Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
June-2016 Volume 13 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2016 Volume 13 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Lipid droplet-associated proteins in atherosclerosis (Review)

  • Authors:
    • Janeesh Plakkal Ayyappan
    • Antoni Paul
    • Young‑Hwa Goo
  • View Affiliations / Copyright

    Affiliations: Center for Cardovascular Sciences, Albany Medical College, Albany, NY 12208, USA
  • Pages: 4527-4534
    |
    Published online on: April 11, 2016
       https://doi.org/10.3892/mmr.2016.5099
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Accumulation of atherosclerotic plaques in arterial walls leads to major cardiovascular diseases and stroke. Macrophages/foam cells are central components of atherosclerotic plaques, which populate the arterial wall in order to remove harmful modified low‑density lipoprotein (LDL) particles, resulting in the accumulation of lipids, mostly LDL‑derived cholesterol ester, in cytosolic lipid droplets (LDs). At present, LDs are recognized as dynamic organelles that govern cellular metabolic processes. LDs consist of an inner core of neutral lipids surrounded by a monolayer of phospholipids and free cholesterol, and contain LD‑associated proteins (LDAPs) that regulate LD functions. Foam cells are characterized by an aberrant accumulation of cytosolic LDs, and are considered a hallmark of atherosclerotic lesions through all stages of development. Previous studies have investigated the mechanisms underlying foam cell formation, aiming to discover therapeutic strategies that target foam cells and intervene against atherosclerosis. It is well established that LDAPs have a major role in the pathogenesis of metabolic diseases caused by dysfunction of lipid metabolism, and several studies have linked LDAPs to the development of atherosclerosis. In this review, several foam cell‑targeting pathways have been described, with an emphasis on the role of LDAPs in cholesterol mobilization from macrophages. In addition, the potential of LDAPs as therapeutic targets to prevent the progression and/or facilitate the regression of the disease has been discussed.
View Figures

Figure 1

Figure 2

View References

1 

Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, et al: American Heart Association Statistics Committee and Stroke Statisics: Executive summary: Heart disease and stroke statistics – 2013 update: A report from the American Heart Association. Circulation. 127:143–152. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Ross R: The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature. 362:801–809. 1993. View Article : Google Scholar : PubMed/NCBI

3 

Ross R, Glomset J and Harker L: Response to injury and atherogenesis. Am J Pathol. 86:675–684. 1977.PubMed/NCBI

4 

Williams KJ and Tabas I: The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol. 15:551–561. 1995. View Article : Google Scholar : PubMed/NCBI

5 

Maxfield FR and van Meer G: Cholesterol, the central lipid of mammalian cells. Curr Opin Cell Biol. 22:422–429. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Maxfield FR and Tabas I: Role of cholesterol and lipid organization in disease. Nature. 438:612–621. 2005. View Article : Google Scholar : PubMed/NCBI

7 

Walther TC and Farese RV Jr: The life of lipid droplets. Biochim Biophys Acta. 1791:459–466. 2009. View Article : Google Scholar :

8 

Thiam AR, Farese RV Jr and Walther TC: The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol. 14:775–786. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Liu P, Ying Y, Zhao Y, Mundy DI, Zhu M and Anderson RG: Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem. 279:3787–3792. 2004. View Article : Google Scholar

10 

Umlauf E, Csaszar E, Moertelmaier M, Schuetz GJ, Parton RG and Prohaska R: Association of stomatin with lipid bodies. J Biol Chem. 279:23699–23709. 2004. View Article : Google Scholar : PubMed/NCBI

11 

Kusminski CM, Shetty S, Orci L, Unger RH and Scherer PE: Diabetes and apoptosis: Lipotoxicity. Apoptosis. 14:1484–1495. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Tabas I: Consequences of cellular cholesterol accumulation: Basic concepts and physiological implications. J Clin Invest. 110:905–911. 2002. View Article : Google Scholar : PubMed/NCBI

13 

Herranz P, de Lucas R, Pérez-España L and Mayor M: Lipodystrophy syndromes. Dermatol Clin. 26:569–578. ix2008. View Article : Google Scholar : PubMed/NCBI

14 

Bartz R, Li WH, Venables B, Zehmer JK, Roth MR, Welti R, Anderson RG, Liu P and Chapman KD: Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J Lipid Res. 48:837–847. 2007. View Article : Google Scholar : PubMed/NCBI

15 

Buhman KF, Accad M and Farese RV: Mammalian acyl-CoA:Cholesterol acyltransferases. Biochim Biophys Acta. 1529:142–154. 2000. View Article : Google Scholar : PubMed/NCBI

16 

Yen CL, Stone SJ, Koliwad S, Harris C and Farese RV Jr: Thematic review series: Glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res. 49:2283–2301. 2008. View Article : Google Scholar : PubMed/NCBI

17 

Robenek H, Hofnagel O, Buers I, Robenek MJ, Troyer D and Severs NJ: Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis. J Cell Sci. 119:4215–4224. 2006. View Article : Google Scholar : PubMed/NCBI

18 

Robenek MJ, Severs NJ, Schlattmann K, Plenz G, Zimmer KP, Troyer D and Robenek H: Lipids partition caveolin-1 from ER membranes into lipid droplets: Updating the model of lipid droplet biogenesis. FASEB J. 18:866–868. 2004.PubMed/NCBI

19 

Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R and Fujimoto T: The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J Biol Chem. 277:44507–44512. 2002. View Article : Google Scholar : PubMed/NCBI

20 

Ozeki S, Cheng J, Tauchi-Sato K, Hatano N, Taniguchi H and Fujimoto T: Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci. 118:2601–2611. 2005. View Article : Google Scholar : PubMed/NCBI

21 

Long AP, Manneschmidt AK, VerBrugge B, Dortch MR, Minkin SC, Prater KE, Biggerstaff JP, Dunlap JR and Dalhaimer P: Lipid droplet de novo formation and fission are linked to the cell cycle in fission yeast. Traffic. 13:705–714. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Yuan Y, Li P and Ye J: Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis. Protein Cell. 3:173–181. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Goo YH, Son SH, Kreienberg PB and Paul A: Novel lipid droplet-associated serine hydrolase regulates macrophage cholesterol mobilization. Arterioscler Thromb Vasc Biol. 34:386–396. 2014. View Article : Google Scholar :

24 

Brasaemle DL, Dolios G, Shapiro L and Wang R: Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem. 279:46835–46842. 2004. View Article : Google Scholar : PubMed/NCBI

25 

Brasaemle DL: Thematic review series: Adipocyte biology. The perilipin family of structural lipid droplet proteins: Stabilization of lipid droplets and control of lipolysis. J Lipid Res. 48:2547–2559. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Greenberg AS, Egan JJ, Wek SA, Garty NB, Blanchette-Mackie EJ and Londos C: Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J Biol Chem. 266:11341–11346. 1991.PubMed/NCBI

27 

Servetnick DA, Brasaemle DL, Gruia-Gray J, Kimmel AR, Wolff J and Londos C: Perilipins are associated with cholesteryl ester droplets in steroidogenic adrenal cortical and Leydig cells. J Biol Chem. 270:16970–16973. 1995. View Article : Google Scholar : PubMed/NCBI

28 

Zhao X, Gao M, He J, Zou L, Lyu Y, Zhang L, Geng B, Liu G and Xu G: Perilipin1 deficiency in whole body or bone marrow-derived cells attenuates lesions in atherosclerosis-prone mice. PLoS One. 10:e01237382015. View Article : Google Scholar : PubMed/NCBI

29 

Paul A, Chang BH, Li L, Yechoor VK and Chan L: Deficiency of adipose differentiation-related protein impairs foam cell formation and protects against atherosclerosis. Circ Res. 102:1492–1501. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Lu X, Gruia-Gray J, Copeland NG, Gilbert DJ, Jenkins NA, Londos C and Kimmel AR: The murine perilipin gene: The lipid droplet-associated perilipins derive from tissue-specific, mRNA splice variants and define a gene family of ancient origin. Mamm Genome. 12:741–749. 2001. View Article : Google Scholar : PubMed/NCBI

31 

Tansey JT, Huml AM, Vogt R, Davis KE, Jones JM, Fraser KA, Brasaemle DL, Kimmel AR and Londos C: Functional studies on native and mutated forms of perilipins. A role in protein kinase A-mediated lipolysis of triacylglycerols. J Biol Chem. 278:8401–8406. 2003. View Article : Google Scholar

32 

Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A and Zechner R: Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science. 306:1383–1386. 2004. View Article : Google Scholar : PubMed/NCBI

33 

Heid HW, Moll R, Schwetlick I, Rackwitz HR and Keenan TW: Adipophilin is a specific marker of lipid accumulation in diverse cell types and diseases. Cell Tissue Res. 294:309–321. 1998. View Article : Google Scholar : PubMed/NCBI

34 

Dalen KT, Dahl T, Holter E, Arntsen B, Londos C, Sztalryd C and Nebb HI: LSDP5 is a PAT protein specifically expressed in fatty acid oxidizing tissues. Biochim Biophys Acta. 1771:210–227. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Becker L, Gharib SA, Irwin AD, Wijsman E, Vaisar T, Oram JF and Heinecke JW: A macrophage sterol-responsive network linked to atherogenesis. Cell Metab. 11:125–135. 2010. View Article : Google Scholar : PubMed/NCBI

36 

Jiang HP and Serrero G: Isolation and characterization of a full-length cDNA coding for an adipose differentiation-related protein. Proc Natl Acad Sci USA. 89:7856–7860. 1992. View Article : Google Scholar : PubMed/NCBI

37 

Masuda Y, Itabe H, Odaki M, Hama K, Fujimoto Y, Mori M, Sasabe N, Aoki J, Arai H and Takano T: ADRP/adipophilin is degraded through the proteasome-dependent pathway during regression of lipid-storing cells. J Lipid Res. 47:87–98. 2006. View Article : Google Scholar

38 

Xu G, Sztalryd C, Lu X, Tansey JT, Gan J, Dorward H, Kimmel AR and Londos C: Post-translational regulation of adipose differentiation-related protein by the ubiquitin/proteasome pathway. J Biol Chem. 280:42841–42847. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Listenberger LL, Ostermeyer-Fay AG, Goldberg EB, Brown WJ and Brown DA: Adipocyte differentiation-related protein reduces the lipid droplet association of adipose triglyceride lipase and slows triacylglycerol turnover. J Lipid Res. 48:2751–2761. 2007. View Article : Google Scholar : PubMed/NCBI

40 

Magne J, Aminoff A, Perman Sundelin J, Mannila MN, Gustafsson P, Hultenby K, Wernerson A, Bauer G, Listenberger L, Neville MJ, et al: The minor allele of the missense polymorphism Ser251Pro in perilipin 2 (PLIN2) disrupts an α-helix, affects lipolysis, and is associated with reduced plasma triglyceride concentration in humans. FASEB J. 27:3090–3099. 2013. View Article : Google Scholar

41 

Wolins NE, Skinner JR, Schoenfish MJ, Tzekov A, Bensch KG and Bickel PE: Adipocyte protein S3-12 coats nascent lipid droplets. J Biol Chem. 278:37713–37721. 2003. View Article : Google Scholar : PubMed/NCBI

42 

Diaz E and Pfeffer SR: TIP47: A cargo selection device for mannose 6-phosphate receptor trafficking. Cell. 93:433–443. 1998. View Article : Google Scholar : PubMed/NCBI

43 

Barbero P, Buell E, Zulley S and Pfeffer SR: TIP47 is not a component of lipid droplets. J Biol Chem. 276:24348–24351. 2001. View Article : Google Scholar : PubMed/NCBI

44 

Miura S, Gan JW, Brzostowski J, Parisi MJ, Schultz CJ, Londos C, Oliver B and Kimmel AR: Functional conservation for lipid storage droplet association among Perilipin, ADRP and TIP47 (PAT)-related proteins in mammals, Drosophila and Dictyostelium. J Biol Chem. 277:32253–32257. 2002. View Article : Google Scholar : PubMed/NCBI

45 

Buers I, Robenek H, Lorkowski S, Nitschke Y, Severs NJ and Hofnagel O: TIP47, a lipid cargo protein involved in macrophage triglyceride metabolism. Arterioscler Thromb Vasc Biol. 29:767–773. 2009. View Article : Google Scholar : PubMed/NCBI

46 

Chang BH, Li L, Paul A, Taniguchi S, Nannegari V, Heird WC and Chan L: Protection against fatty liver but normal adipogenesis in mice lacking adipose differentiation-related protein. Mol Cell Biol. 26:1063–1076. 2006. View Article : Google Scholar : PubMed/NCBI

47 

Wolins NE, Quaynor BK, Skinner JR, Tzekov A, Croce MA, Gropler MC, Varma V, Yao-Borengasser A, Rasouli N, Kern PA, Finck BN and Bickel PE: OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization. Diabetes. 55:3418–3428. 2006. View Article : Google Scholar : PubMed/NCBI

48 

Li H, Song Y, Li F, Zhang L, Gu Y, Zhang L, Jiang L, Dong W, Ye J and Li Q: Identification of lipid droplet-associated proteins in the formation of macrophage-derived foam cells using micro-arrays. Int J Mol Med. 26:231–239. 2010. View Article : Google Scholar : PubMed/NCBI

49 

Zhou Z, Yon Toh S, Chen Z, Guo K, Ng CP, Ponniah S, Lin SC, Hong W and Li P: Cidea-deficient mice have lean phenotype and are resistant to obesity. Nat Genet. 35:49–56. 2003. View Article : Google Scholar : PubMed/NCBI

50 

Li JZ, Ye J, Xue B, Qi J, Zhang J, Zhou Z, Li Q, Wen Z and Li P: Cideb regulates diet-induced obesity, liver steatosis and insulin sensitivity by controlling lipogenesis and fatty acid oxidation. Diabetes. 56:2523–2532. 2007. View Article : Google Scholar : PubMed/NCBI

51 

Toh SY, Gong J, Du G, Li JZ, Yang S, Ye J, Yao H, Zhang Y, Xue B, Li Q, et al: Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice. PLoS One. 3:e28902008. View Article : Google Scholar : PubMed/NCBI

52 

Nishino N, Tamori Y, Tateya S, Kawaguchi T, Shibakusa T, Mizunoya W, Inoue K, Kitazawa R, Kitazawa S, Matsuki Y, et al: FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Invest. 118:2808–2821. 2008.PubMed/NCBI

53 

Gong J, Sun Z and Li P: CIDE proteins and metabolic disorders. Curr Opin Lipidol. 20:121–126. 2009. View Article : Google Scholar : PubMed/NCBI

54 

Yeaman SJ: Hormone-sensitive lipase-a multipurpose enzyme in lipid metabolism. Biochim Biophys Acta. 1052:128–132. 1990. View Article : Google Scholar : PubMed/NCBI

55 

Kraemer FB and Shen WJ: Hormone-sensitive lipase: Control of intracellular tri-(di-)acylglycerol and cholesteryl ester hydrolysis. J Lipid Res. 43:1585–1594. 2002. View Article : Google Scholar : PubMed/NCBI

56 

Moore KJ, Kunjathoor VV, Koehn SL, Manning JJ, Tseng AA, Silver JM, McKee M and Freeman MW: Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. J Clin Invest. 115:2192–2201. 2005. View Article : Google Scholar : PubMed/NCBI

57 

Moore KJ, Sheedy FJ and Fisher EA: Macrophages in atherosclerosis: A dynamic balance. Nat Rev Immunol. 13:709–721. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Ouimet M, Franklin V, Mak E, Liao X, Tabas I and Marcel YL: Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab. 13:655–667. 2011. View Article : Google Scholar : PubMed/NCBI

59 

Goldstein JL, Ho YK, Basu SK and Brown MS: Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA. 76:333–337. 1979. View Article : Google Scholar : PubMed/NCBI

60 

Kunjathoor VV, Febbraio M, Podrez EA, Moore KJ, Andersson L, Koehn S, Rhee JS, Silverstein R, Hoff HF and Freeman MW: Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem. 277:49982–49988. 2002. View Article : Google Scholar : PubMed/NCBI

61 

Suzuki H, Kurihara Y, Takeya M, Kamada N, Kataoka M, Jishage K, Ueda O, Sakaguchi H, Higashi T, Suzuki T, et al: A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature. 386:292–296. 1997. View Article : Google Scholar : PubMed/NCBI

62 

Febbraio M, Podrez EA, Smith JD, Hajjar DP, Hazen SL, Hoff HF, Sharma K and Silverstein RL: Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest. 105:1049–1056. 2000. View Article : Google Scholar : PubMed/NCBI

63 

Mäkinen PI, Lappalainen JP, Heinonen SE, Leppänen P, Lähteenvuo MT, Aarnio JV, Heikkilä J, Turunen MP and Ylä-Herttuala S: Silencing of either SR-A or CD36 reduces atherosclerosis in hyperlipidaemic mice and reveals reciprocal upregulation of these receptors. Cardiovasc Res. 88:530–538. 2010. View Article : Google Scholar : PubMed/NCBI

64 

Manning-Tobin JJ, Moore KJ, Seimon TA, Bell SA, Sharuk M, Alvarez-Leite JI, de Winther MP, Tabas I and Freeman MW: Loss of SR-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice. Arterioscler Thromb Vasc Biol. 29:19–26. 2009. View Article : Google Scholar :

65 

Accad M, Smith SJ, Newland DL, Sanan DA, King LE Jr, Linton MF, Fazio S and Farese RV Jr: Massive xanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acyl CoA:cholesterol acyltransferase 1. J Clin Invest. 105:711–719. 2000. View Article : Google Scholar : PubMed/NCBI

66 

Fazio S, Major AS, Swift LL, Gleaves LA, Accad M, Linton MF and Farese RV Jr: Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages. J Clin Invest. 107:163–171. 2001. View Article : Google Scholar : PubMed/NCBI

67 

Warner GJ, Stoudt G, Bamberger M, Johnson WJ and Rothblat GH: Cell toxicity induced by inhibition of acyl coenzyme A:cholesterol acyltransferase and accumulation of unesterified cholesterol. J Biol Chem. 270:5772–5778. 1995. View Article : Google Scholar : PubMed/NCBI

68 

Larigauderie G, Furman C, Jaye M, Lasselin C, Copin C, Fruchart JC, Castro G and Rouis M: Adipophilin enhances lipid accumulation and prevents lipid efflux from THP-1 macrophages: Potential role in atherogenesis. Arterioscler Thromb Vasc Biol. 24:504–510. 2004. View Article : Google Scholar : PubMed/NCBI

69 

Nuotio K, Isoviita PM, Saksi J, Ijäs P, Pitkäniemi J, Sonninen R, Soinne L, Saimanen E, Salonen O, Kovanen PT, et al: Adipophilin expression is increased in symptomatic carotid atherosclerosis: Correlation with red blood cells and cholesterol crystals. Stroke. 38:1791–1798. 2007. View Article : Google Scholar : PubMed/NCBI

70 

Son SH, Goo YH, Chang BH and Paul A: Perilipin 2 (PLIN2)-deficiency does not increase cholesterol-induced toxicity in macrophages. PLoS One. 7:e330632012. View Article : Google Scholar : PubMed/NCBI

71 

Chen FL, Yang ZH, Wang XC, Liu Y, Yang YH, Li LX, Liang WC, Zhou WB and Hu RM: Adipophilin affects the expression of TNF-alpha, MCP-1 and IL-6 in THP-1 macrophages. Mol Cell Biochem. 337:193–199. 2010. View Article : Google Scholar

72 

Langlois D, Forcheron F, Li JY, del Carmine P, Neggazi S and Beylot M: Increased atherosclerosis in mice deficient in perilipin1. Lipids Health Dis. 10:1692011. View Article : Google Scholar : PubMed/NCBI

73 

Li JZ, Lei Y, Wang Y, Zhang Y, Ye J, Xia X, Pan X and Li P: Control of cholesterol biosynthesis, uptake and storage in hepatocytes by Cideb. Biochim Biophys Acta. 1801:577–586. 2010. View Article : Google Scholar : PubMed/NCBI

74 

Brown AJ and Jessup W: Oxysterols and atherosclerosis. Atherosclerosis. 142:1–28. 1999. View Article : Google Scholar : PubMed/NCBI

75 

Ishii I, Oka M, Katto N, Shirai K, Saito Y and Hirose S: Beta-VLDL-induced cholesterol ester deposition in macrophages may be regulated by neutral cholesterol esterase activity. Arterioscler Thromb. 12:1139–1145. 1992. View Article : Google Scholar : PubMed/NCBI

76 

Kritharides L, Christian A, Stoudt G, Morel D and Rothblat GH: Cholesterol metabolism and efflux in human THP-1 macrophages. Arterioscler Thromb Vasc Biol. 18:1589–1599. 1998. View Article : Google Scholar : PubMed/NCBI

77 

Escary JL, Choy HA, Reue K and Schotz MC: Hormone-sensitive lipase overexpression increases cholesteryl ester hydrolysis in macrophage foam cells. Arterioscler Thromb Vasc Biol. 18:991–998. 1998. View Article : Google Scholar : PubMed/NCBI

78 

Buchebner M, Pfeifer T, Rathke N, Chandak PG, Lass A, Schreiber R, Kratzer A, Zimmermann R, Sattler W, Koefeler H, et al: Cholesteryl ester hydrolase activity is abolished in HSL−/− macrophages but unchanged in macrophages lacking KIAA1363. J Lipid Res. 51:2896–2908. 2010. View Article : Google Scholar : PubMed/NCBI

79 

Sekiya M, Osuga J, Nagashima S, Ohshiro T, Igarashi M, Okazaki H, Takahashi M, Tazoe F, Wada T, Ohta K, et al: Ablation of neutral cholesterol ester hydrolase 1 accelerates atherosclerosis. Cell Metab. 10:219–228. 2009. View Article : Google Scholar : PubMed/NCBI

80 

Escary JL, Choy HA, Reue K, Wang XP, Castellani LW, Glass CK, Lusis AJ and Schotz MC: Paradoxical effect on atherosclerosis of hormone-sensitive lipase overexpression in macrophages. J Lipid Res. 40:397–404. 1999.PubMed/NCBI

81 

Choy HA, Wang XP and Schotz MC: Reduced atherosclerosis in hormone-sensitive lipase transgenic mice overexpressing cholesterol acceptors. Biochim Biophys Acta. 1634:76–85. 2003. View Article : Google Scholar : PubMed/NCBI

82 

Rothblat GH, de la Llera-Moya M, Atger V, Kellner-Weibel G, Williams DL and Phillips MC: Cell cholesterol efflux: Integration of old and new observations provides new insights. J Lipid Res. 40:781–796. 1999.PubMed/NCBI

83 

Allahverdian S, Pannu PS and Francis GA: Contribution of monocyte-derived macrophages and smooth muscle cells to arterial foam cell formation. Cardiovasc Res. 95:165–172. 2012. View Article : Google Scholar : PubMed/NCBI

84 

Wang N, Lan D, Chen W, Matsuura F and Tall AR: ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci USA. 101:9774–9779. 2004. View Article : Google Scholar : PubMed/NCBI

85 

van Eck M, Bos IS, Kaminski WE, Orsó E, Rothe G, Twisk J, Böttcher A, Van Amersfoort ES, Christiansen-Weber TA, Fung-Leung WP, et al: Leukocyte ABCA1 controls susceptibility to atherosclerosis and macrophage recruitment into tissues. Proc Natl Acad Sci USA. 99:6298–6303. 2002. View Article : Google Scholar : PubMed/NCBI

86 

Singaraja RR, Fievet C, Castro G, James ER, Hennuyer N, Clee SM, Bissada N, Choy JC, Fruchart JC, McManus BM, et al: Increased ABCA1 activity protects against atherosclerosis. J Clin Invest. 110:35–42. 2002. View Article : Google Scholar : PubMed/NCBI

87 

Burgess B, Naus K, Chan J, Hirsch-Reinshagen V, Tansley G, Matzke L, Chan B, Wilkinson A, Fan J, Donkin J, et al: Overexpression of human ABCG1 does not affect atherosclerosis in fat-fed ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 28:1731–1737. 2008. View Article : Google Scholar : PubMed/NCBI

88 

Basso F, Amar MJ, Wagner EM, Vaisman B, Paigen B, Santamarina-Fojo S and Remaley AT: Enhanced ABCG1 expression increases atherosclerosis in LDLr-KO mice on a western diet. Biochem Biophys Res Commun. 351:398–404. 2006. View Article : Google Scholar : PubMed/NCBI

89 

Baldán A, Pei L, Lee R, Tarr P, Tangirala RK, Weinstein MM, Frank J, Li AC, Tontonoz P and Edwards PA: Impaired development of atherosclerosis in hyperlipidemic Ldlr−/− and ApoE−/− mice transplanted with Abcg1−/− bone marrow. Arterioscler Thromb Vasc Biol. 26:2301–2307. 2006. View Article : Google Scholar

90 

Out R, Hoekstra M, Hildebrand RB, Kruit JK, Meurs I, Li Z, Kuipers F, Van Berkel TJ and Van Eck M: Macrophage ABCG1 deletion disrupts lipid homeostasis in alveolar macrophages and moderately influences atherosclerotic lesion development in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol. 26:2295–2300. 2006. View Article : Google Scholar : PubMed/NCBI

91 

Yvan-Charvet L, Ranalletta M, Wang N, Han S, Terasaka N, Li R, Welch C and Tall AR: Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J Clin Invest. 117:3900–3908. 2007.PubMed/NCBI

92 

Sabol SL, Brewer HB Jr and Santamarina-Fojo S: The human ABCG1 gene: Identification of LXR response elements that modulate expression in macrophages and liver. J Lipid Res. 46:2151–2167. 2005. View Article : Google Scholar : PubMed/NCBI

93 

Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, Liao D, Nagy L, Edwards PA, Curtiss LK, et al: A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell. 7:161–171. 2001. View Article : Google Scholar : PubMed/NCBI

94 

Calkin AC and Tontonoz P: Liver x receptor signaling pathways and atherosclerosis. Arterioscler Thromb Vasc Biol. 30:1513–1518. 2010. View Article : Google Scholar : PubMed/NCBI

95 

Magana MM and Osborne TF: Two tandem binding sites for sterol regulatory element binding proteins are required for sterol regulation of fatty-acid synthase promoter. J Biol Chem. 271:32689–32694. 1996. View Article : Google Scholar : PubMed/NCBI

96 

Magana MM, Lin SS, Dooley KA and Osborne TF: Sterol regulation of acetyl coenzyme A carboxylase promoter requires two interdependent binding sites for sterol regulatory element binding proteins. J Lipid Res. 38:1630–1638. 1997.PubMed/NCBI

97 

Foretz M, Pacot C, Dugail I, Lemarchand P, Guichard C, Le Lièpvre X, Berthelier-Lubrano C, Spiegelman B, Kim JB, Ferré P and Foufelle F: ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose. Mol Cell Biol. 19:3760–3768. 1999. View Article : Google Scholar : PubMed/NCBI

98 

Cha JY and Repa JJ: The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR. J Biol Chem. 282:743–751. 2007. View Article : Google Scholar

99 

Kim GH, Oh GS, Yoon J, Lee GG, Lee KU and Kim SW: Hepatic TRAP80 selectively regulates lipogenic activity of liver X receptor. J Clin Invest. 125:183–193. 2015. View Article : Google Scholar :

100 

Zhang XQ, Even-Or O, Xu X, van Rosmalen M, Lim L, Gadde S, Farokhzad OC and Fisher EA: Nanoparticles containing a liver X receptor agonist inhibit inflammation and atherosclerosis. Adv Healthc Mater. 4:228–236. 2015. View Article : Google Scholar :

101 

Lim RK, Yu S, Cheng B, Li S, Kim NJ, Cao Y, Chi V, Kim JY, Chatterjee AK, Schultz PG, et al: Targeted delivery of LXR agonist using a site-specific antibody-drug conjugate. Bioconjug Chem. 26:2216–2222. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Plakkal Ayyappan J, Paul A and Goo YH: Lipid droplet-associated proteins in atherosclerosis (Review). Mol Med Rep 13: 4527-4534, 2016.
APA
Plakkal Ayyappan, J., Paul, A., & Goo, Y. (2016). Lipid droplet-associated proteins in atherosclerosis (Review). Molecular Medicine Reports, 13, 4527-4534. https://doi.org/10.3892/mmr.2016.5099
MLA
Plakkal Ayyappan, J., Paul, A., Goo, Y."Lipid droplet-associated proteins in atherosclerosis (Review)". Molecular Medicine Reports 13.6 (2016): 4527-4534.
Chicago
Plakkal Ayyappan, J., Paul, A., Goo, Y."Lipid droplet-associated proteins in atherosclerosis (Review)". Molecular Medicine Reports 13, no. 6 (2016): 4527-4534. https://doi.org/10.3892/mmr.2016.5099
Copy and paste a formatted citation
x
Spandidos Publications style
Plakkal Ayyappan J, Paul A and Goo YH: Lipid droplet-associated proteins in atherosclerosis (Review). Mol Med Rep 13: 4527-4534, 2016.
APA
Plakkal Ayyappan, J., Paul, A., & Goo, Y. (2016). Lipid droplet-associated proteins in atherosclerosis (Review). Molecular Medicine Reports, 13, 4527-4534. https://doi.org/10.3892/mmr.2016.5099
MLA
Plakkal Ayyappan, J., Paul, A., Goo, Y."Lipid droplet-associated proteins in atherosclerosis (Review)". Molecular Medicine Reports 13.6 (2016): 4527-4534.
Chicago
Plakkal Ayyappan, J., Paul, A., Goo, Y."Lipid droplet-associated proteins in atherosclerosis (Review)". Molecular Medicine Reports 13, no. 6 (2016): 4527-4534. https://doi.org/10.3892/mmr.2016.5099
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team