|
1
|
Chui J, Di Girolamo N, Wakefield D and
Coroneo MT: The pathogenesis of pterygium: Current concepts and
their therapeutic implications. Ocul Surf. 6:24–43. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Mackenzie FD, Hirst LW, Battistutta D and
Green A: Risk analysis in the development of pterygia.
Ophthalmology. 99:1056–1061. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Moran DJ and Hollows FC: Pterygium and
ultraviolet radiation: A positive correlation. Br J Ophthalmol.
68:343–346. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Cameron ME: Pterygium throughout the
world. Charles C Thomas; Springfield IL: 1965
|
|
5
|
Taylor HR, West SK, Rosenthal FS, Munoz B,
Newland HS and Emmett EA: Corneal changes associated with chronic
UV irradiation. Arch Ophthalmol. 107:1481–1484. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Detorakis ET, Sourvinos G and Spandidos
DA: Detection of herpes simplex virus and human papilloma virus in
ophthalmic pterygium. Cornea. 20:164–167. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Gallagher MJ, Giannoudis A, Herrington CS
and Hiscott P: Human papillomavirus in pterygium. Br J Ophthalmol.
85:782–784. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Chalkia AK, Spandidos DA and Detorakis ET:
Viral involvement in the pathogenesis and clinical features of
ophthalmic pterygium (Review). Int J Mol Med. 32:539–543.
2013.PubMed/NCBI
|
|
9
|
Anguria P, Kitinya J, Ntuli S and
Carmichael T: The role of heredity in pterygium development. Int J
Ophthalmol. 7:563–573. 2014.PubMed/NCBI
|
|
10
|
Tsai YY, Bau DT, Chiang CC, Cheng YW,
Tseng SH and Tsai FJ: Pterygium and genetic polymorphism of DNA
double strand break repair gene Ku70. Mol Vis. 13:1436–1440.
2007.PubMed/NCBI
|
|
11
|
Kau HC, Tsai CC, Hsu WM, Liu JH and Wei
YH: Genetic polymorphism of hOGG1 and risk of pterygium in Chinese.
Eye (Lond). 18:635–639. 2004. View Article : Google Scholar
|
|
12
|
Pinkerton OD, Hokama Y and Shigemura LA:
Immunologic basis for the pathogenesis of pterygium. Am J
Ophthalmol. 98:225–228. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Hill JC and Maske R: Pathogenesis of
pterygium. Eye (Lond). 3:218–226. 1989. View Article : Google Scholar
|
|
14
|
Coroneo MT: Pterygium as an early
indicator of ultraviolet insolation: A hypothesis. Br J Ophthalmol.
77:734–739. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Nubile M, Curcio C, Lanzini M, Calienno R,
Iezzi M, Mastropasqua A, Di Nicola M and Mastropasqua L: Expression
of CREB in primary pterygium and correlation with cyclin D1, ki-67,
MMP7, p53, p63, Survivin and Vimentin. Ophthalmic Res. 50:99–107.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Peng ML, Tsai YY, Chiang CC, Huang YC,
Chou MC, Yeh KT, Lee H and Cheng YW: CYP1A1 protein activity is
associated with allelic variation in pterygium tissues and cells.
Mol Vis. 18:1937–1943. 2012.PubMed/NCBI
|
|
17
|
Tong L, Li J, Chew J, Tan D and Beuerman
R: Phospholipase D in the human ocular surface and in pterygium.
Cornea. 27:693–698. 2008.PubMed/NCBI
|
|
18
|
Ortak H, Cayli S, Ocakli S and Demir S:
Increased expression of aquaporin-1 and aquaporin-3 in pterygium.
Cornea. 32:1375–1379. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Tan CS, Lim TH, Koh WP, Liew GC, Hoh ST,
Tan CC and Au Eong KG: Epidemiology of pterygium on a tropical
island in the Riau Archipelago. Eye (Lond). 20:908–912. 2006.
View Article : Google Scholar
|
|
20
|
McCarty CA, Fu CL and Taylor HR:
Epidemiology of pterygium in Victoria, Australia. Br J Ophthalmol.
84:289–292. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Threlfall TJ and English DR: Sun exposure
and pterygium of the eye: A dose-response curve. Am J Ophthalmol.
128:280–287. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Hilgers JH: Pterygium: Its incidence,
heredity and etiology. Am J Ophthalmol. 50:635–644. 1960.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Di Girolamo N, Chui J, Coroneo MT and
Wakefield D: Pathogenesis of pterygia: Role of cytokines, growth
factors and matrix metalloproteinases. Prog Retin Eye Res.
23:195–228. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kwok LS and Coroneo MT: A model for
pterygium formation. Cornea. 13:219–224. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Coroneo MT: Albedo concentration in the
anterior eye: A phenomenon that locates some solar diseases.
Ophthalmic Surg. 21:60–66. 1990.PubMed/NCBI
|
|
26
|
Coroneo MT, Di Girolamo N and Wakefield D:
The pathogenesis of pterygia. Curr Opin Ophthalmol. 10:282–288.
1999. View Article : Google Scholar
|
|
27
|
Anguria P, Carmichael T, Ntuli S and
Kitinya J: Chronic inflammatory cells and damaged limbal cells in
pterygium. Afr Health Sci. 13:725–730. 2013.PubMed/NCBI
|
|
28
|
Cooper SJ and Bowden GT: Ultraviolet B
regulation of transcription factor families: Roles of nuclear
factor-kappa B (NF-kappaB) and activator protein-1 (AP-1) in
UVB-induced skin carcinogenesis. Curr Cancer Drug Targets.
7:325–334. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Yajima H, Lee KJ, Zhang S, Kobayashi J and
Chen BP: DNA double-strand break formation upon UV-induced
replication stress activates ATM and DNA-PKcs kinases. J Mol Biol.
385:800–810. 2009. View Article : Google Scholar
|
|
30
|
Heck DE, Vetrano AM, Mariano TM and Laskin
JD: UVB light stimulates production of reactive oxygen species:
Unexpected role for catalase. J Biol Chem. 278:22432–22436. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Fisher GJ and Voorhees JJ: Molecular
mechanisms of photoaging and its prevention by retinoic acid:
Ultraviolet irradiation induces MAP kinase signal transduction
cascades that induce Ap-1-regulated matrix metalloproteinases that
degrade human skin in vivo. J Investig Dermatol Symp Proc. 3:61–68.
1998.PubMed/NCBI
|
|
32
|
Dy LC, Pei Y and Travers JB: Augmentation
of ultraviolet B radiation-induced tumor necrosis factor production
by the epidermal platelet-activating factor receptor. J Biol Chem.
274:26917–26921. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Coffer PJ, Burgering BM, Peppelenbosch MP,
Bos JL and Kruijer W: UV activation of receptor tyrosine kinase
activity. Oncogene. 11:561–569. 1995.PubMed/NCBI
|
|
34
|
Rosette C and Karin M: Ultraviolet light
and osmotic stress: Activation of the JNK cascade through multiple
growth factor and cytokine receptors. Science. 274:1194–1197. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Cimpean AM, Sava MP and Raica M: DNA
damage in human pterygium: One-shot multiple targets. Mol Vis.
19:348–356. 2013.PubMed/NCBI
|
|
36
|
Lee DH, Cho HJ, Kim JT, Choi JS and Joo
CK: Expression of vascular endothelial growth factor and inducible
nitric oxide synthase in pterygia. Cornea. 20:738–742. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Kau HC, Tsai CC, Lee CF, Kao SC, Hsu WM,
Liu JH and Wei YH: Increased oxidative DNA damage,
8-hydroxydeoxy-guanosine, in human pterygium. Eye (Lond).
20:826–831. 2006. View Article : Google Scholar
|
|
38
|
Tsai YY, Cheng YW, Lee H, Tsai FJ, Tseng
SH, Lin CL and Chang KC: Oxidative DNA damage in pterygium. Mol
Vis. 11:71–75. 2005.PubMed/NCBI
|
|
39
|
Perra MT, Maxia C, Corbu A, Minerba L,
Demurtas P, Colombari R, Murtas D, Bravo S, Piras F and Sirigu P:
Oxidative stress in pterygium: Relationship between p53 and
8-hydroxy-deoxyguanosine. Mol Vis. 12:1136–1142. 2006.PubMed/NCBI
|
|
40
|
Klebe S, Callahan T and Power JH:
Peroxiredoxin I and II in human eyes: Cellular distribution and
association with pterygium and DNA damage. J Histochem Cytochem.
62:85–96. 2014. View Article : Google Scholar :
|
|
41
|
Di Girolamo N, Coroneo M and Wakefield D:
Epidermal growth factor receptor signaling is partially responsible
for the increased matrix metalloproteinase-1 expression in ocular
epithelial cells after UVB radiation. Am J Pathol. 167:489–503.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Di Girolamo N, Wakefield D and Coroneo MT:
UVB-mediated induction of cytokines and growth factors in pterygium
epithelial cells involves cell surface receptors and intracellular
signaling. Invest Ophthalmol Vis Sci. 47:2430–2437. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Dushku N and Reid TW: Immunohistochemical
evidence that human pterygia originate from an invasion of
vimentin-expressing altered limbal epithelial basal cells. Curr Eye
Res. 13:473–481. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Davanger M and Evensen A: Role of the
pericorneal papillary structure in renewal of corneal epithelium.
Nature. 229:560–561. 1971. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Tseng SCG CJ, Huang AJW, Kruse FE, Maskin
SL and Tsai RJF: Classification of conjunctival surgeries for
corneal diseases based on stem cell concept. Ophthalmol Clin North
Am. 3:595–610. 1990.
|
|
46
|
Reid TW and Dushku N: What a study of
pterygia teaches us about the cornea? Molecular mechanisms of
formation. Eye Contact Lens. 36:290–295. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Dushku N, John MK, Schultz GS and Reid TW:
Pterygia pathogenesis: Corneal invasion by matrix metalloproteinase
expressing altered limbal epithelial basal cells. Arch Ophthalmol.
119:695–706. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Reid TW and Dushku N: Pterygia and limbal
epithelial cells: Relationship and molecular mechanisms. Prog Retin
Eye Res. 15(2): 297–329. 1996. View Article : Google Scholar
|
|
49
|
Jaworski CJ, Aryankalayil-John M, Campos
MM, Fariss RN, Rowsey J, Agarwalla N, Reid TW, Dushku N, Cox CA,
Carper D and Wistow G: Expression analysis of human pterygium shows
a predominance of conjunctival and limbal markers and genes
associated with cell migration. Mol Vis. 15:2421–2434.
2009.PubMed/NCBI
|
|
50
|
Chui J, Coroneo MT, Tat LT, Crouch R,
Wakefield D and Di Girolamo N: Ophthalmic pterygium: A stem cell
disorder with premalignant features. Am J Pathol. 178:817–827.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Fuchs E: Ueber das Pterygium [Concerning
the pterygium]. Graefes Arch Ophthalmol. 38:1–89. 1892.In German.
View Article : Google Scholar
|
|
52
|
Hoover HL: Solar ultraviolet irradiation
of human cornea, lens and retina: Equations of ocular irradiation.
Appl Opt. 25:359–368. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Brash DE, Rudolph JA, Simon JA, Lin A,
McKenna GJ, Baden HP, Halperin AJ and Pontén J: A role for sunlight
in skin cancer: UV-induced p53 mutations in squamous cell
carcinoma. Proc Natl Acad Sci USA. 88:10124–10128. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kress S, Sutter C, Strickland PT, Mukhtar
H, Schweizer J and Schwarz M: Carcinogen-specific mutational
pattern in the p53 gene in ultraviolet B radiation-induced squamous
cell carcinomas of mouse skin. Cancer Res. 52:6400–6403.
1992.PubMed/NCBI
|
|
55
|
Ziegler A, Leffell DJ, Kunala S, Sharma
HW, Gailani M, Simon JA, Halperin AJ, Baden HP, Shapiro PE, Bale
AE, et al: Mutation hotspots due to sunlight in the p53 gene of
nonmelanoma skin cancers. Proc Natl Acad Sci USA. 90:4216–4220.
1993. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Finlay CA, Hinds PW, Tan TH, Eliyahu D,
Oren M and Levine AJ: Activating mutations for transformation by
p53 produce a gene product that forms an hsc70-p53 complex with an
altered half-life. Mol Cell Biol. 8:531–539. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Dushku N and Reid TW: P53 expression in
altered limbal basal cells of pingueculae, pterygia and limbal
tumors. Curr Eye Res. 16:1179–1192. 1997. View Article : Google Scholar
|
|
58
|
Tan DT, Lim AS, Goh HS and Smith DR:
Abnormal expression of the p53 tumor suppressor gene in the
conjunctiva of patients with pterygium. Am J Ophthalmol.
123:404–405. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Weinstein O, Rosenthal G, Zirkin H, Monos
T, Lifshitz T and Argov S: Overexpression of p53 tumor suppressor
gene in pterygia. Eye (Lond). 16:619–621. 2002. View Article : Google Scholar
|
|
60
|
Ueda Y, Kanazawa S, Kitaoka T, Dake Y,
Ohira A, Ouertani AM and Amemiya T: Immunohistochemical study of
p53, p21 and PCNA in pterygium. Acta Histochem. 103:159–165. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Tsai YY, Cheng YW, Lee H, Tsai FJ, Tseng
SH and Chang KC: P53 gene mutation spectrum and the relationship
between gene mutation and protein levels in pterygium. Mol Vis.
11:50–55. 2005.PubMed/NCBI
|
|
62
|
Reisman D, McFadden JW and Lu G: Loss of
heterozygosity and p53 expression in Pterygium. Cancer Lett.
206:77–83. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Shimmura S, Ishioka M, Hanada K, Shimazaki
J and Tsubota K: Telomerase activity and p53 expression in
pterygia. Invest Ophthalmol Vis Sci. 41:1364–1369. 2000.PubMed/NCBI
|
|
64
|
Chen JK, Tsai RJ and Lin SS: Fibroblasts
isolated from human pterygia exhibit transformed cell
characteristics. In Vitro Cell Dev Biol Anim. 30A:243–248. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Cameron ME: Histology of pterygium: An
electron microscopic study. Br J Ophthalmol. 67:604–608. 1983.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Lemercier G, Cornand G and Burckhart MF:
Pinguecula and pterygium: Histologic and electron microscopic study
(author's transl). Virchows Arch A Pathol Anat Histol. 379:321–333.
1978.In French. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ye J, Song YS, Kang SH, Yao K and Kim JC:
Involvement of bone marrow-derived stem and progenitor cells in the
pathogenesis of pterygium. Eye (Lond). 18:839–843. 2004. View Article : Google Scholar
|
|
68
|
Touhami A, Di Pascuale MA, Kawatika T, Del
Valle M, Rosa RH Jr, Dubovy S and Tseng SC: Characterisation of
myofibroblasts in fibrovascular tissues of primary and recurrent
pterygia. Br J Ophthalmol. 89:269–274. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kato N, Shimmura S, Kawakita T, Miyashita
H, Ogawa Y, Yoshida S, Higa K, Okano H and Tsubota K: Beta-catenin
activation and epithelial-mesenchymal transition in the
pathogenesis of pterygium. Invest Ophthalmol Vis Sci. 48:1511–1517.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Maloof AJ, Ho A and Coroneo MT: Influence
of corneal shape on limbal light focusing. Invest Ophthalmol Vis
Sci. 35:2592–2598. 1994.PubMed/NCBI
|
|
71
|
Butrus SI, Ashraf MF, Laby DM, Rabinowitz
AI, Tabbara SO and Hidayat AA: Increased numbers of mast cells in
pterygia. Am J Ophthalmol. 119:236–237. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ratnakar KS, Goswamy V and Agarwal LP:
Mast cells and pterygium. Acta Ophthalmol (Copenh). 54:363–368.
1976. View Article : Google Scholar
|
|
73
|
Golu T, Mogoantă L, Streba CT, Pirici DN,
Mălăescu D, Mateescu GO and Mutiu G: Pterygium: Histological and
immunohistochemical aspects. Rom J Morphol Embryol. 52:153–158.
2011.PubMed/NCBI
|
|
74
|
Wen Z and Liu Z: The abnormal expression
of interleukine-1 family in pterygium. Yan Ke Xue Bao. 19:133–136.
2003.PubMed/NCBI
|
|
75
|
Di Girolamo N, Kumar RK, Coroneo MT and
Wakefield D: UVB-mediated induction of interleukin-6 and -8 in
pterygia and cultured human pterygium epithelial cells. Invest
Ophthalmol Vis Sci. 43:3430–3437. 2002.PubMed/NCBI
|
|
76
|
Kria L, Ohira A and Amemiya T:
Immunohistochemical localization of basic fibroblast growth factor,
platelet derived growth factor, transforming growth factor-beta and
tumor necrosis factor-alpha in the pterygium. Acta Histochem.
98:195–201. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Kennedy M, Kim KH, Harten B, Brown J,
Planck S, Meshul C, Edelhauser H, Rosenbaum JT, Armstrong CA and
Ansel JC: Ultraviolet irradiation induces the production of
multiple cytokines by human corneal cells. Invest Ophthalmol Vis
Sci. 38:2483–2491. 1997.PubMed/NCBI
|
|
78
|
Krämer M, Sachsenmaier C, Herrlich P and
Rahmsdorf HJ: UV irradiation-induced interleukin-1 and basic
fibroblast growth factor synthesis and release mediate part of the
UV response. J Biol Chem. 268:6734–6741. 1993.PubMed/NCBI
|
|
79
|
Bazzoni F, Kruys V, Shakhov A, Jongeneel
CV and Beutler B: Analysis of tumor necrosis factor promoter
responses to ultraviolet light. J Clin Invest. 93:56–62. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Devary Y, Rosette C, DiDonato JA and Karin
M: NF-kappa B activation by ultraviolet light not dependent on a
nuclear signal. Science. 261:1442–1445. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Siak JJ, Ng SL, Seet LF, Beuerman RW and
Tong L: The nuclear-factor kappaB pathway is activated in
pterygium. Invest Ophthalmol Vis Sci. 52:230–236. 2011. View Article : Google Scholar
|
|
82
|
Cubitt CL, Tang Q, Monteiro CA, Lausch RN
and Oakes JE: IL-8 gene expression in cultures of human corneal
epithelial cells and keratocytes. Invest Ophthalmol Vis Sci.
34:3199–3206. 1993.PubMed/NCBI
|
|
83
|
Cubitt CL, Lausch RN and Oakes JE:
Differences in interleukin-6 gene expression between cultured human
corneal epithelial cells and keratocytes. Invest Ophthalmol Vis
Sci. 36:330–336. 1995.PubMed/NCBI
|
|
84
|
Hong JW, Liu JJ, Lee JS, Mohan RR, Mohan
RR, Woods DJ, He YG and Wilson SE: Proinflammatory chemokine
induction in keratocytes and inflammatory cell infiltration into
the cornea. Invest Ophthalmol Vis Sci. 42:2795–2803.
2001.PubMed/NCBI
|
|
85
|
Di Girolamo N, McCluskey P, Lloyd A,
Coroneo MT and Wakefield D: Expression of MMPs and TIMPs in human
pterygia and cultured pterygium epithelial cells. Invest Ophthalmol
Vis Sci. 41:671–679. 2000.PubMed/NCBI
|
|
86
|
Fenton RR, Molesworth-Kenyon S, Oakes JE
and Lausch RN: Linkage of IL-6 with neutrophil chemoattractant
expression in virus-induced ocular inflammation. Invest Ophthalmol
Vis Sci. 43:737–743. 2002.PubMed/NCBI
|
|
87
|
Cohen T, Nahari D, Cerem LW, Neufeld G and
Levi BZ: Interleukin 6 induces the expression of vascular
endothelial growth factor. J Biol Chem. 271:736–741. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Bacon KB and Camp RD: Interleukin (IL)
-8-induced in vitro human lymphocyte migration is inhibited by
cholera and pertussis toxins and inhibitors of protein kinase C.
Biochem Biophys Res Commun. 169:1099–1104. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Roebuck KA: Regulation of interleukin-8
gene expression. J Interferon Cytokine Res. 19:429–438. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Strieter RM, Kunkel SL, Elner VM, Martonyi
CL, Koch AE, Polverini PJ and Elner SG: Interleukin-8. A corneal
factor that induces neovascularization. Am J Pathol. 141:1279–1284.
1992.PubMed/NCBI
|
|
91
|
Starcher B: Role for tumour necrosis
factor-alpha receptors in ultraviolet-induced skin tumours. Br J
Dermatol. 142:1140–1147. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Yoshida S, Ono M, Shono T, Izumi H,
Ishibashi T, Suzuki H and Kuwano M: Involvement of interleukin-8,
vascular endothelial growth factor, and basic fibroblast growth
factor in tumor necrosis factor alpha-dependent angiogenesis. Mol
Cell Biol. 17:4015–4023. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Menzel EJ, Egerer I, Kulnig W and Smolen
JS: Electron-microscopic and biochemical characteristics of
pterygia (author's transl). Klin Monbl Augenheilkd. 179:438–441.
1981.In German. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Dake Y, Mukae R, Soda Y, Kaneko M and
Amemiya T: Immunohistochemical localization of collagen types I,
II, III and IV in pterygium tissues. Acta Histochem. 87:71–74.
1989. View Article : Google Scholar
|
|
95
|
Nolan TM, Di Girolamo N, Sachdev NH,
Hampartzoumian T, Coroneo MT and Wakefield D: The role of
ultraviolet irradiation and heparin-binding epidermal growth
factor-like growth factor in the pathogenesis of pterygium. Am J
Pathol. 162:567–574. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Bianchi E, Scarinci F, Grande C, Plateroti
R, Plateroti P, Plateroti AM, Fumagalli L, Capozzi P, Feher J and
Artico M: Immunohistochemical profile of VEGF, TGF-β and
PGE2 in human pterygium and normal conjunctiva:
Experimental study and review of the literature. Int J Immunopathol
Pharmacol. 25:607–615. 2012.PubMed/NCBI
|
|
97
|
Liu Z, Xie Y and Zhang M: Overexpression
of type I growth factor receptors in pterygium. Chin Med J (Engl).
115:418–421. 2002.
|
|
98
|
Detorakis ET and Spandidos DA:
Pathogenetic mechanisms and treatment options for ophthalmic
pterygium: Trends and perspectives (Review). Int J Mol Med.
23:439–447. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Krial L, Ohira A and Amemiya T: Growth
factors in cultured pterygium fibroblasts: Immunohistochemical and
ELISA analysis. Graefes Arch Clin Exp Ophthalmol. 236:702–708.
1998. View Article : Google Scholar
|
|
100
|
Li Y, Bi Z, Yan B and Wan Y: UVB radiation
induces expression of HIF-1alpha and VEGF through the
EGFR/PI3K/DEC1 pathway. Int J Mol Med. 18:713–719. 2006.PubMed/NCBI
|
|
101
|
Kim H, Kang JS and Lee WJ: The production
IL-21 and VEGF in UVB-irradiated human keratinocyte cell line,
HaCaT. Immune Netw. 10:75–80. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Brauchle M, Funk JO, Kind P and Werner S:
Ultraviolet B and H2O2 are potent inducers of vascular endothelial
growth factor expression in cultured keratinocytes. J Biol Chem.
271:21793–21797. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Ley RD, Miska KB and Kusewitt DF:
Photoreactivation of ultraviolet radiation-induced basic fibroblast
growth factor (bFGF) and the role of bFGF in corneal lesion
formation in Monodelphis domestica. Environ Mol Mutagen.
38:175–179. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Brenner M, Degitz K, Besch R and Berking
C: Differential expression of melanoma-associated growth factors in
keratinocytes and fibroblasts by ultraviolet A and ultraviolet B
radiation. Br J Dermatol. 153:733–739. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Quan T, He T, Kang S, Voorhees JJ and
Fisher GJ: Ultraviolet irradiation alters transforming growth
factor beta/smad pathway in human skin in vivo. J Invest Dermatol.
119:499–506. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Xu D, Yuan R, Gu H, Liu T, Tu Y, Yang Z
and He L: The effect of ultraviolet radiation on the transforming
growth factor beta 1/Smads pathway and p53 in actinic keratosis and
normal skin. Arch Dermatol Res. 305:777–786. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Abramovitch R, Neeman M, Reich R, Stein I,
Keshet E, Abraham J, Solomon A and Marikovsky M: Intercellular
communication between vascular smooth muscle and endothelial cells
mediated by heparin-binding epidermal growth factor-like growth
factor and vascular endothelial growth factor. FEBS Lett.
425:441–447. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Harding PA, Davis-Fleischer KM,
Crissman-Combs MA, Miller MT, Brigstock DR and Besner GE: Induction
of anchorage independent growth by heparin-binding EGF-like growth
factor (HB-EGF). Growth Factors. 17:49–61. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Nolan TM, Di Girolamo N, Coroneo MT and
Wakefield D: Proliferative effects of heparin-binding epidermal
growth factor-like growth factor on pterygium epithelial cells and
fibroblasts. Invest Ophthalmol Vis Sci. 45:110–113. 2004.
View Article : Google Scholar
|
|
110
|
Witmer AN, Vrensen GF, Van Noorden CJ and
Schlingemann RO: Vascular endothelial growth factors and
angiogenesis in eye disease. Prog Retin Eye Res. 22:1–29. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Andresen JL and Ehlers N: Chemotaxis of
human keratocytes is increased by platelet-derived growth
factor-BB, epidermal growth factor, transforming growth
factor-alpha, acidic fibroblast growth factor, insulin-like growth
factor-I, and transforming growth factor-beta. Curr Eye Res.
17:79–87. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Fredj-Reygrobellet D, Plouet J, Delayre T,
Baudouin C, Bourret F and Lapalus P: Effects of aFGF and bFGF on
wound healing in rabbit corneas. Curr Eye Res. 6:1205–1209. 1987.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Nugent MA and Iozzo RV: Fibroblast growth
factor-2. Int J Biochem Cell Biol. 32:115–120. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Govinden R and Bhoola KD: Genealogy,
expression, and cellular function of transforming growth
factor-beta. Pharmacol Ther. 98:257–265. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Roberts AB, Sporn MB, Assoian RK, Smith
JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl
JH, et al: Transforming growth factor type beta: Rapid induction of
fibrosis and angiogenesis in vivo and stimulation of collagen
formation in vitro. Proc Natl Acad Sci USA. 83:4167–4171. 1986.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Verrecchia F and Mauviel A: Transforming
growth factor-beta and fibrosis. World J Gastroenterol.
13:3056–3062. 2007.PubMed/NCBI
|
|
117
|
Dushku N and Reid TW: Immunohistochemical
evidence that pterygia originate from Rb and TGF-beta expressing,
p53 transformed, limbal basal stem cells. Invest Ophthalmol Vis
Sci. 36:S10271995.
|
|
118
|
Oikawa T, Onozawa C, Sakaguchi M, Morita I
and Murota S: Three isoforms of platelet-derived growth factors all
have the capability to induce angiogenesis in vivo. Biol Pharm
Bull. 17:1686–1688. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Kamiyama K, Iguchi I, Wang X and Imanishi
J: Effects of PDGF on the migration of rabbit corneal fibroblasts
and epithelial cells. Cornea. 17:315–325. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Aspiotis M, Tsanou E, Gorezis S, Ioachim
E, Skyrlas A, Stefaniotou M and Malamou-Mitsi V: Angiogenesis in
pterygium: Study of microvessel density, vascular endothelial
growth factor, and thrombospondin-1. Eye (Lond). 21:1095–1101.
2007. View Article : Google Scholar
|
|
121
|
Chui J, Di Girolamo N, Coroneo MT and
Wakefield D: The role of substance P in the pathogenesis of
pterygia. Invest Ophthalmol Vis Sci. 48:4482–4489. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Naib-Majani W, Breipohl W, Shazli EE,
Theuerkauf I, Pleyer U, Hahne JC and Wernert N: The Ets-1
transcription factor is involved in pterygial angiogenesis. Anat
Histol Embryol. 36:107–110. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Lee JK, Song YS, Ha HS, Park JH, Kim MK,
Park AJ and Kim JC: Endothelial progenitor cells in pterygium
pathogenesis. Eye (Lond). 21:1186–1193. 2007. View Article : Google Scholar
|
|
124
|
Tran MT, Lausch RN and Oakes JE: Substance
P differentially stimulates IL-8 synthesis in human corneal
epithelial cells. Invest Ophthalmol Vis Sci. 41:3871–3877.
2000.PubMed/NCBI
|
|
125
|
Jin J, Guan M, Sima J, Gao G, Zhang M, Liu
Z, Fant J and Ma JX: Decreased pigment epithelium-derived factor
and increased vascular endothelial growth factor levels in
pterygia. Cornea. 22:473–477. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Legat FJ, Griesbacher T, Schicho R,
Althuber P, Schuligoi R, Kerl H and Wolf P: Repeated
subinflammatory ultraviolet B irradiation increases substance P and
calcitonin gene-related peptide content and augments mustard
oil-induced neurogenic inflammation in the skin of rats. Neurosci
Lett. 329:309–313. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Tsai YY, Chiang CC, Yeh KT, Lee H and
Cheng YW: Effect of TIMP-1 and MMP in pterygium invasion. Invest
Ophthalmol Vis Sci. 51:3462–3467. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Zeng J, Jiang D, Liu X and Tang L:
Expression of matrix metal-loproteinase in human pterygia. Yan Ke
Xue Bao. 20:242–245. 2004.In Chinese.
|
|
129
|
Ansari MW, Rahi AH and Shukla BR:
Pseudoelastic nature of pterygium. Br J Ophthalmol. 54:473–476.
1970. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Hogan MJ and Alvarado J: Pterygium and
pinguecula: Electron microscopic study. Arch Ophthalmol.
78:174–186. 1967. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Austin P, Jakobiec FA and Iwamoto T:
Elastodysplasia and elastodystrophy as the pathologic bases of
ocular pterygia and pinguecula. Ophthalmology. 90:96–109. 1983.
View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Bernstein EF, Chen YQ, Tamai K, Shepley
KJ, Resnik KS, Zhang H, Tuan R, Mauviel A and Uitto J: Enhanced
elastin and fibrillin gene expression in chronically photodamaged
skin. J Invest Dermatol. 103:182–186. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Bernstein EF, Brown DB, Urbach F, Forbes
D, Del Monaco M, Wu M, Katchman SD and Uitto J: Ultraviolet
radiation activates the human elastin promoter in transgenic mice:
A novel in vivo and in vitro model of cutaneous photoaging. J
Invest Dermatol. 105:269–273. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Schwartz E, Feinberg E, Lebwohl M, Mariani
TJ and Boyd CD: Ultraviolet radiation increases tropoelastin
accumulation by a post-transcriptional mechanism in dermal
fibroblasts. J Invest Dermatol. 105:65–69. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Wang IJ, Hu FR, Chen PJ and Lin CT:
Mechanism of abnormal elastin gene expression in the pinguecular
part of pterygia. Am J Pathol. 157:1269–1276. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Di Girolamo N, Wakefield D and Coroneo MT:
Differential expression of matrix metalloproteinases and their
tissue inhibitors at the advancing pterygium head. Invest
Ophthalmol Vis Sci. 41:4142–4149. 2000.PubMed/NCBI
|
|
137
|
Naib-Majani W, Eltohami I, Wernert N,
Watts W, Tschesche H, Pleyer U and Breipohl W: Distribution of
extracellular matrix proteins in pterygia: An immunohistochemical
study. Graefes Arch Clin Exp Ophthalmol. 242:332–338. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Sekhon BS: Matrix metalloproteinases - an
overview. Res Rep Biol. 1:1–20. 2010.
|
|
139
|
Li DQ, Lee SB, Gunja-Smith Z, Liu Y,
Solomon A, Meller D and Tseng SC: Overexpression of collagenase
(MMP-1) and stromelysin (MMP-3) by pterygium head fibroblasts. Arch
Ophthalmol. 119:71–80. 2001.PubMed/NCBI
|
|
140
|
Di Girolamo N, Coroneo MT and Wakefield D:
Active matrilysin (MMP-7) in human pterygia: Potential role in
angiogenesis. Invest Ophthalmol Vis Sci. 42:1963–1968.
2001.PubMed/NCBI
|
|
141
|
Yang SF, Lin CY, Yang PY, Chao SC, Ye YZ
and Hu DN: Increased expression of gelatinase (MMP-2 and MMP-9) in
pterygia and pterygium fibroblasts with disease progression and
activation of protein kinase C. Invest Ophthalmol Vis Sci.
50:4588–4596. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Koźák I, Klisenbauer D and Juhás T: UV-B
induced production of MMP-2 and MMP-9 in human corneal cells.
Physiol Res. 52:229–234. 2003.
|
|
143
|
Ramos MC, Steinbrenner H, Stuhlmann D,
Sies H and Brenneisen P: Induction of MMP-10 and MMP-1 in a
squamous cell carcinoma cell line by ultraviolet radiation. Biol
Chem. 385:75–86. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Brenneisen P, Sies H and
Scharffetter-Kochanek K: Ultraviolet-B irradiation and matrix
metalloproteinases: From induction via signaling to initial events.
Ann N Y Acad Sci. 973:31–43. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Stein B, Rahmsdorf HJ, Steffen A, Litfin M
and Herrlich P: UV-induced DNA damage is an intermediate step in
UV-induced expression of human immunodeficiency virus type 1,
collagenase, c-fos, and metallothionein. Mol Cell Biol.
9:5169–5181. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Rittié L and Fisher GJ: UV-light-induced
signal cascades and skin aging. Ageing Res Rev. 1:705–720. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Di Girolamo N, Coroneo MT and Wakefield D:
UVB-elicited induction of MMP-1 expression in human ocular surface
epithelial cells is mediated through the ERK1/2 MAPK-dependent
pathway. Invest Ophthalmol Vis Sci. 44:4705–4714. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Bachelor MA and Bowden GT: UVA-mediated
activation of signaling pathways involved in skin tumor promotion
and progression. Semin Cancer Biol. 14:131–138. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Chao SC, Hu DN, Yang PY, Lin CY, Nien CW,
Yang SF and Robert JE: Ultraviolet-A irradiation upregulated
urokinase-type plasminogen activator in pterygium fibroblasts
through ERK and JNK pathways. Invest Ophthalmol Vis Sci.
54:999–1007. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Ooi JL, Sharma NS, Papalkar D, Sharma S,
Oakey M, Dawes P and Coroneo MT: Ultraviolet fluorescence
photography to detect early sun damage in the eyes of school-aged
children. Am J Ophthalmol. 141:294–298. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Tan DT, Tang WY, Liu YP, Goh HS and Smith
DR: Apoptosis and apoptosis related gene expression in normal
conjunctiva and pterygium. Br J Ophthalmol. 84:212–226. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Kwok LS, Kuznetsov VA, Ho A and Coroneo
MT: Prevention of the adverse photic effects of peripheral
light-focusing using UV-blocking contact lenses. Invest Ophthalmol
Vis Sci. 44:1501–1507. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Coroneo M: Ultraviolet radiation and the
anterior eye. Eye Contact Lens. 37:214–224. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Said DG, Faraj LA, Elalfy MS, Yeung A,
Miri A, Fares U, Otri AM, Rahman I, Maharajan S and Dua HS:
Intra-lesional 5 fluorouracil for the management of recurrent
pterygium. Eye (Lond). 27:1123–1129. 2013. View Article : Google Scholar
|
|
155
|
Cuevas P, Outeiriño LA, Angulo J and
Giménez-Gallego G: Topical dobesilate eye drops for ophthalmic
primary pterygium. BMJ Case Rep. 2012. View Article : Google Scholar
|
|
156
|
Lee K, Young Lee S, Park SY and Yang H:
Antifibrotic effect of pirfenidone on human pterygium fibroblasts.
Curr Eye Res. 39:680–685. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Sarac O, Demirel S and Oltulu R: Efficacy
of intralesional bevacizumab administration in primary pterygium: A
quantitative analysis. Eye Contact Lens. 40:46–50. 2014. View Article : Google Scholar
|