|
1
|
Hewitt G, Jurk D, Marques FD, Correia-Melo
C, Hardy T, Gackowska A, Anderson R, Taschuk M, Mann J and Passos
JF: Telomeres are favoured targets of a president DNA damage in
ageing and stress-induced senescence. Nat Commun. 3:7082012.
View Article : Google Scholar
|
|
2
|
Shay JW and Wright WE: Senescence and
immortalization: Role of telomeres and telomerase. Carcinogenesis.
26:867–874. 2005. View Article : Google Scholar
|
|
3
|
Collins K: The biogenesis and regulation
of telomerase holoenzymes. Nat Rev Mol Cell Biol. 7:484–494. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Harley CB, Futcher AB and Greider CW:
Telomeres shorten during ageing of human fibroblasts. Nature.
345:458–460. 1990. View
Article : Google Scholar : PubMed/NCBI
|
|
5
|
Shalev I, Entringer S, Wadhwa PD,
Wolkowitz OM, Puterman E, Lin J and Epel ES: Stress and telomere
biology: A lifespan perspective. Psychoneuroendocrinology.
38:1835–1842. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Armanios M and Blackburn EH: The telomere
syndromes. Nat Rev Genet. 13:693–704. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Takai H, Smogorzewska A and de Lange T:
DNA damage foci at dysfunctional telomeres. Curr Biol.
13:1549–1556. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
d'Adda di Fagagna F, Reaper PM,
Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G,
Carter NP and Jackson SP: A DNA damage checkpoint response in
telomere-initiated senescence. Nature. 426:194–198. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Abdalla HI, Burton G, Kirkland A, Johnson
MR, Leonard T, Brooks AA and Studd JW: Age, pregnancy and
miscarriage: Uterine versus ovarian factors. Hum Reprod.
8:1512–1517. 1993.PubMed/NCBI
|
|
10
|
Janny L and Menezo YJ: Maternal age effect
on early human embryonic development and blastocyst formation. Mol
Reprod Dev. 45:31–37. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Wright WE, Piatyszek MA, Rainey WE, Byrd W
and Shay JW: Telomerase activity in human germline and embryonic
tissues and cells. Dev Genet. 18:173–179. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Allsopp R, Shimoda J, Easa D and Ward K:
Long telomeres in the mature human placenta. Placenta. 28:324–327.
2007. View Article : Google Scholar
|
|
13
|
Liu L, Blasco M, Trimarchi J and Keefe D:
An essential role for functional telomeres in mouse germ cells
during fertilization and early development. Dev Biol. 249:74–84.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Orly J: Molecular events defining
follicular developments and steroidogenesis in the ovary. Gene
engineering in endocrinology. Shupnik MA: Humana Press Inc; Totowa,
NJ: pp. 239–276. 2001
|
|
15
|
Klinger FG and De Felici M: In vitro
development of growing oocytes from fetal mouse oocytes:
Stage-specific regulation by stem cell factor and granulosa cells.
Dev Biol. 244:85–95. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Russo V, Berardinelli P, Capacchietti G
and Scapolo PA: Localization of the telomerase catalytic subunit
(TERT) in pig ovarian follicles. Vet Res Commun. 27(Suppl 1):
623–626. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Liu W and Zhu GJ: Expression of telomerase
in human ovarian luteinized granulosa cells and its relationship to
ovarian function. Zhonghua Fu Chan Ke Za Zhi. 38:402–404. 2003.In
Chinese. PubMed/NCBI
|
|
18
|
Kinugawa C, Murakami T, Okamura K and
Yajima A: Telomerase activity in normal ovaries and premature
ovarian failure. Tohoku. J Exp Med. 190:231–238. 2000.
|
|
19
|
Johnson JE, Higdon HL III and Boone WR:
Effect of human granulosa cell co-culture using standard culture
media on the maturation and fertilization potential of immature
human oocytes. Fertil Steril. 90:1674–1679. 2008. View Article : Google Scholar
|
|
20
|
Heng BC, Tong GQ and Ng SC: Effects of
granulosa coculture on in-vitro oocyte meiotic maturation within a
putatively less competent murine model. Theriogenology.
62:1066–1092. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Biron-Shental T, Kidron D, Sukenik-Halevy
R, Goldberg-Bittman L, Sharony R, Fejgin MD and Amiel A: TERC
telomerase subunit gene copy number in placentas from pregnancies
complicated with intrauterine growth restriction. Early Hum Dev.
87:73–75. 2011. View Article : Google Scholar
|
|
22
|
Lavranos TC, Mathis JM, Latham SE,
Kalionis B, Shay JW and Rodgers RJ: Evidence for ovarian granulosa
stem cells: Telomerase activity and localization of the telomerase
ribonucleic acid component in bovine ovarian follicles. Biol
Reprod. 61:358–366. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Cheng EH, Chen SU, Lee TH, Pai YP, Huang
LS, Huang CC and Lee MS: Evaluation of telomere length in cumulus
cells as a potential biomarker of oocyte and embryo quality. Hum
Reprod. 28:929–936. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Chen H, Wang W, Mo Y, Ma Y, Ouyang N, Li
R, Mai M, He Y, Bodombossou-Djobo MM and Yang D: Women with high
telomerase activity in luteinised granulosa cells have a higher
pregnancy rate during in vitro fertilisation treatment. J Assist
Reprod Genet. 28:797–807. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Butts S, Riethman H, Ratcliffe S, Shaunik
A, Coutifaris C and Barnhart K: Correlation of telomere length and
telomerase activity with occult ovarian insufficiency. J Clin
Endocrinol Metab. 94:4835–4843. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wang W, Chen H, Li R, Ouyang N, Chen J,
Huang L, Mai M, Zhang N, Zhang Q and Yang D: Telomerase activity is
more significant for predicting the outcome of IVF treatment than
telomere length in granulosa cells. Reproduction. 147:649–657.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Keefe DL, Franco S, Liu L, Trimarchi J,
Cao B, Weitzen S, Agarwal S and Blasco MA: Telomere length predicts
embryo fragmentation after in vitro fertilization in women - toward
a telomere theory of reproductive aging in women. Am J Obstet
Gynecol. 192:1256–1260; discussion 1260–1261. 2005. View Article : Google Scholar
|
|
28
|
Chen RJ, Chu CT, Huang SC, Chow SN and
Hsieh CY: Telomerase activity in gestational trophoblastic disease
and placental tissue from early and late human pregnancies. Hum
Reprod. 17:463–468. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Izutsu T, Kudo T, Sato T, Nishiya I,
Ohyashiki K and Nakagawara K: Telomerase and proliferative activity
in placenta from women with and without fetal growth restriction.
Obstet Gynecol. 93:124–129. 1999.PubMed/NCBI
|
|
30
|
Nishi H, Yahata N, Ohyashiki K, Isaka K,
Shiraishi K, Ohyashiki JH, Toyama K and Takayama M: Comparison of
telomerase activity in normal chorionic villi to trophoblastic
diseases. Int J Oncol. 12:81–85. 1998.PubMed/NCBI
|
|
31
|
Kyo S, Takakura M, Tanaka M, Kanaya T,
Sagawa T, Kohama T, Ishikawa H, Nakano T, Shimoya K and Inoue M:
Expression of telomerase activity in human chorion. Biochem Biophys
Res Commun. 241:498–503. 1997. View Article : Google Scholar
|
|
32
|
Biron-Shental T, Sukenik Halevy R,
Goldberg-Bittman L, Kidron D, Fejgin MD and Amiel A: Telomeres are
shorter in placental trophoblasts of pregnancies complicated with
intrauterine growth restriction (IUGR). Early Hum Dev. 86:451–456.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Cosmi E, Fanelli T, Visentin S, Daniele T
and Zanardo V: Consequences in infants the were intrauterine growth
restricted. J Pregnancy. 2011:3643812011. View Article : Google Scholar
|
|
34
|
Kudo T, Izutsu T and Sato T: Telomerase
activity and apoptosis as indicators of ageing in placenta with and
without intrauterine growth retardation. Placenta. 21:493–500.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Izutsu T, Kudo T, Sato T, Nishiya I,
Ohyashiki K, Mori M and Nakagawara K: Telomerase activity in human
chorionic villi and placenta determined by TRAP and in situ TRAP
assay. Placenta. 19:613–618. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Izutsu T, Izutsu N, Iwane A, Takada A,
Nagasawa T, Kanasugi T and Sugiyama T: Expression of human
telomerase reverse transcriptase and correlation with telomerase
activity in placentas with and without intrauterine growth
retardation. Acta Obstet Gynecol Scand. 85:3–11. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Davy P, Nagata M, Bullard P, Fogelson NS
and Allsopp R: Fetal growth restriction is associated with
accelerated telomere shortening and increased expression of cell
senescence markers in the placenta. Placenta. 30:539–542. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Breathnach FM and Malone FD: Fetal growth
disorders in twin gestations. Semin Perinatol. 36:175–181. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Banks CL, Nelson SM and Owen P: First and
third trimester ultrasound in the prediction of birthweight
discordance in dichorionic twins. Eur J Obstet Gynecol Reprod Biol.
138:34–38. 2008. View Article : Google Scholar
|
|
40
|
Kim SY, Lee SP, Lee JS, Yoon SJ, Jun G and
Hwang YJ: Telomerase and apoptosis in the placental trophoblasts of
growth discordant twins. Yonsei Med J. 47:698–705. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Jauniaux E, Gulbis B and Burton GJ: The
human first trimester gestational sac limits rather than
facilitates oxygen transfer to the foetus - a review. Placenta.
24(Suppl A): S86–S93. 2003. View Article : Google Scholar
|
|
42
|
Giaccia AJ, Simon MC and Johnson R: The
biology of hypoxia: The role of oxygen sensing in development,
normal function, and disease. Genes Dev. 18:2183–2194. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Ream M, Ray AM, Chandra R and Chikaraishi
DM: Early fetal hypoxia leads to growth restriction and myocardial
thinning. Am J Physiol Regul Integr Comp Physiol. 295:R583–R595.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Carter AM: Placental oxygen consumption.
Part I: In vivo studies - a review. Placenta. 21(Suppl A): S31–S37.
2000. View Article : Google Scholar
|
|
45
|
Anderson RN: Deaths: Leading causes for
2000. Natl Vital Stat Rep. 50:1–85. 2002.PubMed/NCBI
|
|
46
|
Hutter D, Kingdom J and Jalggi E: Causes
and mechanisms of intrauterine hypoxia and its impact on the fetal
cardiovascular system: a review. Int J Pediatr. 2010:4013232010.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Miller SL, Huppi PS and Mallard C: The
consequences of fetal growth restriction on brain structure and
neurodevelopmental outcome. J Physiol. 594:807–823. 2016.
View Article : Google Scholar
|
|
48
|
Faa G, Marcialis MA, Ravarino A, Piras M,
Pintus MC and Fanos V: Fetal programming of the human brain: Is
there a link with insurgence of neurodegenerative disorders in
adulthood? Curr Med Chem. 21:3854–3876. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Sutter CH, Laughner E and Semenza GL:
Hypoxia-inducible factor 1α protein expression is controlled by
oxygen-regulated ubiquitination that is disrupted by deletions and
missense mutations. Proc Natl Acad Sci USA. 97:4748–4753. 2000.
View Article : Google Scholar
|
|
50
|
Wang GL, Jiang BH, Rue EA and Semenza GL:
Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS
heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci
USA. 92:5510–5514. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Yatabe N, Kyo S, Maida Y, Nishi H,
Nakamura M, Kanaya T, Tanaka M, Isaka K, Ogawa S and Inoue M:
HIF-1-mediated activation of telomerase in cervical cancer cells.
Oncogene. 23:3708–3715. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Iyer NV, Kotch LE, Agani F, Leung SW,
Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY,
et al: Cellular and developmental control of O2 homeostasis by
hypoxia-inducible factor 1 α. Genes Dev. 12:149–162. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Sukenik-Halevy R, Fejgin M, Kidron D,
Goldberg-Bittman L, Sharony R, Biron-Shental T, Kitay-Cohen Y and
Amiel A: Telomere aggregate formation in placenta specimens of
pregnancies complicated with pre-eclampsia. Cancer Genet Cytogenet.
195:27–30. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Nishi H, Nakada T, Kyo S, Inoue M, Shay JW
and Isaka K: Hypoxia-inducible factor 1 mediates upregulation of
telomerase (hTERT). Mol Cell Biol. 24:6076–6083. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Guan JZ, Guan WP, Maeda T and Makino N:
Different levels of hypoxia regulate telomere length and telomerase
activity. Aging Clin Exp Res. 24:213–217. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Coussens M, Davy P, Brown L, Foster C,
Andrews WH, Nagata M and Allsopp R: RNAi screen for telomerase
reverse transcriptase transcriptional regulators identifies
HIF1alpha as critical for telomerase function in murine embryonic
stem cells. Proc Natl Acad Sci USA. 107:13842–13847. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Stewart SA and Weinberg RA: Telomerase and
human tumorigenesis. Semin Cancer Biol. 10:399–406. 2000.
View Article : Google Scholar
|
|
58
|
Zhang P, Chan SL, Fu W, Mendoza M and
Mattson MP: TERT suppresses apoptotis at a premitochondrial step by
a mechanism requiring reverse transcriptase activity and 14-3-3
protein-binding ability. FASEB J. 17:767–769. 2003.PubMed/NCBI
|
|
59
|
Entringer S, Epel ES, Kumsta R, Lin J,
Hellhammer DH, Blackburn EH, Wüst S and Wadhwa PD: Stress exposure
in intrauterine life is associated with shorter telomere length in
young adulthood. Proc Natl Acad Sci USA. 108:E513–E518. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Cohen S, Janicki-Deverts D and Miller GE:
Psychological stress and disease. JAMA. 298:1685–1687. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Epel ES, Blackburn EH, Lin J, Dhabhar FS,
Adler NE, Morrow JD and Cawthon RM: Accelerated telomere shortening
in response to life stress. Proc Natl Acad Sci USA.
101:17312–17315. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Monaghan P: Organismal stress, telomeres
and life histories. J Exp Biol. 217:57–66. 2014. View Article : Google Scholar
|
|
63
|
Kiecolt-Glaser JK and Glaser R:
Psychological stress, telomeres, and telomerase. Brain Behav Immun.
24:529–530. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Simon NM, Smoller JW, McNamara KL, Maser
RS, Zalta AK, Pollack MH, Nierenberg AA, Fava M and Wong KK:
Telomere shortening and mood disorders: Preliminary support for a
chronic stress model of accelerated aging. Biol Psychiatry.
60:432–435. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Choi J, Fauce SR and Effros RB: Reduced
telomerase activity in human T lymphocytes exposed to cortisol.
Brain Behav Immun. 22:600–605. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Tomiyama AJ, O'Donovan A, Lin J, Puterman
E, Lazaro A, Chan J, Dhabhar FS, Wolkowitz O, Kirschbaum C,
Blackburn E, et al: Does cellular aging relate to patterns of
allostasis? An examination of basal and stress reactive HPA axis
activity and telomere length. Physiol Behav. 106:40–45. 2012.
View Article : Google Scholar :
|
|
67
|
Sohn SH, Subramani VK, Moon YS and Jang
ISL: Telomeric DNA quantity, DNA damage, and heat shock protein
gene expression as physiological stress markers in chickens. Poult
Sci. 91:829–836. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wood-Bradley RJ, Barrand S, Giot A and
Armitage JA: Understanding the role of maternal diet on kidney
development; an opportunity to improve cardiovascular and renal
health for future generations. Nutrients. 7:1881–1905. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kerac M, Postels DG, Mallewa M, Alusine
Jalloh A, Voskuijl WP, Groce N, Gladstone M and Molyneux E: The
interaction of malnutrition and neurologic disability in Africa.
Semin Pediatr Neurol. 21:42–49. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Nnam NM: Improving maternal nutrition for
better pregnancy outcomes. Proc Nutr Soc. 74:454–459. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Petry CJ, Dorling MW, Pawlak DB, Ozanne SE
and Hales CN: Diabetes in old male offspring of rat dams fed a
reduced protein diet. Int J Exp Diabetes Res. 2:139–143. 2001.
View Article : Google Scholar
|
|
72
|
Snoeck A, Remacle C, Reusens B and Hoet
JJ: Effect of a low protein diet during pregnancy on the fetal rat
endocrine pancreas. Biol Neonate. 57:107–118. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Franco MC, Akamine EH, Di Marco GS,
Casarini DE, Fortes ZB, Tostes RC, Carvalho MH and Nigro D: NADPH
oxidase and enhanced superoxide generation in intrauterine
undernourished rats: Involvement of the renin-angiotensin system.
Cardiovasc Res. 59:767–775. 2003. View Article : Google Scholar
|
|
74
|
Richter T and von Zglinicki T: A
continuous correlation between oxidative stress and telomere
shortening in fibroblasts. Exp Gerontol. 42:1039–1042. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Sekoguchi S, Nakajima T, Moriguchi M, Jo
M, Nishikawa T, Katagishi T, Kimura H, Minami M, Itoh Y, Kagawa K,
et al: Role of cell-cycle turnover and oxidative stress in telomere
shortening and cellular senescence in patients with chronic
hepatitis C. J Gastroenterol Hepatol. 22:182–190. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Petrik J, Reusens B, Arany E, Remacle C,
Coelho C, Hoet JJ and Hill DJ: A low protein diet alters the
balance of islet cell replication and apoptosis in the fetal and
neonatal rat and is associated with a reduced pancreatic expression
of insulin-like growth factor-II. Endocrinology. 140:4861–4873.
1999.PubMed/NCBI
|
|
77
|
Tarry-Adkins JL, Chen JH, Smith NS, Jones
RH, Cherif H and Ozanne SE: Poor maternal nutrition followed by
accelerated postnatal growth leads to telomere shortening and
increased markers of cell senescence in rat islets. FASEB J.
23:1521–1528. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Tarry-Adkins JL, Martin-Gronert MS, Chen
JH, Cripps RL and Ozanne SE: Maternal diet influences DNA damage,
aortic telomere length, oxidative stress, and antioxidant defense
capacity in rats. FASEB J. 22:2037–2044. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Jennings BJ, Ozanne SE, Dorling MW and
Hales CN: Early growth determines longevity in male rats and may be
related to telomere shortening in the kidney. FEBS Lett. 448:4–8.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Tarry-Adkins JL, Fernandez-Twinn DS, Chen
JH, Hargreaves IP, Martin-Gronert MS, McConnell JM and Ozanne SE:
Nutritional programming of coenzyme Q: Potential for prevention and
intervention? FASEB J. 28:5398–5405. 2014. View Article : Google Scholar : PubMed/NCBI
|