1
|
Rappaport SM, Kim S, Thomas R, Johnson BA,
Bois FY and Kupper LL: Low-dose metabolism of benzene in humans:
Science and obfuscation. Carcinogenesis. 34:2–9. 2013. View Article : Google Scholar :
|
2
|
Wiwanitkit V: Classification of risk
occupation for benzene exposure by urine trans, trans-muconic acid
level. Asian Pac J Cancer Prev. 7:149–150. 2006.PubMed/NCBI
|
3
|
Williams PR, Robinson K and Paustenbach
DJ: Benzene exposures associated with tasks performed on marine
vessels (circa 1975 to 2000). J Occup Environ Hyg. 2:586–599. 2005.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang L, Zhou Y, Liang Y, Wong O, Armstrong
T, Schnatter AR, Wu Q, Fang J, Ye X, Fu H and Irons RD: Benzene
exposure in the shoemaking industry in China, a literature survey,
1978–2004. Regul Toxicol Pharmacol. 46:149–156. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Mitacek EJ, Brunnemann KD, Polednak AP,
Limsila T, Bhothisuwan K and Hummel CF: Rising leukemia rates in
Thailand: The possible role of benzene and related compounds in
cigarette smoke. Oncol Rep. 9:1399–1403. 2002.PubMed/NCBI
|
6
|
Harley RA, Hooper DS, Kean AJ,
Kirchstetter TW, Hesson JM, Balberan NT, Stevenson ED and Kendall
GR: Effects of reformulated gasoline and motor vehicle fleet
turnover on emissions and ambient concentrations of benzene.
Environ Sci Technol. 40:5084–5088. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wallace LA: Environmental exposure to
benzene. An update. Environ Health Perspect. 104(Suppl 6):
S1129–S1136. 1996. View Article : Google Scholar
|
8
|
Pyatt D: Benzene and hematopoietic
malignancies. Clin Occup Environ Med. 4:529–555. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Smith MT, Jones RM and Smith AH: Benzene
exposure and risk of non-Hodgkin lymphoma. Cancer Epidemiol
Biomarkers Prev. 16:385–391. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lagorio S, Ferrante D, Ranucci A, Negri S,
Sacco P, Rondelli R, Cannizzaro S, Torregrossa MV, Cocco P,
Forastiere F, et al: Exposure to benzene and childhood leukaemia: A
pilot case-control study. BMJ Open. 3:e0022752013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Snyder R: Leukemia and benzene. Int J
Environ Res Public Health. 9:2875–2893. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Glass DC, Gray CN, Jolley DJ, Gibbons C,
Sim MR, Fritschi L, Adams GG, Bisby JA and Manuell R: Leukemia risk
associated with low-level benzene exposure. Epidemiology.
14:569–577. 2003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Khalade A, Jaakkola MS, Pukkala E and
Jaakkola JJ: Exposure to benzene at work and the risk of leukemia:
A systematic review and meta-analysis. Environ Health. 9:312010.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Smith MT: Advances in understanding
benzene health effects and susceptibility. Annu Rev Public Health.
31:133–148. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hatzi VI, Terzoudi GI, Pantelias GE,
Spiliopoulou C and Makropoulos V: The benzene metabolite
hydroquinone enhances G2-chromosomal radiosensitivity by inducing a
less-efficient G2-M-checkpoint in irradiated lymphocytes. Int J
Oncol. 31:145–152. 2007.PubMed/NCBI
|
16
|
Melikian AA, Chen KM, Li H, Sodum R, Fiala
E and El-Bayoumy K: The role of nitric oxide on DNA damage induced
by benzene metabolites. Oncol Rep. 19:1331–1337. 2008.PubMed/NCBI
|
17
|
Snyder R and Hedli CC: An overview of
benzene metabolism. Environ Health Perspect. 104(Suppl 6):
S1165–S1171. 1996. View Article : Google Scholar
|
18
|
Irons RD, Dent JG, Baker TS and Rickert
DE: Benzene is metabolized and covalently bound in bone marrow in
situ. Chem Biol Interact. 30:241–245. 1980. View Article : Google Scholar : PubMed/NCBI
|
19
|
Subrahmanyam VV, Kolachana P and Smith MT:
Hydroxylation of phenol to hydroquinone catalyzed by a human
myeloperoxidase-superoxide complex: possible implications in
benzene-induced myelotoxicity. Free Radic Res Commun. 15:285–296.
1991. View Article : Google Scholar : PubMed/NCBI
|
20
|
Subrahmanyam VV, Ross D, Eastmond DA and
Smith MT: Potential role of free radicals in benzene-induced
myelo-toxicity and leukemia. Free Radic Biol Med. 11:495–515. 1991.
View Article : Google Scholar
|
21
|
Snyder R, Witz G and Goldstein BD: The
toxicology of benzene. Environ Health Perspect. 100:293–306. 1993.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Costa C, Pupo C, Viscomi G, Catania S,
Salemi M and Imperatore C: Modifications in the metabolic pathways
of benzene in streptozotocin-induced diabetic rat. Arch Toxicol.
73:301–306. 1999. View Article : Google Scholar : PubMed/NCBI
|
23
|
McHale CM, Zhang L and Smith MT: Current
understanding of the mechanism of benzene-induced leukemia in
humans: implications for risk assessment. Carcinogenesis.
33:240–252. 2012. View Article : Google Scholar :
|
24
|
Badham HJ and Winn LM: In utero and in
vitro effects of benzene and its metabolites on erythroid
differentiation and the role of reactive oxygen species. Toxicol
Appl Pharmacol. 244:273–279. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bogadi-Sare A, Zavalic M, Trosić I, Turk
R, Kontosić I and Jelcić I: Study of some immunological parameters
in workers occupationally exposed to benzene. Int Arch Occup
Environ Health. 73:397–400. 2000. View Article : Google Scholar : PubMed/NCBI
|
26
|
Bahadar H, Mostafalou S and Abdollahi M:
Current understandings and perspectives on non-cancer health
effects of benzene: A global concern. Toxicol Appl Pharmacol.
276:83–94. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Reutman SR, LeMasters GK, Knecht EA,
Shukla R, Lockey JE, Burroughs GE and Kesner JS: Evidence of
reproductive endocrine effects in women with occupational fuel and
solvent exposures. Environ Health Perspect. 110:805–811. 2002.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Stein RA: Epigenetics and environmental
exposures. J Epidemiol Community Health. 66:8–13. 2012. View Article : Google Scholar
|
29
|
Christensen BC and Marsit CJ: Epigenomics
in environmental health. Front Genet. 2:842011. View Article : Google Scholar
|
30
|
Hou L, Zhang X, Wang D and Baccarelli A:
Environmental chemical exposures and human epigenetics. Int J
Epidemiol. 41:79–105. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Baccarelli A and Bollati V: Epigenetics
and environmental chemicals. Curr Opin Pediatr. 21:243–251. 2009.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Kim M, Bae M, Na H and Yang M:
Environmental toxicants-induced epigenetic alterations and their
reversers. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev.
30:323–367. 2012. View Article : Google Scholar
|
33
|
Anway MD and Skinner MK: Epigenetic
transgenerational actions of endocrine disruptors. Endocrinology.
147(Suppl 6): S43–S49. 2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Dolinoy DC and Jirtle RL: Environmental
epigenomics in human health and disease. Environ Mol Mutagen.
49:4–8. 2008. View
Article : Google Scholar : PubMed/NCBI
|
35
|
Chen QW, Zhu XY, Li YY and Meng ZQ:
Epigenetic regulation and cancer (review). Oncol Rep. 31:523–532.
2014.
|
36
|
Kanherkar RR, Bhatia-Dey N and Csoka AB:
Epigenetics across the human lifespan. Front Cell Dev Biol.
2:492014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kouzarides T: Chromatin modifications and
their function. Cell. 128:693–705. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Hou L, Wang D and Baccarelli A:
Environmental chemicals and microRNAs. Mutat Res. 714:105–112.
2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kitade Y and Akao Y: MicroRNAs and their
therapeutic potential for human diseases: Micrornas, miR-143 and
-145, function as anti-oncomirs and the application of chemically
modified miR-143 as an anti-cancer drug. J Pharmacol Sci.
114:276–280. 2010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhang Y, Wang Z and Gemeinhart RA:
Progress in microRNA delivery. J Control Release. 172:962–974.
2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bollati V, Baccarelli A, Hou L, Bonzini M,
Fustinoni S, Cavallo D, Byun HM, Jiang J, Marinelli B, Pesatori AC,
et al: Changes in DNA methylation patterns in subjects exposed to
low-dose benzene. Cancer Res. 67:876–880. 2007. View Article : Google Scholar : PubMed/NCBI
|
42
|
Bollati V, Baccarelli A, Hou L, Bonzini M,
Fustinoni S, Cavallo D, Byun HM, Jiang J, Marinelli B, Pesatori AC,
et al: Changes in DNA methylation patterns in subjects exposed to
low-dose benzene. Cancer Res. 67:876–880. 2007. View Article : Google Scholar : PubMed/NCBI
|
43
|
Fustinoni S, Bollati V and Bertazzi PA:
Epigenic modifications associated with low benzene exposure. G Ital
Med Lav Ergon. 35:263–267. 2013.In Italian. PubMed/NCBI
|
44
|
Zhang L, McHale CM, Rothman N, Li G, Ji Z,
Vermeulen R, Hubbard AE, Ren X, Shen M, Rappaport SM, et al:
Systems biology of human benzene exposure. Chem Biol Interact.
184:86–93. 2010. View Article : Google Scholar :
|
45
|
Xing C, Wang QF, Li B, Tian H, Ni Y, Yin S
and Li G: Methylation and expression analysis of tumor suppressor
genes p15 and p16 in benzene poisoning. Chem Biol Interact.
184:306–309. 2010. View Article : Google Scholar : PubMed/NCBI
|
46
|
Hu J, Ma H, Zhang W, Yu Z, Sheng G and Fu
J: Effects of benzene and its metabolites on global DNA methylation
in human normal hepatic L02 cells. Environ Toxicol. 29:108–116.
2014. View Article : Google Scholar
|
47
|
Yang J, Bai W, Niu P, Tian L and Gao A:
Aberrant hypo-methylated STAT3 was identified as a biomarker of
chronic benzene poisoning through integrating DNA methylation and
mRNA expression data. Exp Mol Pathol. 96:346–353. 2014. View Article : Google Scholar : PubMed/NCBI
|
48
|
Williams KE, Carver TA, Miranda JJ,
Kautiainen A, Vogel JS, Dingley K, Baldwin MA, Turteltaub KW and
Burlingame AL: Attomole detection of in vivo protein targets of
benzene in mice: Evidence for a highly reactive metabolite. Mol
Cell Proteomics. 1:885–895. 2002. View Article : Google Scholar : PubMed/NCBI
|
49
|
Liu Y, Zhang H, Chen X, Cao J, Zhong L,
Ding L, Liu J and Zhu B: Screening and analysis of plasma microRNA
profile in benzene exposed workers. Zhonghua Lao Dong Wei Sheng Zhi
Ye Bing ZaZhi. 32:511–515. 2014.In Chinese.
|
50
|
Bai W, Chen Y, Yang J, Niu P, Tian L and
Gao A: Aberrant miRNA profiles associated with chronic benzene
poisoning. Exp Mol Pathol. 96:426–430. 2014. View Article : Google Scholar : PubMed/NCBI
|
51
|
Wang F, Li C, Liu W and Jin Y: Modulation
of microRNA expression by volatile organic compounds in mouse lung.
Environ Toxicol. 29:679–689. 2014. View Article : Google Scholar : PubMed/NCBI
|
52
|
Herberth G, Bauer M, Gasch M, Hinz D,
Röder S, Olek S, Kohajda T, Rolle-Kampczyk U, von Bergen M, Sack U,
et al: Maternal and cord blood miR-223 expression associates with
prenatal tobacco smoke exposure and low regulatory T-cell numbers.
J Allergy Clin Immunol. 133:543–550. 2014. View Article : Google Scholar
|