|
1
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Lee RC, Feinbaum RL and Ambros V: The C.
elegans heterochronic gene lin-4 encodes small RNAs with antisense
complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Reinhart BJ, Slack FJ, Basson M,
Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR and Ruvkun G:
The 21-nucleotide let-7 RNA regulates developmental timing in
Caenorhabditis elegans. Nature. 403:901–906. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Lagos-Quintana M, Rauhut R, Lendeckel W
and Tuschl T: Identification of novel genes coding for small
expressed RNAs. Science. 294:853–858. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lau NC, Lim LP, Weinstein EG and Bartel
DP: An abundant class of tiny RNAs with probable regulatory roles
in Caenorhabditis elegans. Science. 294:858–862. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Liu NK, Wang XF, Lu QB and Xu XM: Altered
microRNA expression following traumatic spinal cord injury. Exp
Neurol. 219:424–429. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Zhou J, Chaudhry H, Zhong Y, Ali MM,
Perkins LA, Owens WB, Morales JE, McGuire FR, Zumbrun EE, Zhang J,
et al: Dysregulation in microRNA expression in peripheral blood
mononuclear cells of sepsis patients is associated with
immunopathology. Cytokine. 71:89–100. 2015. View Article : Google Scholar
|
|
9
|
Zhang W, Zhou T, Ma SF, Machado RF,
Bhorade SM and Garcia JG: MicroRNAs implicated in dysregulation of
gene expression following human lung transplantation. Transl Respir
Med. 1:1–12. 2013. View Article : Google Scholar
|
|
10
|
Birbrair A, Zhang T, Wang ZM, Messi ML,
Mintz A and Delbono O: Type-1 pericytes participate in fibrous
tissue deposition in aged skeletal muscle. Am J Physiol Cell
Physiol. 305:C1098–C1113. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kalluri R and Neilson EG:
Epithelial-mesenchymal transition and its implications for
fibrosis. J Clin Invest. 112:1776–1784. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
O'Connor JW and Gomez EW: Biomechanics of
TGFβ-induced epithelial-mesenchymal transition: Implications for
fibrosis and cancer. Clin Transl Med. 3:232014. View Article : Google Scholar
|
|
13
|
Lamouille S, Xu J and Derynck R: Molecular
mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell
Biol. 15:178–196. 2014. View
Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zeisberg EM, Tarnavski O, Zeisberg M,
Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT,
Roberts AB, et al: Endothelial-to-mesenchymal transition
contributes to cardiac fibrosis. Nat Med. 13:952–961. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Widyantoro B, Emoto N, Nakayama K,
Anggrahini DW, Adiarto S, Iwasa N, Yagi K, Miyagawa K, Rikitake Y,
Suzuki T, et al: Endothelial cell-derived endothelin-1 promotes
cardiac fibrosis in diabetic hearts through stimulation of
endothelial-to-mesenchymal transition. Circulation. 121:2407–2418.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zeisberg EM, Potenta SE, Sugimoto H,
Zeisberg M and Kalluri R: Fibroblasts in kidney fibrosis emerge via
endothelial-to-mesen-chymal transition. J Am Soc Nephrol.
19:2282–2287. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Hashimoto N, Phan SH, Imaizumi K, Matsuo
M, Nakashima H, Kawabe T, Shimokata K and Hasegawa Y:
Endothelial-mesenchymal transition in bleomycin-induced pulmonary
fibrosis. Am J Respir Cell Mol Biol. 43:161–172. 2010. View Article : Google Scholar :
|
|
18
|
Zeisberg M, Yang C, Martino M, Duncan MB,
Rieder F, Tanjore H and Kalluri R: Fibroblasts derive from
hepatocytes in liver fibrosis via epithelial to mesenchymal
transition. J Biol Chem. 282:23337–23347. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hinz B, Phan SH, Thannickal VJ, Galli A,
Bochaton-Piallat ML and Gabbiani G: The myofibroblast: One
function, multiple origins. Am J Pathol. 170:1807–1816. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kim Y, Kugler MC, Wei Y, Kim KK, Li X,
Brumwell AN and Chapman HA: Integrin alpha3beta1-dependent
beta-catenin phosphorylation links epithelial Smad signaling to
cell contacts. J Cell Biol. 184:309–322. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Li Y, Yang J, Dai C, Wu C and Liu Y: Role
for integrin-linked kinase in mediating tubular epithelial to
mesenchymal transition and renal interstitial fibrogenesis. J Clin
Invest. 112:503–516. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zeisberg M, Hanai J, Sugimoto H, Mammoto
T, Charytan D, Strutz F and Kalluri R: BMP-7 counteracts
TGF-beta1-induced epithelial-to-mesenchymal transition and reverses
chronic renal injury. Nat Med. 9:964–968. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Rygiel KA, Robertson H, Marshall HL,
Pekalski M, Zhao L, Booth TA, Jones DE, Burt AD and Kirby JA:
Epithelial-mesenchymal transition contributes to portal tract
fibrogenesis during human chronic liver disease. Lab Invest.
88:112–123. 2008. View Article : Google Scholar
|
|
24
|
Muraoka N, Yamakawa H, Miyamoto K,
Sadahiro T, Umei T, Isomi M, Nakashima H, Akiyama M, Wada R,
Inagawa K, et al: miR-133 promotes cardiac reprogramming by
directly repressing Snai1 and silencing fibroblast signatures. EMBO
J. 33:1565–1581. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wang L, Li X, Zhou Y, Shi H, Xu C, He H,
Wang S, Xiong X, Zhang Y, Du Z, et al: Downregulation of miR-133
via MAPK/ERK signaling pathway involved in nicotine-induced
cardiomyocyte apoptosis. Naunyn Schmiedebergs Arch Pharmacol.
387:197–206. 2014. View Article : Google Scholar
|
|
26
|
Berschneider B, Ellwanger DC, Baarsma HA,
Thiel C, Shimbori C, White ES, Kolb M, Neth P and Königshoff M:
miR-92a regulates TGF-β1-induced WISP1 expression in pulmonary
fibrosis. Int J Biochem Cell Biol. 53:432–441. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yu JW, Duan WJ, Huang XR, Meng XM, Yu XQ
and Lan HY: MicroRNA-29b inhibits peritoneal fibrosis in a mouse
model of peritoneal dialysis. Lab Invest. 94:978–990. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Drummond CA, Hill MC, Shi H, Fan X, Xie
JX, Haller ST, Kennedy DJ, Liu J, Garrett MR, Xie Z, et al:
Na/K-ATPase signaling regulates collagen synthesis through
microRNA-29b-3p in cardiac fibroblasts. Physiol Genomics. Dec
23–2015.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Patel V and Noureddine L: microRNAs and
fibrosis. Curr Opin Nephrol Hypertens. 21:410–416. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kumarswamy R, Volkmann I and Thum T:
Regulation and function of miRNA-21 in health and disease. RNA
Biol. 8:706–713. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Li YF, Jing Y, Hao J, Frankfort NC, Zhou
X, Shen B, Liu X, Wang L and Li R: MicroRNA-21 in the pathogenesis
of acute kidney injury. Protein Cell. 4:813–819. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Li Q, Zhang D, Wang Y, Sun P, Hou X,
Larner J, Xiong W and Mi J: MiR-21/Smad 7 signaling determines
TGF-β1-induced CAF formation. Sci Rep. 3(2038)2013.
|
|
33
|
Thum T, Gross C, Fiedler J, Fischer T,
Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, et
al: MicroRNA-21 contributes to myocardial disease by stimulating
MAP kinase signalling in fibroblasts. Nature. 456:980–984. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Pandit KV, Milosevic J and Kaminski N:
MicroRNAs in idiopathic pulmonary fibrosis. Transl Res.
157:191–199. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Meng F, Henson R, Lang M, Wehbe H,
Maheshwari S, Mendell JT, Jiang J, Schmittgen TD and Patel T:
Involvement of human micro-RNA in growth and response to
chemotherapy in human cholangiocarcinoma cell lines.
Gastroenterology. 130:2113–2129. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Si ML, Zhu S, Wu H, Lu Z, Wu F and Mo YY:
miR-21-mediated tumor growth. Oncogene. 26:2799–2803. 2007.
View Article : Google Scholar
|
|
37
|
Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen
H, Dean DB and Zhang C: MicroRNA expression signature and
antisense-mediated depletion reveal an essential role of MicroRNA
in vascular neointimal lesion formation. Circ Res. 100:1579–1588.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Gabriely G, Wurdinger T, Kesari S, Esau
CC, Burchard J, Linsley PS and Krichevsky AM: microRNA 21 promotes
glioma invasion by targeting matrix metalloproteinase regulators.
Mol Cell Biol. 28:5369–5380. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhu H, Luo H, Li Y, Zhou Y, Jiang Y, Chai
J, Xiao X, You Y and Zuo X: MicroRNA-21 in scleroderma fibrosis and
its function in TGF-β-regulated fibrosis-related genes expression.
J Clin Immunol. 33:1100–1109. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Liu G, Friggeri A, Yang Y, Milosevic J,
Ding Q, Thannickal VJ, Kaminski N and Abraham E: miR-21 mediates
fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J
Exp Med. 207:1589–1597. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Bao H, Hu S, Zhang C, Shi S, Qin W, Zeng
C, Zen K and Liu Z: Inhibition of miRNA-21 prevents fibrogenic
activation in podocytes and tubular cells in IgA nephropathy.
Biochem Biophys Res Commun. 444:455–460. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Shen W, Chen G, Dong R, Zhao R and Zheng
S: MicroRNA-21/PTEN/Akt axis in the fibrogenesis of biliary
atresia. J Pediatr Surg. 49:1738–1741. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Dattaroy D, Pourhoseini S, Das S, Alhasson
F, Seth RK, Nagarkatti M, Michelotti GA, Diehl AM and Chatterjee S:
Micro RNA 21 inhibition of SMAD7 enhances fibrogenesis via leptin
mediated NADPH oxidase in experimental and human nonalcoholic
steatohepatitis. Am J Physiol Gastrointest Liver Physiol.
308:G298–G312. 2015. View Article : Google Scholar
|
|
44
|
Roy S, Khanna S, Hussain SR, Biswas S,
Azad A, Rink C, Gnyawali S, Shilo S, Nuovo GJ and Sen CK: MicroRNA
expression in response to murine myocardial infarction: miR-21
regulates fibroblast metalloprotease-2 via phosphatase and tensin
homologue. Cardiovasc Res. 82:21–29. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Patrick DM, Montgomery RL, Qi X, Obad S,
Kauppinen S, Hill JA, Van Rooij E and Olson EN: Stress-dependent
cardiac remodeling occurs in the absence of microRNA-21 in mice. J
Clin Invest. 120:3912–3916. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Yamada M, Kubo H, Ota C, Takahashi T,
Tando Y, Suzuki T, Fujino N, Makiguchi T, Takagi K, Suzuki T and
Ichinose M: The increase of microRNA-21 during lung fibrosis and
its contribution to epithelial-mesenchymal transition in pulmonary
epithelial cells. Respir Res. 14:952013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Godwin JG, Ge X, Stephan K, Jurisch A,
Tullius SG and Iacomini J: Identification of a microRNA signature
of renal ischemia reperfusion injury. Proc Natl Acad Sci USA.
107:14339–14344. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zarjou A, Yang S, Abraham E, Agarwal A and
Liu G: Identification of a microRNA signature in renal fibrosis:
Role of miR-21. Am J Physiol Renal Physiol. 301:F793–F801. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Glowacki F, Savary G, Gnemmi V, Buob D,
Van der Hauwaert C, Lo-Guidice JM, Bouyé S, Hazzan M, Pottier N,
Perrais M, et al: Increased circulating miR-21 levels are
associated with kidney fibrosis. PLoS One. 8:e580142013. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Redell JB, Zhao J and Dash PK: Altered
expression of miRNA-21 and its targets in the hippocampus after
traumatic brain injury. J Neurosci Res. 89:212–221. 2011.
View Article : Google Scholar
|
|
51
|
Buller B, Liu X, Wang X, Zhang RL, Zhang
L, Hozeska-Solgot A, Chopp M and Zhang ZG: microRNA-21 protects
neurons from ischemic death. FEBS J. 277:4299–4307. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Bhalala OG, Pan L, Sahni V, McGuire TL,
Gruner K, Tourtellotte WG and Kessler JA: MicroRNA-21 regulates
astrocytic response following spinal cord injury. J Neurosci.
32:17935–17947. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Kimura-Kuroda J, Teng X, Komuta Y,
Yoshioka N, Sango K, Kawamura K, Raisman G and Kawano H: An in
vitro model of the inhibition of axon growth in the lesion scar
formed after central nervous system injury. Mol Cell Neurosci.
43:177–187. 2010. View Article : Google Scholar
|
|
54
|
Marquez RT, Bandyopadhyay S, Wendlandt EB,
Keck K, Hoffer BA, Icardi MS, Christensen RN, Schmidt WN and
McCaffrey AP: Correlation between microRNA expression levels and
clinical parameters associated with chronic hepatitis C viral
infection in humans. Lab Invest. 90:1727–1736. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhang Z, Gao Z, Hu W, Yin S, Wang C, Zang
Y, Chen J, Zhang J and Dong L: 3,3′-Diindolylmethane ameliorates
experimental hepatic fibrosis via inhibiting miR-21 expression. Br
J Pharmacol. 170:649–660. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ning P, Liu DW, Mao YG, Peng Y, Lin ZW and
Liu DM: Differential expression profile of microRNA between
hyperplastic scar and normal skin. Chin Med J. 92:692–694. 2012.In
Chinese.
|
|
57
|
Liu Y, Wang X, Yang D, Xiao Z and Chen X:
MicroRNA-21 affects proliferation and apoptosis by regulating
expression of PTEN in human keloid fibroblasts. Plast Reconstr
Surg. 134:561e–573e. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Simone BA, Ly D, Savage JE, Hewitt SM, Dan
TD, Ylaya K, Shankavaram U, Lim M, Jin L, Camphausen K, et al:
microRNA alterations driving acute and late stages of
radiation-induced fibrosis in a murine skin model. Int J Radiat
Oncol Biol Phys. 90:44–52. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Jin L, Wu Z, Xu W, Hu X, Zhang J, Xue Z
and Cheng L: Identifying gene expression profile of spinal cord
injury in rat by bioinformatics strategy. Mol Biol Rep.
41:3169–3177. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Meng XM, Huang XR, Xiao J, Chen HY, Zhong
X, Chung AC and Lan HY: Diverse roles of TGF-β receptor II in renal
fibrosis and inflammation in vivo and in vitro. J Pathol.
227:175–188. 2012. View Article : Google Scholar
|
|
61
|
Schnaper HW, Hayashida T, Hubchak SC and
Poncelet AC: TGF-beta signal transduction and mesangial cell
fibrogenesis. Am J Physiol Renal Physiol. 284:F243–F252. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Lan HY and Chung AC: Transforming growth
factor-β and Smads. Contrib Nephrol. 170:75–82. 2011. View Article : Google Scholar
|
|
63
|
Meng XM, Huang XR, Xiao J, Chung AC, Qin
W, Chen HY and Lan HY: Disruption of Smad4 impairs TGF-β/Smad3 and
Smad7 transcriptional regulation during renal inflammation and
fibrosis in vivo and in vitro. Kidney Int. 81:266–279. 2012.
View Article : Google Scholar
|
|
64
|
Davis BN, Hilyard AC, Lagna G and Hata A:
SMAD proteins control DROSHA-mediated microRNA maturation. Nature.
454:56–61. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Fujimoto M, Maezawa Y, Yokote K, Joh K,
Kobayashi K, Kawamura H, Nishimura M, Roberts AB, Saito Y and Mori
S: Mice lacking Smad3 are protected against streptozotocin-induced
diabetic glomerulopathy. Biochem Biophys Res Commun. 305:1002–1007.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Meng XM, Huang XR, Chung AC, Qin W, Shao
X, Igarashi P, Ju W, Bottinger EP and Lan HY: Smad2 protects
against TGF-beta/Smad3-mediated renal fibrosis. J Am Soc Nephrol.
21:1477–1487. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Davis BN, Hilyard AC, Nguyen PH, Lagna G
and Hata A: Smad proteins bind a conserved RNA sequence to promote
microRNA maturation by Drosha. Mol Cell. 39:373–384. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhong X, Chung AC, Chen HY, Meng XM and
Lan HY: Smad3-mediated upregulation of miR-21 promotes renal
fibrosis. J Am Soc Nephrol. 22:1668–1681. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Chung AC, Dong Y, Yang W, Zhong X, Li R
and Lan HY: Smad7 suppresses renal fibrosis via altering expression
of TGF-β/Smad3-regulated microRNAs. Mol Ther. 21:388–398. 2013.
View Article : Google Scholar :
|
|
70
|
Huang GC, Zhang JS and Tang QQ:
Involvement of C/EBP-alpha gene in in vitro activation of rat
hepatic stellate cells. Biochem Biophys Res Commun. 324:1309–1318.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Bakin AV, Tomlinson AK, Bhowmick NA, Moses
HL and Arteaga CL: Phosphatidylinositol 3-kinase function is
required for transforming growth factor beta-mediated epithelial to
mesenchymal transition and cell migration. J Biol Chem.
275:36803–36810. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ghosh Choudhury G and Abboud HE: Tyrosine
phosphorylation-dependent PI3 kinase/Akt signal transduction
regulates TGFbeta-induced fibronectin expression in mesangial
cells. Cell Signal. 16:31–41. 2004. View Article : Google Scholar
|
|
73
|
Maehama T and Dixon JE: The tumor
suppressor, PTEN/MMAC1, dephosphorylates the lipid second
messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem.
273:13375–13378. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Meng F, Henson R, Wehbe-Janek H, Ghoshal
K, Jacob ST and Patel T: microRNA-21 regulates expression of the
PTEN tumor suppressor gene in human hepatocellular cancer.
Gastroenterology. 133:647–658. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Runyan CE, Schnaper HW and Poncelet AC:
The phosphatidylinositol 3-kinase/Akt pathway enhances
Smad3-stimulated mesangial cell collagen I expression in response
to transforming growth factor-beta1. J Biol Chem. 279:2632–2639.
2004. View Article : Google Scholar
|
|
76
|
Mahimainathan L, Das F, Venkatesan B and
Choudhury GG: Mesangial cell hypertrophy by high glucose is
mediated by down-regulation of the tumor suppressor PTEN. Diabetes.
55:2115–2125. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lamouille S and Derynck R: Cell size and
invasion in TGF-beta-induced epithelial to mesenchymal transition
is regulated by activation of the mTOR pathway. J Cell Biol.
178:437–451. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Dey N, Ghosh-Choudhury N, Kasinath BS and
Choudhury GG: TGFβ-stimulated microRNA-21 utilizes PTEN to
orchestrate AKT/mTORC1 signaling for mesangial cell hypertrophy and
matrix expansion. PLoS One. 7:e423162012. View Article : Google Scholar
|
|
79
|
Kattla JJ, Carew RM, Heljic M, Godson C
and Brazil DP: Protein kinase B/Akt activity is involved in renal
TGF-beta1-driven epithelial-mesenchymal transition in vitro and in
vivo. Am J Physiol Renal Physiol. 295:F215–F225. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Meadows KN, Iyer S, Stevens MV, Wang D,
Shechter S, Perruzzi C, Camenisch TD and Benjamin LE: Akt promotes
endocardial-mesenchyme transition. J Angiogenes Res. 1:22009.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Romashkova JA and Makarov SS: NF-kappaB is
a target of AKT in anti-apoptotic PDGF signalling. Nature.
401:86–90. 1999. View
Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhong W, Shen WF, Ning BF, Hu PF, Lin Y,
Yue HY, Yin C, Hou JL, Chen YX, Zhang JP, et al: Inhibition of
extracellular signal-regulated kinase 1 by adenovirus mediated
small interfering RNA attenuates hepatic fibrosis in rats.
Hepatology. 50:1524–1536. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Ma X, Kumar M, Choudhury SN, Becker
Buscaglia LE, Barker JR, Kanakamedala K, Liu MF and Li Y: Loss of
the miR-21 allele elevates the expression of its target genes and
reduces tumorigenesis. Proc Natl Acad Sci USA. 108:10144–10149.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Chen B, Liu J, Chang Q, Beezhold K, Lu Y
and Chen F: JNK and STAT3 signaling pathways converge on
Akt-mediated phosphorylation of EZH2 in bronchial epithelial cells
induced by arsenic. Cell Cycle. 12:112–121. 2013. View Article : Google Scholar :
|
|
85
|
Zhao J, Tang N, Wu K, Dai W, Ye C, Shi J,
Zhang J, Ning B, Zeng X and Lin Y: miR-21 simultaneously regulates
ERK1 signaling in HSC activation and hepatocyte EMT in hepatic
fibrosis. PLoS One. 9:e1080052014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Huang C, Li J, Ding M, Wang L, Shi X,
Castranova V, Ju G and Costa M: Arsenic-induced NFkappaB
transactivation through Erks- and JNKs-dependent pathways in mouse
epidermal JB6 cells. Mol Cell Biochem. 222:29–34. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Ling M, Li Y, Xu Y, Pang Y, Shen L, Jiang
R, Zhao Y, Yang X, Zhang J, Zhou J, et al: Regulation of miRNA-21
by reactive oxygen species-activated ERK/NF-κ B in arsenite-induced
cell transformation. Free Radic Biol Med. 52:1508–1518. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Sandhir R, Gregory E and Berman NE:
Differential response of miRNA-21 and its targets after traumatic
brain injury in aging mice. Neurochem Int. 78:117–121. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Zhou L, Yang ZX, Song WJ, Li QJ, Yang F,
Wang DS, Zhang N and Dou KF: MicroRNA-21 regulates the migration
and invasion of a stem-like population in hepatocellular carcinoma.
Int J Oncol. 43:661–669. 2013.PubMed/NCBI
|
|
90
|
Zhu Q, Wang Z, Hu Y, Li J, Li X, Zhou L
and Huang Y: miR-21 promotes migration and invasion by the
miR-21-PDCD4-AP-1 feedback loop in human hepatocellular carcinoma.
Oncol Rep. 27:1660–1668. 2012.PubMed/NCBI
|
|
91
|
Siddesha JM, Valente AJ, Yoshida T,
Sakamuri SS, Delafontaine P, Iba H, Noda M and Chandrasekar B:
Docosahexaenoic acid reverses angiotensin II-induced RECK
suppression and cardiac fibroblast migration. Cell Signal.
26:933–941. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Reis ST, Pontes-Junior J, Antunes AA,
Dall'Oglio MF, Dip N, Passerotti CC, Rossini GA, Morais DR,
Nesrallah AJ, Piantino C, et al: miR-21 may acts as an oncomir by
targeting RECK, a matrix metalloproteinase regulator, in prostate
cancer. BMC Urol. 12:142012. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Fan X, Wang E, Wang X, Cong X and Chen X:
MicroRNA-21 is a unique signature associated with coronary plaque
instability in humans by regulating matrix metalloproteinase-9 via
reversion-inducing cysteine-rich protein with Kazal motifs. Exp Mol
Pathol. 96:242–249. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wei J, Feng L, Li Z, Xu G and Fan X:
MicroRNA-21 activates hepatic stellate cells via PTEN/Akt
signaling. Biomed Pharmacother. 67:387–392. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Adam O, Löhfelm B, Thum T, Gupta SK, Puhl
SL, Schafers HJ, Böhm M and Laufs U: Role of miR-21 in the
pathogenesis of atrial fibrosis. Basic Res Cardiol. 107:2782012.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Liang H, Zhang C, Ban T, Liu Y, Mei L,
Piao X, Zhao D, Lu Y, Chu W and Yang B: A novel reciprocal loop
between microRNA-21 and TGFβRIII is involved in cardiac fibrosis.
Int J Biochem Cell Biol. 44:2152–2160. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zhu HY, Li C, Bai WD, Su LL, Liu JQ, Li Y,
Shi JH, Cai WX, Bai XZ, Jia YH, et al: MicroRNA-21 regulates hTERT
via PTEN in hypertrophic scar fibroblasts. PLoS One. 9:e971142014.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Pellman J, Lyon RC and Sheikh F:
Extracellular matrix remodeling in atrial fibrosis: Mechanisms and
implications in atrial fibrillation. J Mol Cell Cardiol.
48:461–467. 2010. View Article : Google Scholar :
|
|
99
|
Tan AY and Zimetbaum P: Atrial
fibrillation and atrial fibrosis. J Cardiovasc Pharmacol.
57:625–629. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Babür Güler G, Karaahmet T and Tigen K:
Myocardial fibrosis detected by cardiac magnetic resonance imaging
in heart failure: Impact on remodeling, diastolic function and BNP
levels. Anadolu Kardiyol Derg. 11:71–76. 2011.PubMed/NCBI
|
|
101
|
Csak T, Bala S, Lippai D, Satishchandran
A, Catalano D, Kodys K and Szabo G: microRNA-122 regulates
hypoxia-inducible factor-1 and vimentin in hepatocytes and
correlates with fibrosis in diet-induced steatohepatitis. Liver
Int. 35:532–541. 2015. View Article : Google Scholar :
|
|
102
|
Huang C, Zheng JM, Cheng Q, Yu KK, Ling
QX, Chen MQ and Li N: Serum microRNA-29 levels correlate with
disease progression in patients with chronic hepatitis B virus
infection. J Dig Dis. 15:614–621. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
He X, Xie J, Zhang D, Su Q, Sai X, Bai R,
Chen C, Luo X, Gao G and Pan W: Recombinant adeno-associated
virus-mediated inhibition of miRNA-21 protects mice against the
lethal schistosome infection by repressing both IL-13 and
transforming growth factor beta 1 pathways. Hepatology.
61:2008–2017. 2015. View Article : Google Scholar
|
|
104
|
Friedman SL: Molecular regulation of
hepatic fibrosis, an integrated cellular response to tissue injury.
J Biol Chem. 275:2247–2250. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zeng CH, Le W, Ni Z, Zhang M, Miao L, Luo
P, Wang R, Lv Z, Chen J, Tian J, et al: A multicenter application
and evaluation of the oxford classification of IgA nephropathy in
adult Chinese patients. Am J Kidney Dis. 60:812–820. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Cutroneo KR, White SL, Phan SH and Ehrlich
HP: Therapies for bleomycin induced lung fibrosis through
regulation of TGF-beta1 induced collagen gene expression. J Cell
Physiol. 211:585–589. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
White ES, Atrasz RG, Hu B, Phan SH,
Stambolic V, Mak TW, Hogaboam CM, Flaherty KR, Martinez FJ and
Kontos CD: Negative regulation of myofibroblast differentiation by
PTEN (phosphatase and tensin homolog deleted on chromosome 10). Am
J Respir Crit Care Med. 173:112–121. 2006. View Article : Google Scholar :
|
|
108
|
Varga J and Abraham D: Systemic sclerosis:
A prototypic multi-system fibrotic disorder. J Clin Invest.
117:557–567. 2007. View Article : Google Scholar : PubMed/NCBI
|