|
1
|
van den Berg ME, Castellote JM,
Mahillo-Fernandez I and de Pedro-Cuesta J: Incidence of spinal cord
injury worldwide: A systematic review. Neuroepidemiology.
34:184–192. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Taillandier D, Aurousseau E, Meynial-Denis
D, Bechet D, Ferrara M, Cottin P, Ducastaing A, Bigard X, Guezennec
CY, Schmid HP and Attaix D: Coordinate activation of lysosomal,
Ca2+-activated and ATP-ubiquitin-dependent proteinases
in the unweighted rat soleus muscle. Biochem J. 316:65–72. 1996.
View Article : Google Scholar
|
|
3
|
Castro MJ, Apple DF Jr, Rogers S and
Dudley GA: Influence of complete spinal cord injury on skeletal
muscle mechanics within the first 6 months of injury. Eur J Appl
Physiol. 81:128–131. 2000. View Article : Google Scholar
|
|
4
|
Bodine SC: Disuse-induced muscle wasting.
Int J Biochem Cell Biol. 45:2200–2208. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Booth FW and Gollnick PD: Effects of
disuse on the structure and function of skeletal muscle. Med Sci
Sports Exerc. 15:415–420. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ohira Y, Yoshinaga T, Nomura T, Kawano F,
Ishihara A, Nonaka I, Roy RR and Edgerton VR: Gravitational
unloading effects on muscle fiber size, phenotype and myonuclear
number. Adv Space Res. 30:777–781. 2002. View Article : Google Scholar
|
|
7
|
Roy RR, Baldwin KM and Edgerton VR: The
plasticity of skeletal muscle: Effects of neuromuscular activity.
Exerc Sport Sci Rev. 19:269–312. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Furuno K, Goodman MN and Goldberg AL: Role
of different proteolytic systems in the degradation of muscle
proteins during denervation atrophy. J Biol Chem. 265:8550–8557.
1990.PubMed/NCBI
|
|
9
|
Midrio M, Danieli-Betto D, Megighian A,
Velussi C, Catani C and Carraro U: Slow-to-fast transformation of
denervated soleus muscle of the rat, in the presence of an
antifibrillatory drug. Pflugers Arch. 420:446–450. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Goldberg AL: Protein turnover in skeletal
muscle. II. Effects of denervation and cortisone on protein
catabolism in skeletal muscle. J Biol Chem. 244:3223–3229.
1969.PubMed/NCBI
|
|
11
|
Goldspink DF: The effects of denervation
on protein turnover of rat skeletal muscle. Biochem J. 156:71–80.
1976. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Gonzalez-Rothi EJ, Rombola AM, Rousseau
CA, Mercier LM, Fitzpatrick GM, Reier PJ, Fuller DD and Lane MA:
Spinal inter-neurons and forelimb plasticity after incomplete
cervical spinal cord injury in adult rats. J Neurotrauma.
32:893–907. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kaegi S, Schwab ME, Dietz V and Fouad K:
Electromyographic activity associated with spontaneous functional
recovery after spinal cord injury in rats. Eur J Neurosci.
16:249–258. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kostovski E, Boon H, Hjeltnes N, Lundell
LS, Ahlsén M, Chibalin AV, Krook A, Iversen PO and Widegren U:
Altered content of AMP-activated protein kinase isoforms in
skeletal muscle from spinal cord injured subjects. Am J Physiol
Endocrinol Metab. 305:E1071–E1080. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Park S and Hong Y, Lee Y, Won J, Chang KT
and Hong Y: Differential expression of caveolins and myosin heavy
chains in response to forced exercise in rats. Lab Anim Res.
28:1–9. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Qin W, Bauman WA and Cardozo C: Bone and
muscle loss after spinal cord injury: Organ interactions. Ann NY
Acad Sci. 1211:66–84. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wu Y, Collier L, Qin W, Creasey G, Bauman
WA, Jarvis J and Cardozo C: Electrical stimulation modulates Wnt
signaling and regulates genes for the motor endplate and calcium
binding in muscle of rats with spinal cord transection. BMC
Neurosci. 14:812013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Hill CE, Beattie MS and Bresnahan JC:
Degeneration and sprouting of identified descending supraspinal
axons after contusive spinal cord injury in the rat. Exp Neurol.
171:153–169. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Basso DM, Beattie MS and Bresnahan JC: A
sensitive and reliable locomotor rating scale for open field
testing in rats. J Neurotrauma. 12:1–21. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal
A, Vandergriff J, Rabkin S, Guo N, Muruganujan A, Doremieux O,
Campbell MJ, Kitano H and Thomas PD: The PANTHER database of
protein families, subfamilies, functions and pathways. Nucleic
Acids Res. 33:D284–D288. 2005. View Article : Google Scholar :
|
|
21
|
Basso DM, Beattie MS, Bresnahan JC,
Anderson DK, Faden AI, Gruner JA, Holford TR, Hsu CY, Noble LJ,
Nockels R, et al: MASCIS evaluation of open field locomotor scores:
Effects of experience and teamwork on reliability. Multicenter
Animal Spinal Cord Injury Study. J Neurotrauma. 13:343–359. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Bickel CS, Slade JM, Haddad F, Adams GR
and Dudley GA: Acute molecular responses of skeletal muscle to
resistance exercise in able-bodied and spinal cord-injured
subjects. J Appl Physiol (1985). 94:2255–2262. 2003. View Article : Google Scholar
|
|
23
|
Johnston TE, Modlesky CM, Betz RR and
Lauer RT: Muscle changes following cycling andor electrical
stimulation in pediatric spinal cord injury. Arch Phys Med Rehabil.
92:1937–1943. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Sato Y, Shimizu M, Mizunoya W, Wariishi H,
Tatsumi R, Buchman VL and Ikeuchi Y: Differential expression of
sarco-plasmic and myofibrillar proteins of rat soleus muscle during
denervation atrophy. Biosci Biotechnol Biochem. 73:1748–1756. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Sun H, Li M, Gong L, Liu M, Ding F and Gu
X: iTRAQ-coupled 2D LC-MSMS analysis on differentially expressed
proteins in denervated tibialis anterior muscle of Rattus
norvegicus. Mol Cell Biochem. 364:193–207. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Favier FB, Costes F, Defour A, Bonnefoy R,
Lefai E, Baugé S, Peinnequin A, Benoit H and Freyssenet D:
Downregulation of Aktmammalian target of rapamycin pathway in
skeletal muscle is associated with increased REDD1 expression in
response to chronic hypoxia. Am J Physiol Regul Integr Comp
Physiol. 298:R1659–R1666. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Irani DN and Kerr DA: 14-3-3 protein in
the cerebrospinal fluid of patients with acute transverse myelitis.
Lancet. 355:9012000. View Article : Google Scholar
|
|
28
|
de Seze J, Peoc'h K, Ferriby D, Stojkovic
T, Laplanche JL and Vermersch P: 14-3-3 Protein in the
cerebrospinal fluid of patients with acute transverse myelitis and
multiple sclerosis. J Neurol. 249:626–627. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Lubieniecka JM, Streijger F, Lee JH,
Stoynov N, Liu J, Mottus R, Pfeifer T, Kwon BK, Coorssen JR, Foster
LJ, et al: Biomarkers for severity of spinal cord injury in the
cerebrospinal fluid of rats. PLoS One. 6:e192472011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Lee JY, Kim BJ, Sim G, Kim GT, Kang D,
Jung JH, Hwa JS, Kwak YJ, Choi YJ, Park YS, et al: Spinal cord
injury markedly altered protein expression patterns in the affected
rat urinary bladder during healing stages. J Korean Med Sci.
26:814–823. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Cuadrado-Corrales N, Jiménez-Huete A, Albo
C, Hortigüela R, Vega L, Cerrato L, Sierra-Moros M, Rábano A, de
Pedro-Cuesta J and Calero M: Impact of the clinical context on the
14-3-3 test for the diagnosis of sporadic CJD. BMC Neurol.
6:252006. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Namikawa K, Su Q, Kiryu-Seo S and Kiyama
H: Enhanced expression of 14-3-3 family members in injured
motoneurons. Res Mol Brain Res. 55:315–320. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Peoc'h K, Beaudry P, Lauprêtre N and
Laplanche JL: CSF detection of the 14-3-3 protein in unselected
patients with dementia. Neurology. 58:509–510. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Neppl RL, Kataoka M and Wang DZ:
Crystallin-αB regulates skeletal muscle homeostasis via modulation
of argonaute2 activity. J Biol Chem. 289:17240–17248. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Sanbe A: Molecular mechanisms of
α-crystallinopathy and its therapeutic strategy. Biol Pharm Bull.
34:1653–1658. 2011. View Article : Google Scholar
|
|
36
|
Singh BN, Rao KS and Rao ChM:
Ubiq-uitin-proteasome-mediated degradation and synthesis of MyoD is
modulated by alphaB-crystallin, a small heat shock protein, during
muscle differentiation. Biochim Biophys Acta. 1803:288–299. 2010.
View Article : Google Scholar
|
|
37
|
Atomi Y, Yamada S and Nishida T: Early
changes of alpha B-crystallin mRNA in rat skeletal muscle to
mechanical tension and denervation. Biochem Biophys Res Commun.
181:1323–1330. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Tews DS, Goebel HH, Schneider I, Gunkel A,
Stennert E and Neiss WF: Expression profile of stress proteins,
intermediate filaments, and adhesion molecules in experimentally
denervated and reinnervated rat facial muscle. Exp Neurol.
146:125–134. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Gomes RA, Vicente Miranda H, Silva MS,
Graça G, Coelho AV, Ferreira AE, Cordeiro C and Freire AP: Yeast
protein glycation in vivo by methylglyoxal. Molecular modification
of glycolytic enzymes and heat shock proteins. FEBS J.
273:5273–5287. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Nozais M, Merkulova T, Keller A, Janmot C,
Lompré AM, D'Albis A and Lucas M: Denervation of rabbit
gastrocnemius and soleus muscles: Effect on muscle-specific
enolase. Eur J Biochem. 263:195–201. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Merkulova T, Dehaupas M, Nevers MC,
Creminon C, Alam-eddine H and Keller A: Differential modulation of
alpha, beta and gamma enolase isoforms in regenerating mouse
skeletal muscle. Eur J Biochem. 267:3735–3743. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Kato K, Shimizu A, Semba R and Satoh T:
Tissue distribution, developmental profiles and effect of
denervation of enolase isozymes in rat muscles. Biochim Biophys
Acta. 841:50–58. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Matsushita H, Yamada S, Satoh T, Kato K
and Adachi M: Muscle-specific beta-enolase concentrations after
cross- and random innervation of soleus and extensor digitorum
longus in rats. Exp Neurol. 93:84–91. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Liao W, Hong SH, Chan BH, Rudolph FB,
Clark SC and Chan L: APOBEC-2, a cardiac- and skeletal
muscle-specific member of the cytidine deaminase supergene family.
Biochem Biophys Res Commun. 260:398–404. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Mikl MC, Watt IN, Lu M, Reik W, Davies SL,
Neuberger MS and Rada C: Mice deficient in APOBEC2 and APOBEC3. Mol
Cell Biol. 25:7270–7277. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sato Y, Probst HC, Tatsumi R, Ikeuchi Y,
Neuberger MS and Rada C: Deficiency in APOBEC2 leads to a shift in
muscle fiber type, diminished body mass, and myopathy. J Biol Chem.
285:7111–7118. 2010. View Article : Google Scholar :
|
|
47
|
Dupont-Versteegden EE, Houlé JD, Gurley CM
and Peterson CA: Early changes in muscle fiber size and gene
expression in response to spinal cord transection and exercise. Am
J Physiol. 275:C1124–C1133. 1998.PubMed/NCBI
|
|
48
|
Ribeiro EA Jr, Pinotsis N, Ghisleni A,
Salmazo A, Konarev PV, Kostan J, Sjöblom B, Schreiner C, Polyansky
AA, Gkougkoulia EA, et al: The structure and regulation of human
muscle α-actinin. Cell. 159:1447–1460. 2014. View Article : Google Scholar :
|
|
49
|
Takada F, Vander Woude DL, Tong HQ,
Thompson TG, Watkins SC, Kunkel LM and Beggs AH: Myozenin: An
alpha-actinin- and gamma-filamin-binding protein of skeletal muscle
Z lines. Proc Natl Acad Sci USA. 98:1595–1600. 2001.PubMed/NCBI
|
|
50
|
Ichinoseki-Sekine N, Yoshihara T, Kakigi
R, Ogura Y, Sugiura T and Naito H: Fiber-type specific expression
of α-actinin isoforms in rat skeletal muscle. Biochem Biophys Res
Commun. 419:401–404. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Chin ER, Olson EN, Richardson JA, Yang Q,
Humphries C, Shelton JM, Wu H, Zhu W, Bassel-Duby R and Williams
RS: A calcineurin-dependent transcriptional pathway controls
skeletal muscle fiber type. Genes Dev. 12:2499–2509. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Frey N, Richardson JA and Olson EN:
Calsarcins, a novel family of sarcomeric calcineurin-binding
proteins. Proc Natl Acad Sci USA. 97:14632–14637. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Seto JT, Quinlan KG, Lek M, Zheng XF,
Garton F, MacArthur DG, Hogarth MW, Houweling PJ, Gregorevic P,
Turner N, et al: ACTN3 genotype influences muscle performance
through the regulation of calcineurin signaling. J Clin Invest.
123:4255–4263. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Liu Y, Gampert L, Nething K and Steinacker
JM: Response and function of skeletal muscle heat shock protein 70.
Front Biosci. 11:2802–2827. 2006. View
Article : Google Scholar : PubMed/NCBI
|
|
55
|
Krawiec BJ, Frost RA, Vary TC, Jefferson
LS and Lang CH: Hindlimb casting decreases muscle mass in part by
proteasome-dependent proteolysis but independent of protein
synthesis. Am J Physiol Endocrinol Metab. 289:E969–E980. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Milne KJ and Noble EG: Exercise-induced
elevation of HSP70 is intensity dependent. J Appl Phsiol (1985).
93:561–568. 2002. View Article : Google Scholar
|
|
57
|
Thompson HS, Scordilis SP, Clarkson PM and
Lohrer WA: A single bout of eccentric exercise increases HSP27 and
HSCHSP70 in human skeletal muscle. Physiol Scand. 171:187–193.
2001. View Article : Google Scholar
|
|
58
|
Evertsson K, Fjällström AK, Norrby M and
Tågerud S: p38 mitogen-activated protein kinase and
mitogen-activated protein kinase-activated protein kinase 2 (MK2)
signaling in atrophic and hypertrophic denervated mouse skeletal
muscle. J Mol Signal. 9:22014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Senf SM, Dodd SL and Judge AR: FOXO
signaling is required for disuse muscle atrophy and is directly
regulated by Hsp70. Am J Physiol Cell Physiol. 298:C38–C45. 2010.
View Article : Google Scholar :
|
|
60
|
Senf SM, Dodd SL, McClung JM and Judge AR:
Hsp70 over-expression inhibits NF-kappaB and Foxo3a transcriptional
activities and prevents skeletal muscle atrophy. FASEB J.
22:3836–3845. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Macario AJ and Conway de Macario E:
Molecular chaperones: Multiple functions, pathologies, and
potential applications. Front Biosci. 12:2588–2600. 2007.
View Article : Google Scholar
|
|
62
|
Kukreti H, Amuthavalli K, Harikumar A,
Sathiyamoorthy S, Feng PZ, Anantharaj R, Tan SL, Lokireddy S,
Bonala S, Sriram S, et al: Muscle-specific microRNA1 (miR1) targets
heat shock protein 70 (HSP70) during dexamethasone-mediated
atrophy. J Biol Chem. 288:6663–6678. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Stevens L, Firinga C, Gohlsch B, Bastide
B, Mounier Y and Pette D: Effects of unweighting and clenbuterol on
myosin light and heavy chains in fast and slow muscles of rat. Am J
Physiol Cell Physiol. 279:C1558–C1563. 2000.PubMed/NCBI
|
|
64
|
Gosker HR, Zeegers MP, Wouters EF and
Schols AM: Muscle fibre type shifting in the vastus lateralis of
patients with COPD is associated with disease severity: A
systematic review and meta-analysis. Thorax. 62:944–949. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Nwoye L, Mommaerts WF, Simpson DR,
Seraydarian K and Marusich M: Evidence for a direct action of
thyroid hormone in specifying muscle properties. Am J Physiol.
242:R401–R408. 1982.PubMed/NCBI
|
|
66
|
Bozzo C, Stevens L, Toniolo L, Mounier Y
and Reggiani C: Increased phosphorylation of myosin light chain
associated with slow-to-fast transition in rat soleus. Am J Physiol
Cell Physiol. 285:C575–C583. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Huang YH, Tsai MM and Lin KH: Thyroid
hormone dependent regulation of target genes and their
physiological significance. Chang Gung Med J. 31:325–334.
2008.PubMed/NCBI
|
|
68
|
Stines-Chaumeil C, Talfournier F and
Branlant G: Mechanistic characterization of the MSDH
(methylmalonate semialdehyde dehydrogenase) from Bacillus subtilis.
Biochem J. 395:107–115. 2006. View Article : Google Scholar :
|
|
69
|
Ahmad SS, Glatzle J, Bajaeifer K, Bühler
S, Lehmann T, Königsrainer I, Vollmer JP, Sipos B, Ahmad SS,
Northoff H, et al: Phosphoglycerate kinase 1 as a promoter of
metastasis in colon cancer. Int J Oncol. 43:586–590.
2013.PubMed/NCBI
|
|
70
|
Hutchinson KJ, Linderman JK and Basso DM:
Skeletal muscle adaptations following spinal cord contusion injury
in rat and the relationship to locomotor function: A time course
study. J Neurotrauma. 18:1075–1089. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Hill CE, Brodak DM and Bartlett Bunge M:
Dissociated predegenerated peripheral nerve transplants for spinal
cord injury repair: A comprehensive assessment of their effects on
regeneration and functional recovery compared to Schwann cell
transplants. J Neurotrauma. 29:2226–2243. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Fouad K, Hurd C and Magnuson DS:
Functional testing in animal models of spinal cord injury: Not as
straight forward as one would think. Front Integr Neurosci.
7(85)2013. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Jayaraman A, Liu M, Ye F, Walter GA and
Vandenborne K: Regenerative responses in slow- and fast-twitch
muscles following moderate contusion spinal cord injury and
locomotor training. Eur J Appl Phsiol. 113:191–200. 2013.
View Article : Google Scholar
|
|
74
|
Park S, Lee SK, Park K, Lee Y and Hong Y,
Lee S, Jeon JC, Kim JH, Lee SR, Chang KT and Hong Y: Beneficial
effects of endogenous and exogenous melatonin on neural
reconstruction and functional recovery in an animal model of spinal
cord injury. J Pineal Res. 52:107–119. 2012. View Article : Google Scholar
|
|
75
|
Stevens JE, Liu M, Bose P, O'Steen WA,
Thompson FJ, Anderson DK and Vandenborne K: Changes in soleus
muscle function and fiber morphology with one week of locomotor
training in spinal cord contusion injured rats. J Neurotrauma.
23:1671–1681. 2006. View Article : Google Scholar : PubMed/NCBI
|