA, Ye Y, Wei
H, Minna JD, Lippman SM and Wu X: MicroRNA-related genetic variants
associated with clinical outcomes in early-stage non-small cell
lung cancer patients. Cancer Res. 73:1867–1875. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
McEvoy J, Ulyanov A, Brennan R, Wu G,
Pounds S, Zhang J and Dyer MA: Analysis of MDM2 and MDM4 single
nucleotide polymorphisms, mRNA splicing and protein expression in
retino-blastoma. PLoS One. 7:e427392012. View Article : Google Scholar
|
|
77
|
Zhou L, Zhang X, Li Z, Zhou C, Li M, Tang
X, Lu C, Li H, Yuan Q and Yang M: Association of a genetic
variation in a miR-191 binding site in MDM4 with risk of esophageal
squamous cell carcinoma. PLoS One. 8:e643312013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Wynendaele J, Böhnke A, Leucci E, Nielsen
SJ, Lambertz I, Hammer S, Sbrzesny N, Kubitza D, Wolf A, Gradhand
E, et al: An illegitimate microRNA target site within the 3′ UTR of
MDM4 affects ovarian cancer progression and chemosensitivity.
Cancer Res. 70:9641–9649. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Wang C, Zhao H, Zhao X, Wan J, Wang D, Bi
W, Jiang X and Gao Y: Association between an insertion/deletion
polymorphism within 3′UTR of SGSM3 and risk of hepatocellular
carcinoma. Tumour Biol. 35:295–301. 2014. View Article : Google Scholar
|
|
80
|
Zhu Z, Jiang Y, Chen S, Jia S, Gao X, Dong
D and Gao Y: An insertion/deletion polymorphism in the 3′
untranslated region of type I collagen a2 (COL1A2) is associated
with susceptibility for hepatocellular carcinoma in a Chinese
population. Cancer Genet. 204:265–269. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Jin Y, Xu G, Huang J, Zhou D, Huang X and
Shen L: Analysis of the association between an insertion/deletion
polymorphism within the 3′ untranslated region of COL1A2 and
chronic venous insufficiency. Ann Vasc Surg. 27:959–963. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Ioannidis JP, Ntzani EE, Trikalinos TA and
Contopoulos-Ioannidis DG: Replication validity of genetic
association studies. Nat Genet. 29:306–309. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Chanock SJ, Manolio T, Boehnke M,
Boerwinkle E, Hunter DJ, Thomas G, Hirschhorn JN, Abecasis G,
Altshuler D; NCI-NHGRI Working Group on Replication in Association
Studies; et al: Replicating genotype-phenotype associations.
Nature. 447:655–660. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Fabbri M, Ivan M, Cimmino A, Negrini M and
Calin GA: Regulatory mechanisms of microRNAs involvement in cancer.
Expert Opin Biol Ther. 7:1009–1019. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Silber J, Lim DA, Petritsch C, Persson AI,
Maunakea AK, Yu M, Vandenberg SR, Ginzinger DG, James CD, Costello
JF, et al: MiR-124 and miR-137 inhibit proliferation of
glioblastoma multiforme cells and induce differentiation of brain
tumor stem cells. BMC Med. 6:142008. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Agirre X, Vilas-Zornoza A, Jiménez-Velasco
A, Martin-Subero JI, Cordeu L, Gárate L, San José-Eneriz E,
Abizanda G, Rodríguez-Otero P, Fortes P, et al: Epigenetic
silencing of the tumor suppressor microRNA Hsa-miR-124a regulates
CDK6 expression and confers a poor prognosis in acute lymphoblastic
leukemia. Cancer Res. 69:4443–4453. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Pang RT, Leung CO, Ye TM, Liu W, Chiu PC,
Lam KK, Lee KF and Yeung WS: MicroRNA-34a suppresses invasion
through downregulation of Notch1 and Jagged1 in cervical carcinoma
and choriocarcinoma cells. Carcinogenesis. 31:1037–1044. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Majid S, Dar AA, Saini S, Arora S,
Shahryari V, Zaman MS, Chang I, Yamamura S, Tanaka Y, Deng G and
Dahiya R: MiR-23b represses proto-oncogene Src kinase and functions
as methylation-silenced tumor suppressor with diagnostic and
prognostic significance in prostate cancer. Cancer Res.
72:6435–6446. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Zisoulis DG, Kai ZS, Chang RK and
Pasquinelli AE: Autoregulation of microRNA biogenesis by let-7 and
Argonaute. Nature. 486:541–544. 2012.PubMed/NCBI
|
|
90
|
Juvvuna PK, Khandelia P, Lee LM and
Makeyev EV: Argonaute identity defines the length of mature
mammalian microRNAs. Nucleic Acids Res. 40:6808–6820. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Yang JS, Maurin T and Lai EC: Functional
parameters of Dicer-independent microRNA biogenesis. RNA.
18:945–957. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Plante I, Plé H, Landry P, Gunaratne PH
and Provost P: Modulation of microRNA activity by Semi-microRNAs.
Front Genet. 3:992012. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Faller M and Guo F: MicroRNA biogenesis:
There's more than one way to skin a cat. Biochim Biophys Acta.
1779:663–667. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Winter J, Link S, Witzigmann D,
Hildenbrand C, Previti C and Diederichs S: Loop-miRs: Active
microRNAs generated from single-stranded loop regions. Nucleic
Acids Res. 41:5503–5512. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Berezikov E, Liu N, Flynt AS, Hodges E,
Rooks M, Hannon GJ and Lai EC: Evolutionary flux of canonical
microRNAs and mirtrons in Drosophila. Nat Genet. 42:6–9. 2010.
View Article : Google Scholar
|
|
96
|
Ruby JG, Jan CH and Bartel DP: Intronic
microRNA precursors that bypass Drosha processing. Nature.
448:83–86. 2007. View Article : Google Scholar : PubMed/NCBI
|