|
1
|
Conti M and Beavo J: Biochemistry and
physiology of cyclic nucleotide phosphodiesterases: essential
components in cyclic nucleotide signaling. Annu Rev Biochem.
76:481–511. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Brown KM, Lee LC, Findlay JE, Day JP and
Baillie GS: Cyclic AMP-specific phosphodiesterase, PDE8A1, is
activated by protein kinase A-mediated phosphorylation. FEBS Lett.
586:1631–1637. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Diaz-Muñoz MD, Osma-García IC, Fresno M
and Iñiguez MA: Involvement of PGE2 and the cAMP signalling pathway
in the up-regulation of COX-2 and mPGES-1 expression in
LPS-activated macrophages. Biochem J. 443:451–461. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Jhala US, Canettieri G, Screaton RA,
Kulkarni RN, Krajewski S, Reed J, Walker J, Lin X, White M and
Montminy M: cAMP promotes pancreatic beta-cell survival via
CREB-mediated induction of IRS2. Genes Dev. 17:1575–1580. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Beshay E, Croze F and Prud'homme GJ: The
phosphodiesterase inhibitors pentoxifylline and rolipram suppress
macrophage activation and nitric oxide production in vitro and in
vivo. Clin Immunol. 98:272–279. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Park PH, Huang H, McMullen MR, Bryan K and
Nagy LE: Activation of cyclic-AMP response element binding protein
contributes to adiponectin-stimulated interleukin-10 expression in
RAW 264.7 macrophages. J Leukoc Biol. 83:1258–1266. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Chang SY, Kim DB, Ryu GR, Ko SH, Jeong IK,
Ahn YB, Jo YH and Kim MJ: Exendin-4 inhibits iNOS expression at the
protein level in LPS-stimulated Raw264.7 macrophage by the
activation of cAMP/PKA pathway. J Cell Biochem. 114:844–853. 2013.
View Article : Google Scholar
|
|
8
|
Rosethorne EM, Nahorski SR and Challiss
RA: Regulation of cyclic AMP response-element binding-protein
(CREB) by Gq/11-protein-coupled receptors in human SH-SY5Y
neuro-blastoma cells. Biochem Pharmacol. 75:942–955. 2008.
View Article : Google Scholar :
|
|
9
|
Burdyga A, Conant A, Haynes L, Zhang J,
Jalink K, Sutton R, Neoptolemos J, Costello E and Tepikin A: cAMP
inhibits migration, ruffling and paxillin accumulation in focal
adhesions of pancreatic ductal adenocarcinoma cells: Effects of PKA
and EPAC. Biochim Biophys Acta. 1833.2664–2672. 2013.
|
|
10
|
Menniti FS, Faraci WS and Schmidt CJ:
Phosphodiesterases in the CNS: Targets for drug development. Nat
Rev Drug Discov. 5:660–670. 2006. View
Article : Google Scholar : PubMed/NCBI
|
|
11
|
Jang IS, Kang UG, Kim YS, Ahn YM, Park JB
and Juhnn YS: Isoform-specific changes of adenylate cyclase mRNA
expression in rat brains following chronic electroconvulsive shock.
Prog Neuropsychopharmacol Biol Psychiatry. 25:1571–1581. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Gloerich M and Bos JL: Epac: Defining a
new mechanism for cAMP action. Annu Rev Pharmacol Toxicol.
50:355–375. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Nakajima T, Uchida C, Anderson SF, Parvin
JD and Montminy M: Analysis of a cAMP-responsive activator reveals
a two-component mechanism for transcriptional induction via
signal-dependent factors. Genes Dev. 11:738–747. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Maurice DH, Palmer D, Tilley DG, Dunkerley
HA, Netherton SJ, Raymond DR, Elbatarny HS and Jimmo SL: Cyclic
nucleotide phosphodiesterase activity, expression and targeting in
cells of the cardiovascular system. Mol Pharmacol. 64:533–546.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
McLean JH, Smith A, Rogers S, Clarke K,
Darby-King A and Harley CW: A phosphodiesterase inhibitor,
cilomilast, enhances cAMP activity to restore conditioned odor
preference memory after serotonergic depletion in the neonate rat.
Neurobiol Learn Mem. 92:63–69. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Jackson EK and Dubey RK: Role of the
extracellular cAMP-adenosine pathway in renal physiology. Am J
Physiol Renal Physiol. 281:F597–F612. 2001.PubMed/NCBI
|
|
17
|
Seino S and Shibasaki T: PKA-dependent and
PKA-independent pathways for cAMP-regulated exocytosis. Physiol
Rev. 85:1303–1342. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Richards JS: New Signaling pathways for
hormones and cyclic adenosine 3′,5′-monophosphate action in
endocrine cells. Mol Endocrinol. 15:209–218. 2001.PubMed/NCBI
|
|
19
|
Guseva D, Wirth A and Ponimaskin E:
Cellular mechanisms of the 5-HT7 receptor-mediated signaling. Front
Behav Neurosci. 8:3062014. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Patterson SL, Abel T, Deuel TA, Martin KC,
Rose JC and Kandel ER: Recombinant BDNF rescues deficits in basal
synaptic transmission and hippocampal LTP in BDNF knockout mice.
Neuron. 16:1137–1145. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Metz R and Ziff E: cAMP stimulates the
C/EBP-related transcription factor rNFIL-6 to translocate to the
nucleus and induce c-fos transcription. Genes Dev. 5:1754–1766.
1991. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Barad M, Bourtchouladze R, Winder DG,
Golan H and Kandel E: Rolipram, a type IV-specific
phosphodiesterase inhibitor, facilitates the establishment of
long-lasting long-term potentiation and improves memory. Proc Natl
Acad Sci USA. 95:15020–15025. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Chen CC, Chiu KT, Sun YT and Chen WC: Role
of the cyclic AMP-protein kinase a pathway in
lipopolysaccharide-induced nitric oxide synthase expression in RAW
264.7 macrophages. J Biol Chem. 274:31559–331564. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Moon EY, Lee JH, Lee JW, Song JH and Pyo
S: ROS/Epac1-mediated Rap1/NF-kappaB activation is required for the
expression of BAFF in Raw264.7 murine macrophages. Cell Signal.
23:1479–1488. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
DiPilato LM, Cheng X and Zhang J:
Fluorescent indicators of cAMP and Epac activation reveal
differential dynamics of cAMP signaling within discrete subcellular
compartments. Proc Natl Acad Sci USA. 101:16513–16518. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Avni D, Ernst O, Philosoph A and Zor T:
Role of CREB in modulation of TNFalpha and IL-10 expression in
LPS-stimulated RAW264.7 macrophages. Mol Immunol. 47:1396–1403.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Horton JK and Baxendale PM: Mass
measurements of cyclic AMP formation by radioimmunoassay, enzyme
immunoassay and scintillation proximity assay. Methods Mol Biol.
41:91–105. 1995.
|
|
28
|
Costanzo V, Robertson K, Ying CY, Kim E,
Avvedimento E, Gottesman M, Grieco D and Gautier J: Reconstitution
of an ATM-dependent checkpoint that inhibits chromosomal DNA
replication following DNA damage. Mol Cell. 6:649–659. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Costanzo V, Avvedimento EV, Gottesman ME,
Gautier J and Grieco D: Protein kinase A is required for
chromosomal DNA replication. Curr Biol. 9:903–906. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Smith A, Ward MP and Garrett S: Yeast PKA
represses Msn2p/Msn4p-dependent gene expression to regulate growth,
stress response and glycogen accumulation. EMBO J. 17:3556–3564.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Liu F, Verin AD, Borbiev T and Garcia JG:
Role of cAMP-dependent protein kinase A activity in endothelial
cell cytoskeleton rearrangement. Am J Physiol Lung Cell Mol
Physiol. 280:L1309–L1317. 2001.PubMed/NCBI
|
|
32
|
Gerits N, Mikalsen T, Kostenko S, Shiryaev
A, Johannessen M and Moens U: Modulation of F-actin rearrangement
by the cyclic AMP/cAMP-dependent protein kinase (PKA) pathway is
mediated by MAPK-activated protein kinase 5 and requires
PKA-induced nuclear export of MK5. J Biol Chem. 282:37232–37243.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Yang W, LV X, Yu S, Guan W, Di D, Wang H
and Li J: Effect of cAMP-PKA-CREB signal pathway in the model of
alcoholic hepatic fibrosis stellate cells isolated from rats. Anhui
Med Pharm J. 16:729–731. 2012.
|
|
34
|
Bruce JI, Shuttleworth TJ, Giovannucci DR
and Yule DI: Phosphorylation of inositol 1, 4,5-trisphosphate
receptors in parotid acinar cells. A mechanism for the synergistic
effects of cAMP on Ca2+ signaling. J Biol Chem. 277:1340–1348.
2002. View Article : Google Scholar
|
|
35
|
Grønborg M, Kristiansen TZ, Stensballe A,
Andersen JS, Ohara O, Mann M, Jensen ON and Pandey A: A mass
spectrometry-based proteomic approach for identification of
serine/threonine-phosphorylated proteins by enrichment with
phospho-specific antibodies: Identification of a novel protein,
Frigg, as a protein kinase a substrate. Mol Cell Proteomics.
1:517–527. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Schmitt A and Nebreda AR: Inhibition of
Xenopus oocyte meiotic maturation by catalytically inactive protein
kinase A. Proc Natl Acad Sci USA. 99:4361–4366. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Lei H, Venkatakrishnan A, Yu S and
Kazlauskas A: Protein kinase A-dependent translocation of Hsp90
alpha impairs endothelial nitric-oxide synthase activity in high
glucose and diabetes. J Biol Chem. 282:9364–9371. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Goueli BS, Hsiao K and Goueli ASA: A novel
and simple method to assay the activity of individual protein
kinases in a crude tissue extract. Methods Mol Med. 39:633–644.
2001.PubMed/NCBI
|
|
39
|
Fujikawa H, Kanno T, Nagata T and
Nishizaki T: The phosphodiesterase III inhibitor olprinone inhibits
hippocampal glutamate release via a cGMP/PKG pathway. Neurosci
Lett. 448:208–211. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kanno T, Yamamoto H, Yaguchi T, Hi R,
Mukasa T, Fujikawa H, Nagata T, Yamamoto S, Tanaka A and Nishizaki
T: The linoleic acid derivative DCP-LA selectively activates
PKC-epsilon, possibly binding to the phosphatidylserine binding
site. J Lipid Res. 47:1146–1156. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Brindlet P, Nakajima T and Montminy M:
Multiple protein kinase A-regulated events are required for
transcriptional induction by cAMP (cAMP response element-binding
protein). Proc Natl Acad Sci USA. 92:10521–10525. 1995. View Article : Google Scholar
|
|
42
|
Shih HM, Goldman PS, DeMaggio AJ,
Hollenberg SM, Goodman RH and Hoekstra MF: A positive genetic
selection for disrupting protein-protein interactions:
Identification of CREB mutations that prevent association with the
coactivator CBP. Proc Natl Acad Sci USA. 93:13896–13901. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Ferreri K, Gillt G and Montminy M: The
cAMP-regulated transcription factor CREB interacts with a component
of the TFIID complex (glutamine-rich activator/TATA binding
protein-associated factor dTAF11O). Proc Natl Acad Sci USA.
91:1210–1213. 1994. View Article : Google Scholar
|
|
44
|
Ginty DD: Calcium regulation of gene
expression: Isn't that spatial? Neuron. 18:183–186. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Parker D, Ferreri K, Nakajima T, LaMorte
VJ, Evans R, Koerber SC, Hoeger C and Montminy MR: Phosphorylation
of CREB at Ser-133 induces complex formation with CREB-binding
protein via a direct mechanism. Mol Cell Biol. 16:694–703. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Silva AJ, Kogan JH, Frankland PW and Kida
S: CREB and memory. Neurosci. 21:127–148. 1998.
|
|
47
|
Riccio A, Alvania RS, Lonze BE, Ramanan N,
Kim T, Huang Y, Dawson TM, Snyder SH and Ginty DD: A nitric oxide
signaling pathway controls CREB-mediated gene expression in
neurons. Mol Cell. 21:283–294. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Moon EY, Lee YS, Choi WS and Lee MH:
Toll-like receptor 4-mediated cAMP production up-regulates B-cell
activating factor expression in Raw264.7 macrophages. Exp Cell Res.
317:2447–2455. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Deng H, Zhang N, Wang Y, Chen J, Shen J,
Wang Z, Xu R, Zhang J, Song D and Li D: S632A3, a new glutarimide
antibiotic, suppresses lipopolysaccharide-induced pro-inflammatory
responses via inhibiting the activation of glycogen synthase kinase
3β. Exp Cell Res. 318:2592–2603. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Wang QS, Tian JS, Cui YL and Gao S:
Genipin is active via modulating monoaminergic transmission and
levels of brain-derived neurotrophic factor (BDNF) in rat model of
depression. Neuroscience. 275:365–373. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Xu G, Tu W and Qin AS: The relationship
between deiodinase activity and inflammatory responses under the
stimulation of uremic toxins. J Transl Med. 12:2392014. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Fang JQ, Jun JF, Liang Y and Du JY:
Electroacupuncture mediates extracellular signalregulated kinase
1/2 pathways in the spinal cord of rats with inflammatory pain. BMC
Complement Altern Med. 14:2852014. View Article : Google Scholar
|
|
53
|
Guan CX, Cui YR, Sun GY, Yu F, Tang CY, Li
YC, Liu HJ and Fang X: Role of CREB in vasoactive intestinal
peptide-mediated wound healing in human bronchial epithelial cells.
Regul Pept. 153:64–69. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Yang Y, Yu T, Lee YG, Yang WS, Oh J, Jeong
D, Lee S, Kim TW, Park YC, Sung GH and Cho JY: Methanol extract of
Hopea odorata suppresses inflammatory responses via the direct
inhibition of multiple kinases. J Ethnopharmacol. 145:598–607.
2013. View Article : Google Scholar
|
|
55
|
Carey MF, Peterson CL and Smale ST:
Chromatin immunoprecipitation (ChIP). Cold Spring Harb Protoc.
2009.pdb prot52792009.
|
|
56
|
Andreeva SG, Dikkes P, Epstein PM and
Rosenberg PA: Expression of cGMP-Specific Phosphodiesterase 9A mRNA
in the rat brain. J Neurosci. 21:9068–9076. 2001.PubMed/NCBI
|
|
57
|
Lugnier C: Cyclic nucleotide
phosphodiesterase (PDE) superfamily: A new target for the
development of specific therapeutic agents. Pharmacol Ther.
109:366–398. 2006. View Article : Google Scholar
|
|
58
|
Nanda K, Chatterjee M, Arya R, Mukherjee
S, Saini KS, Dastidar S and Ray A: Optimization and validation of a
reporter gene assay for screening of phosphodiesterase inhibitors
in a high throughput system. Biotechnol J. 3:1276–1279. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Page CP and Spina D: Selective PDE
inhibitors as novel treatments for respiratory diseases. Curr Opin
Pharmacol. 12:275–286. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Pinner NA, Hamilton LA and Hughes A:
Roflumilast: A phosphodiesterase-4 inhibitor for the treatment of
severe chronic obstructive pulmonary disease. Clin Ther. 34:56–66.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Spina D: PDE4 inhibitors: Current status.
Br J Pharmacol. 155:308–315. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Lehnart SE, Wehrens XH, Reiken S, Warrier
S, Belevych AE, Harvey RD, Richter W, Jin SL, Conti M and Marks AR:
Phosphodiesterase 4D deficiency in the ryanodine-receptor complex
promotes heart failure and arrhythmias. Cell. 123:25–35. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Peter D, Jin SL, Conti M, Hatzelmann A and
Zitt C: Differential expression and function of phosphodiesterase 4
(PDE4) subtypes in human primary CD4+ T cells: Predominant role of
PDE4D. J Immunol. 178:4820–4831. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Takahashi M, Terwilliger R, Lane C, Mezes
PS, Conti M and Duman RS: Chronic antidepressant administration
increases the expression of cAMP-specific phosphodiesterase 4A and
4B isoforms. J Neurosci. 19:610–618. 1999.PubMed/NCBI
|
|
65
|
Jin L, Hill KK, Filak H, Mogan J, Knowles
H, Zhang B, Perraud AL, Cambier JC and Lenz LL: MPYS is required
for IFN response factor 3 activation and type I IFN production in
the response of cultured phagocytes to bacterial second messengers
cyclic-di-AMP and cyclic-di-GMP. J Immunol. 187:2595–2601. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Liu X, Guo H, Sayed MD, Lu Y, Yang T, Zhou
D, Chen Z, Wang H, Wang C and Xu J: cAMP/PKA/CREB/GLT1 signaling
involved in the antidepressant-like effects of phosphodiesterase 4D
inhibitor (GEBR-7b) in rats. Neuropsychiatr Dis Treat. 12:219–227.
2016.PubMed/NCBI
|
|
67
|
Kono Y and Hülsmann S: Presynaptic
facilitation of glycinergic mIPSC is reduced in mice lacking α3
glycine receptor subunits. Neuroscience. 320:1–7. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ramakrishnan SK, Zhang H, Takahashi S,
Centofanti B, Periyasamy S, Weisz K, Chen Z, Uhler MD, Rui L,
Gonzalez FJ and Shah YM: HIF2α Is an Essential Molecular Brake for
Postprandial Hepatic Glucagon Response Independent of Insulin
Signaling. Cell Metab. Feb 3–2016.Epub ahead of print. View Article : Google Scholar
|
|
69
|
Pal S, Khan K, China SP, Mittal M,
Shrivastava R, Taneja I, Hossain Z, Mandalapu D, Gayen JR, et al:
Theophylline, a methylxanthine drug induces osteopenia and alters
calciotropic hormones, and prophylactic vitamin D treatment
protects against these changes in rats. Toxicol Appl Pharmacol. Feb
3–2016.Epub ahead of print. View Article : Google Scholar
|
|
70
|
Bobin P, Varin A, Lefebvre F, Fischmeister
R, Vandecasteele G and Leroy J: Calmodulin kinase II inhibition
limits the pro-arrhythmic Ca2+ waves induced by
cAMP-phosphodiesterase inhibitors. Cardiovasc Res. Feb 4–2016.Epub
ahead of print. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Osawa Y, Lee HT, Hirshman CA, Xu D and
Emala CW: Lipopolysaccharide-induced sensitization of adenylyl
cyclase activity in murine macrophages. Am J Physiol Cell Physiol.
290:C143–C151. 2006. View Article : Google Scholar
|
|
72
|
Kobayashi Y, Mizoguchi T, Take I, Kurihara
S, Udagawa N and Takahashi N: Prostaglandin E2 enhances
osteoclastic differentiation of precursor cells through protein
kinase A-dependent phosphorylation of TAK1. J Biol Chem.
280:11395–11403. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Malbon CC and Graziano MP: Adenosine
deaminase normalizes cyclic AMP responses of hypothyroid rat fat
cells to forskolin, but not beta-adrenergic agonists. FEBS Lett.
155:35–38. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Jeon SH, Chae BC, Kim HA, Seo GY, Seo DW,
Chun GT, Yie SW, Eom SH and Kim PH: The PKA/CREB Pathway is closely
involved in VEGF expression in mouse macrophages. Mol Cells.
23:23–29. 2007.PubMed/NCBI
|
|
75
|
Burgos-Ramos E, Hervás-Aguilar A,
Puebla-Jiménez L, Boyano-Adánez MC and Arilla-Ferreiro E: Chronic
but not acute intracerebroventricular administration of amyloid
beta-peptide 25–35 decreases somatostatin content, adenylate
cyclase activity, somatostatin-induced inhibition of adenylate
cyclase activity and adenylate cyclase I levels in the rat
hippocampus. J Neurosci Res. 85:433–442. 2007. View Article : Google Scholar
|
|
76
|
Tajima T, Murata T, Aritake K, Urade Y,
Michishita M, Matsuoka T, Narumiya S, Ozaki H and Hori M: EP2 and
EP4 receptors on muscularis resident macrophages mediate
LPS-induced intestinal dysmotility via iNOS upregulation through
cAMP/ERK signals. Am J Physiol Gastrointest Liver Physiol.
302:G524–G534. 2012. View Article : Google Scholar :
|
|
77
|
Okado-Matsumoto A, Matsumoto A, Fujii J
and Taniguchi N: Effect of cAMP on inducible nitric oxide synthase
gene expression: Its dual and cell-specific functions. Antioxid
Redox Signal. 2:631–642. 2000. View Article : Google Scholar
|
|
78
|
Mukhopadhyay S, Das S, Williams EA, Moore
D, Jones JD, Zahm DS, Ndengele MM, Lechner AJ and Howlett AC:
Lipopolysaccharide and cyclic AMP regulation of CB(2) cannabinoid
receptor levels in rat brain and mouse RAW 264.7 macrophages. J
Neuroimmunol. 181:82–92. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Goldsmith M, Avni D, Ernst O, Glucksam Y,
Levy-Rimler G, Meijler MM and Zor T: Synergistic IL-10 induction by
LPS and the ceramide-1-phosphate analog PCERA-1 is mediated by the
cAMP and p38 MAP kinase pathways. Mol Immunol. 46:1979–1987. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Cho IJ, Woo NR, Shin IC and Kim SG: H89,
an inhibitor of PKA and MSK, inhibits cyclic-AMP response element
binding protein-mediated MAPK phosphatase-1 induction by
lipopolysaccharide. Inflamm Res. 58:863–872. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ma J, Chen M, Xia SK, Shu W, Guo Y, Wang
YH, Xu Y, Bai XM, Zhang L, Zhang H, et al: Prostaglandin E2
promotes liver cancer cell growth by the upregulation of
FUSE-binding protein 1 expression. Int J Oncol. 42:1093–1104.
2013.PubMed/NCBI
|
|
82
|
Kotomi F, Kotera J, Michibata H, Yuasa K,
Takebayashi S, Okumura K and Omori K: Cloning and Characterization
of a novel human phosphodiesterase that hydrolyzes both cAMP and
cGMP (PDE10A). J Biol Chem. 274:18438–18445. 1999. View Article : Google Scholar
|
|
83
|
Wheeler MA, Ayyagari RR, Wheeler GL and
Weiss RM: Regulation of cyclic nucleotides in the urinary tract. J
Smooth Muscle Res. 41:1–21. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Lerner A and Epstein PM: Cyclic nucleotide
phosphodiesterases as targets for treatment of haematological
malignancies. Biochem J. 393:21–41. 2006. View Article : Google Scholar :
|
|
85
|
Dousa TP: Cyclic-3′,5′-nucleotide
phosphodiesterase isozymes in cell biology and pathophysiology of
the kidney. Kidney Int. 55:29–62. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Lipworth BJ: Phosphodiesterase-4
inhibitors for asthma and chronic obstructive pulmonary disease.
Lancet. 365:167–175. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Dastidar SG, Rajagopal D and Ray A:
Therapeutic benefit of PDE4 inhibitors in inflammatory diseases.
Curr Opin Investig Drugs. 8:364–372. 2007.PubMed/NCBI
|
|
88
|
Bielekova B, Lincoln A, McFarland H and
Martin R: Therapeutic potential of phosphodiesterase-4 and-3
inhibitors in Th1-mediated autoimmune diseases. J Immunol.
164:1117–1124. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Avni D, Philosoph A, Meijler MM and Zor T:
The ceramide-1-phosphate analogue PCERA-1 modulates tumour necrosis
factor-alpha and interleukin-10 production in macrophages via the
cAMP-PKA-CREB pathway in a GTP-dependent manner. Immunology.
129:375–385. 2010. View Article : Google Scholar :
|
|
90
|
Sosroseno W, Musa M, Ravichandran M, Fikri
Ibrahim M, Bird PS and Seymour GJ: The role of cyclic-AMP on
arginase activity by a murine macrophage cell line (RAW264.7)
stimulated with lipopolysaccharide from Actinobacillus
actinomycetemcomitans. Oral Microbiol Immunol. 21:347–352. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Navakkode S, Sajikumar S and Frey JU:
Mitogen-activated protein kinase-mediated reinforcement of
hippocampal early long-term depression by the type IV-specific
phosphodies-terase inhibitor rolipram and its effect on synaptic
tagging. J Neurosci. 25:10664–10670. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Chi ZL, Hayasaka S, Zhang XY, Hayasaka Y
and Cui HS: Effects of rolipram, a selective inhibitor of type 4
phosphodiesterase, on lipopolysaccharide-induced uveitis in rats.
Invest Ophthalmol Vis Sci. 45:2497–2502. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Yoshimura K, Hiramatsu Y and Murakami M:
Cyclic AMP potentiates substance P-induced amylase secretion by
augmenting the effect of calcium in the rat parotid acinar cells.
Biochim Biophys Acta. 1402:171–187. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Gobejishvili L, Avila DV, Barker DF, Ghare
S, Henderson D, Brock GN, Kirpich IA, Joshi-Barve S, Mokshagundam
SP, McClain CJ and Barve S: S-adenosylmethionine decreases
lipopolysaccharide-induced phosphodiesterase 4B2 and attenuates
tumor necrosis factor expression via cAMP/protein kinase A pathway.
J Pharmacol Exp Ther. 337:433–443. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Liou SF, Hsu JH, Lin IL, Ho ML, Hsu PC,
Chen LW, Chen IJ and Yeh JL: KMUP-1 suppresses RANKL-induced
osteoclastogenesis and prevents ovariectomy-induced bone loss:
Roles of MAPKs, Akt, NF-kB and calcium/calcineurin/NFATc1 pathways.
PLoS One. 8:e694682013. View Article : Google Scholar
|
|
96
|
Hamblin JN, Angell TD, Ballantine SP, Cook
CM, Cooper AW, Dawson J, Delves CJ, Jones PS, Lindvall M, Lucas FS,
et al: Pyrazolopyridines as a novel structural class of potent and
selective PDE4 inhibitors. Bioorg Med Chem Lett. 18:4237–4241.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Park WS, Jung WK, Lee DY, Moon C, Yea SS,
Park SG, Seo SK, Park C, Choi YH, Kim GY, et al: Cilostazol
protects mice against endotoxin shock and attenuates LPS-induced
cytokine expression in RAW 264.7 macrophages via MAPK inhibition
and NF-kappaB inactivation: Not involved in cAMP mechanisms. Int
Immunopharmacol. 10:1077–1085. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Dong H, Osmanova V, Epstein PM and Brocke
S: Phosphodiesterase 8 (PDE8) regulates chemotaxis of activated
lymphocytes. Biochem Biophys Res Commun. 345:713–719. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Wunder F, Stasch JP, Hütter J,
Alonso-Alija C, Hüser J and Lohrmann E: A cell-based cGMP assay
useful for ultra-high-throughput screening and identification of
modulators of the nitric oxide/cGMP pathway. Anal Biochem.
339:104–112. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Lallemend F, Lefebvre PP, Hans G, Rigo JM,
Van de Water TR, Moonen G and Malgrange B: Substance P protects
spiral ganglion neurons from apoptosis via
PKC-Ca2+-MAPK/ERK pathways. J Neurochem. 87:508–521.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Gilmore TD: Introduction to NF-kappaB:
Players, pathways, perspectives. Oncogene. 25:6680–6684. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Denninger JW and Marletta MA: Guanylate
cyclase and the. NO/cGMP signaling pathway. Biochim Biophys Acta.
1411:334–350. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Edgar VA, Cremaschi GA, Sterin-Borda L and
Genaro AM: Altered expression of autonomic neurotransmitter
receptors and proliferative responses in lymphocytes from a chronic
mild stress model of depression: Effects of fluoxetine. Brain Behav
Immun. 16:333–350. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Reierson GW, Mastronardi CA, Licinio J and
Wong ML: Repeated antidepressant therapy increases cyclic GMP
signaling in rat hippocampus. Neurosci Lett. 466:149–153. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Lee AK, Sung SH, Kim YC and Kim SG:
Inhibition of lipopolysaccharide-inducible nitric oxide synthase,
TNF-alpha and COX-2 expression by sauchinone effects on
I-kappaBalpha phosphorylation, C/EBP and AP-1 activation. Br J
Pharmacol. 139:11–20. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Zandi E, Rothwarf DM, Delhase M, Hayakawa
M and Karin M: The IkB kinase complex (IKK) contains two kinase
subunits, IKKalpha and IKKbeta, Necessary for IkappaB
Phosphorylation and NF-kappaB activation. Cell. 91:243–252. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Chen BC, Liao CC, Hsu MJ, Liao YT, Lin CC,
Sheu JR and Lin CH: Peptidoglycan-induced IL-6 production in RAW
264.7 macrophages is mediated by cyclooxygenase-2, PGE2/PGE4
receptors, protein kinase A, I kappa B Kinase and NF-kappa B. J
Immunol. 177:681–693. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Ollivier V, Parry GC, Cobb RR, de Prost D
and Mackman N: Elevated cyclic AMP inhibits NF-kappaB-mediated
transcription in human monocytic cells and endothelial cells. J
Biol Chem. 271:20828–20835. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Hofer AM and Lefkimmiatis K: Extracellular
calcium and cAMP: Second messengers as 'third messengers'?
Physiology (Bethesda). 22:320–327. 2007. View Article : Google Scholar
|
|
110
|
Bhalla US and Iyengar R: Emergent
properties of networks of biological signaling pathways. Science.
283:381–387. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Landa LR Jr, Harbeck M, Kaihara K,
Chepurny O, Kitiphongspattana K, Graf O, Nikolaev VO, Lohse MJ,
Holz GG and Roe MW: Interplay of Ca2+ and cAMP signaling in the
insulin-secreting MIN6 beta-cell line. J Biol Chem.
280:31294–31302. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Moore TM, Chetham PM, Kelly JJ and Stevens
T: Signal transduction and regulation of lung endothelial cell
permeability. Interaction between calcium and cAMP. Am J Physiol.
275:L203–L222. 1998.PubMed/NCBI
|
|
113
|
Henley JR, Huang KH, Wang D and Poo MM:
Calcium mediates bidirectional growth cone turning induced by
myelin-associated glycoprotein. Neuron. 44:909–916. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Vajanaphanich M, Schultz C, Tsien RY,
Traynor-Kaplan AE, Pandol SJ and Barrett KE: Cross-talk between
calcium and cAMP-dependent intracellular signaling pathways.
Implications for synergistic secretion in T84 colonic epithelial
cells and rat pancreatic acinar cells. J Clin Invest. 96:386–393.
1995. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Kapur R, Giuliano KA, Campana M, Adams T,
Olson K, Jung D, Mrksich M, Chandrasekaran V and Taylor DL:
Streamlining the drug discovery process by integrating
miniaturization, high throughput screening, high content screening,
and automation on the CellChip™ system. Biomed Microdevices.
2:99–109. 1999. View Article : Google Scholar
|
|
116
|
Edwards BS, Oprea T, Prossnitz ER and
Sklar LA: Flow cytometry for high-throughput, high-content
screening. Curr Opin Chem Biol. 8:392–398. 2004. View Article : Google Scholar : PubMed/NCBI
|