|
1
|
Mizushige K, Yao L, Noma T, Kiyomoto H, Yu
Y, Hosomi N, Ohmori K and Matsuo H: Alteration in left ventricular
diastolic filling and accumulation of myocardial collagen at
insulin-resistant prediabetic stage of a type II diabetic rat
model. Circulation. 101:899–907. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Guan SJ, Ma ZH, Wu YL, Zhang JP, Liang F,
Weiss JW, Guo QY, Wang JY, Ji ES and Chu L: Long-term
administration of fasudil improves cardiomyopathy in
streptozotocin-induced diabetic rats. Food Chem Toxicol.
50:1874–1882. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Poirier P, Bogaty P, Garneau C, Marois L
and Dumesnil JG: Diastolic dysfunction in normotensive men with
well-controlled type 2 diabetes: Importance of maneuvers in
echocardiographic screening for preclinical diabetic
cardiomyopathy. Diabetes Care. 24:5–10. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Schannwell CM, Schneppenheim M, Perings S,
Plehn G and Strauer BE: Left ventricular diastolic dysfunction as
an early manifestation of diabetic cardiomyopathy. Cardiology.
98:33–39. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Avogaro A, Vigili de Kreutzenberg S, Negut
C, Tiengo A and Scognamiglio R: Diabetic cardiomyopathy: A
metabolic perspective. Am J Cardiol. 93:13A–16A. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Picano E: Diabetic cardiomyopathy. The
importance of being earliest. J Am Coll Cardiol. 42:454–457. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Abbott RD, Donahue RP, Kannel WB and
Wilson PW: The impact of diabetes on survival following myocardial
infarction in men vs women. The Framingham Study. JAMA.
260:3456–3460. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Cohen-Solal A, Beauvais F and Logeart D:
Heart failure and diabetes mellitus: Epidemiology and management of
an alarming association. J Card Fail. 14:615–625. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Trost S and LeWinter M: Diabetic
Cardiomyopathy. Curr Treat Options Cardiovasc Med. 3:481–492. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Feuvray D: Diabetic cardiomyopathy. Arch
Mal Coeur Vaiss. 97:261–265. 2004.PubMed/NCBI
|
|
11
|
Tappia PS, Asemu G, Aroutiounova N and
Dhalla NS: Defective sarcolemmal phospholipase C signaling in
diabetic cardiomyopathy. Mol Cell Biochem. 261:193–199. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Dyntar D, Sergeev P, Klisic J, Ambühl P,
Schaub MC and Donath MY: High glucose alters cardiomyocyte contacts
and inhibits myofibrillar formation. J Clin Endocrinol Metab.
91:1961–1967. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ligeti L, Szenczi O, Prestia CM, Szabó C,
Horváth K, Marcsek ZL, van Stiphout RG, van Riel NA, Op den Buijs
J, Van der Vusse GJ and Ivanics T: Altered calcium handling is an
early sign of streptozotocin-induced diabetic cardiomyopathy. Int J
Mol Med. 17:1035–1043. 2006.PubMed/NCBI
|
|
14
|
Pereira L, Matthes J, Schuster I, Valdivia
HH, Herzig S, Richard S and Gómez AM: Mechanisms of [Ca2+] i
transient decrease in cardiomyopathy of db/db type 2 diabetic mice.
Diabetes. 55:608–615. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Bugger H and Abel ED: Rodent models of
diabetic cardiomyopathy. Dis Model Mech. 2:454–466. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Li Z, Zhang T, Dai H, Liu G, Wang H, Sun
Y, Zhang Y and Ge Z: Involvement of endoplasmic reticulum stress in
myocardial apoptosis of streptozocin-induced diabetic rats. J Clin
Biochem Nutr. 41:58–67. 2007. View Article : Google Scholar
|
|
17
|
Li Z, Zhang T, Dai H, Liu G, Wang H, Sun
Y, Zhang Y and Ge Z: Endoplasmic reticulum stress is involved in
myocardial apoptosis of streptozocin-induced diabetic rats. J
Endocrinol. 196:565–572. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Liu ZW, Zhu HT, Chen KL, Dong X, Wei J,
Qiu C and Xue JH: Protein kinase RNA-like endoplasmic reticulum
kinase (PERK) signaling pathway plays a major role in reactive
oxygen species (ROS)-mediated endoplasmic reticulum stress-induced
apoptosis in diabetic cardiomyopathy. Cardiovasc Diabetol.
12:1582013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Sundar Rajan S, Srinivasan V,
Balasubramanyam M and Tatu U: Endoplasmic reticulum (ER) stress
& diabetes. Indian J Med Res. 125:411–424. 2007.PubMed/NCBI
|
|
20
|
Tajiri S, Oyadomari S, Yano S, Morioka M,
Gotoh T, Hamada JI, Ushio Y and Mori M: Ischemia-induced neuronal
cell death is mediated by the endoplasmic reticulum stress pathway
involving CHOP. Cell Death Differ. 11:403–415. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Dromparis P, Paulin R, Sutendra G, Qi AC,
Bonnet S and Michelakis ED: Uncoupling protein 2 deficiency mimics
the effects of hypoxia and endoplasmic reticulum stress on
mitochondria and triggers pseudohypoxic pulmonary vascular
remodeling and pulmonary hypertension. Circ Res. 113:126–136. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Tang C, Koulajian K, Schuiki I, Zhang L,
Desai T, Ivovic A, Wang P, Robson-Doucette C, Wheeler MB, Minassian
B, et al: Glucose-induced beta cell dysfunction in vivo in rats:
Link between oxidative stress and endoplasmic reticulum stress.
Diabetologia. 55:1366–1379. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Back SH and Kaufman RJ: Endoplasmic
reticulum stress and type 2 diabetes. Annu Rev Biochem. 81:767–793.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Williams JA, Hou Y, Ni HM and Ding WX:
Role of intracellular calcium in proteasome inhibitor-induced
endoplasmic reticulum stress, autophagy and cell death. Pharm Res.
30:2279–2289. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Shinohara M, Ji C and Kaplowitz N:
Differences in betaine-homocysteine methyltransferase expression,
endoplasmic reticulum stress response and liver injury between
alcohol-fed mice and rats. Hepatology. 51:796–805. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Liu G, Sun Y, Li Z, Song T, Wang H, Zhang
Y and Ge Z: Apoptosis induced by endoplasmic reticulum stress
involved in diabetic kidney disease. Biochem Biophys Res Commun.
370:651–656. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Marciniak SJ and Ron D: Endoplasmic
reticulum stress signaling in disease. Physiol Rev. 86:1133–1149.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhao L and Ackerman SL: Endoplasmic
reticulum stress in health and disease. Curr Opin Cell Biol.
18:444–452. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Xu K, Wang X, Shi Q, Chen C, Tian C, Li
XL, Zhou RM, Chu YL and Dong XP: Human prion protein mutants with
deleted and inserted octarepeats undergo different pathways to
trigger cell apoptosis. J Mol Neurosci. 43:225–234. 2011.
View Article : Google Scholar
|
|
30
|
Nauntofte B and Dissing S: K+ transport
and membrane potentials in isolated rat parotid acini. Am J
Physiol. 255:C508–C518. 1988.PubMed/NCBI
|
|
31
|
Lakshmanan AP, Harima M, Suzuki K,
Soetikno V, Nagata M, Nakamura T, Takahashi T, Sone H, Kawachi H
and Watanabe K: The hyperglycemia stimulated myocardial endoplasmic
reticulum (ER) stress contributes to diabetic cardiomyopathy in the
transgenic non-obese type 2 diabetic rats: A differential role of
unfolded protein response (UPR) signaling proteins. Int J Biochem
Cell Biol. 45:438–447. 2013. View Article : Google Scholar
|
|
32
|
Kimura H: Hydrogen sulfide as a
neuromodulator. Mol Neurobiol. 26:13–19. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wang R: Two's company, three's a crowd:
Can H2S be the third endogenous gaseous transmitter?
FASEB J. 16:1792–1798. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Szabó C: Hydrogen sulphide and its
therapeutic potential. Nat Rev Drug Discov. 6:917–935. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Łowicka E and Bełtowski J: Hydrogen
sulfide (H2S)-the third gas of interest for pharmacologists.
Pharmacol Rep. 59:4–24. 2007.
|
|
36
|
Zanardo RC, Brancaleone V, Distrutti E,
Fiorucci S, Cirino G and Wallace JL: Hydrogen sulfide is an
endogenous modulator of leukocyte-mediated inflammation. FASEB J.
20:2118–2120. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Rinaldi L, Gobbi G, Pambianco M, Micheloni
C, Mirandola P and Vitale M: Hydrogen sulfide prevents apoptosis of
human PMN via inhibition of p38 and caspase 3. Lab Invest.
86:391–397. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Wang XY, Yang CT, Zheng DD, Mo LQ, Lan AP,
Yang ZL, Hu F, Chen PX, Liao XX and Feng JQ: Hydrogen sulfide
protects H9c2 cells against doxorubicin-induced cardiotoxicity
through inhibition of endoplasmic reticulum stress. Mol Cell
Biochem. 363:419–426. 2012. View Article : Google Scholar
|
|
39
|
Chen ZF, Zhao B, Tang XY, Li W, Zhu LL,
Tang CS, Du JB and Jin HF: Hydrogen sulfide regulates vascular
endoplasmic reticulum stress in apolipoprotein E knockout mice.
Chin Med J (Engl). 124:3460–3467. 2011.
|
|
40
|
Tang XQ, Yang CT, Chen J, Yin WL, Tian SW,
Hu B, Feng JQ and Li YJ: Effect of hydrogen sulphide on
beta-amyloid-induced damage in PC12 cells. Clin Exp Pharmacol
Physiol. 35:180–186. 2008.
|
|
41
|
Hu LF, Lu M, Wu ZY, Wong PT and Bian JS:
Hydrogen sulfide inhibits rotenone-induced apoptosis via
preservation of mitochondrial function. Mol Pharmacol. 75:27–34.
2009. View Article : Google Scholar
|
|
42
|
Yin WL, He JQ, Hu B, Jiang ZS and Tang XQ:
Hydrogen sulfide inhibits MPP (+)-induced apoptosis in PC12 cells.
Life Sci. 85:269–275. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Schreier SM, Muellner MK, Steinkellner H,
Hermann M, Esterbauer H, Exner M, Gmeiner BM, Kapiotis S and
Laggner H: Hydrogen sulfide scavenges the cytotoxic lipid oxidation
product 4-HNE. Neurotox Res. 17:249–256. 2010. View Article : Google Scholar
|
|
44
|
Tiong CX, Lu M and Bian JS: Protective
effect of hydrogen sulphide against 6-OHDA-induced cell injury in
SH-SY5Y cells involves PKC/PI3 K/Akt pathway. Br J Pharmacol.
161:467–480. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kida K, Yamada M, Tokuda K, Marutani E,
Kakinohana M, Kaneki M and Ichinose F: Inhaled hydrogen sulfide
prevents neurodegeneration and movement disorder in a mouse model
of Parkinson's disease. Antioxid Redox Signal. 15:343–352. 2011.
View Article : Google Scholar :
|
|
46
|
Chen WL, Xie B, Zhang C, Xu KL, Niu YY,
Tang XQ, Zhang P, Zou W, Hu B and Tian Y: Antidepressant-like and
anxiolytic-like effects of hydrogen sulfide in behavioral models of
depression and anxiety. Behav Pharmacol. 24:590–597. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhao W, Zhang J, Lu Y and Wang R: The
vasorelaxant effect of H(2)S as a novel endogenous gaseous K (ATP)
channel opener. EMBO J. 20:6008–6016. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zhao W and Wang R: H(2)S-induced
vasorelaxation and underlying cellular and molecular mechanisms. Am
J Physiol Heart Circ Physiol. 283:H474–H480. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Yang G, Wu L, Jiang B, Yang W, Qi J, Cao
K, Meng Q, Mustafa AK, Mu W, Zhang S, et al: H2S as a
physiologic vasorelaxant: Hypertension in mice with deletion of
cystathionine gamma-lyase. Science. 322:587–590. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Mani S, Li H, Untereiner A, Wu L, Yang G,
Austin RC, Dickhout JG, Lhoták Š, Meng QH and Wang R: Decreased
endogenous production of hydrogen sulfide accelerates
atherosclerosis. Circulation. 127:2523–2534. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhang H, Guo C, Wu D, Zhang A, Gu T, Wang
L and Wang C: Hydrogen sulfide inhibits the development of
atherosclerosis with suppressing CX3CR1 and CX3CL1 expression. PLoS
One. 7:e411472012. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wang Y, Zhao X, Jin H, Wei H, Li W, Bu D,
Tang X, Ren Y, Tang C and Du J: Role of hydrogen sulfide in the
development of atherosclerotic lesions in apolipoprotein E knockout
mice. Arterioscler Thromb Vasc Biol. 29:173–179. 2009. View Article : Google Scholar
|
|
53
|
Calvert JW, Jha S, Gundewar S, Elrod JW,
Ramachandran A, Pattillo CB, Kevil CG and Lefer DJ: Hydrogen
sulfide mediates cardioprotection through Nrf2 signaling. Circ Res.
105:365–374. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Li H, Ran K, Tang ZG, Li SF and Chang YT:
Effects of hydrogen sulfide preconditioning on myocardial ischemia
reperfusion injury in rats. Zhejiang Da Xue Xue Bao Yi Xue Ban.
41:559–563. 2012.In Chinese. PubMed/NCBI
|
|
55
|
Elrod JW, Calvert JW, Morrison J, Doeller
JE, Kraus DW, Tao L, Jiao X, Scalia R, Kiss L, Szabo C, et al:
Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury
by preservation of mitochondrial function. Proc Natl Acad Sci USA.
104:15560–15565. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Feng X, Chen Y, Zhao J, Tang C, Jiang Z
and Geng B: Hydrogen sulfide from adipose tissue is a novel insulin
resistance regulator. Biochem Biophys Res Commun. 380:153–159.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Okamoto M, Yamaoka M and Kimura T:
Hydrogen sulfide and its effect on pancreatic beta-cells. Nihon
Rinsho. 71:175–180. 2013.In Japanese. PubMed/NCBI
|
|
58
|
El-Seweidy MM, Sadik NA and Shaker OG:
Role of sulfurous mineral water and sodium hydrosulfide as potent
inhibitors of fibrosis in the heart of diabetic rats. Arch Biochem
Biophys. 506:48–57. 2011. View Article : Google Scholar
|
|
59
|
Bhutada P, Mundhada Y, Bansod K, Bhutada
C, Tawari S, Dixit P and Mundhada D: Ameliorative effect of
quercetin on memory dysfunction in streptozotocin-induced diabetic
rats. Neurobiol Learn Mem. 94:293–302. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Dong B, Yu QT, Dai HY, Gao YY, Zhou ZL,
Zhang L, Jiang H, Gao F, Li SY, Zhang YH, et al:
Angiotensin-converting enzyme-2 overexpression improves left
ventricular remodeling and function in a rat model of diabetic
cardiomyopathy. J Am Coll Cardiol. 59:739–747. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Schuster DP and Duvuuri V: Diabetes
mellitus. Clin Podiatr Med Surg. 19:79–107. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Galderisi M: Diastolic dysfunction and
diabetic cardiomyopathy: Evaluation by Doppler echocardiography. J
Am Coll Cardiol. 48:1548–1551. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Adeghate E: Molecular and cellular basis
of the aetiology and management of diabetic cardiomyopathy: A short
review. Mol Cell Biochem. 261:187–191. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Cai L and Kang YJ: Cell death and diabetic
cardiomyopathy. Cardiovasc Toxicol. 3:219–228. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Detaille D, Guigas B, Chauvin C, Batandier
C, Fontaine E, Wiernsperger N and Leverve X: Metformin prevents
high-glucose-induced endothelial cell death through a mitochondrial
permeability transition-dependent process. Diabetes. 54:2179–2187.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Malhotra A, Kang BP, Hashmi S and Meggs
LG: PKCepsilon inhibits the hyperglycemia-induced apoptosis signal
in adult rat ventricular myocytes. Mol Cell Biochem. 268:169–173.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Cicek FA, Toy A, Tuncay E, Can B and Turan
B: Beta-blocker timolol alleviates hyperglycemia-induced cardiac
damage via inhibition of endoplasmic reticulum stress. J Bioenerg
Biomembr. 46:377–387. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Cao Y, Hao Y, Li H, Liu Q, Gao F, Liu W
and Duan H: Role of endoplasmic reticulum stress in apoptosis of
differentiated mouse podocytes induced by high glucose. Int J Mol
Med. 33:809–816. 2014.PubMed/NCBI
|
|
69
|
Bhimji S, Godin DV and McNeill JH:
Myocardial ultrastructural changes in alloxan-induced diabetes in
rabbits. Acta Anat (Basel). 125:195–200. 1986. View Article : Google Scholar
|
|
70
|
Jackson CV, McGrath GM, Tahiliani AG,
Vadlamudi RV and McNeill JH: A functional and ultrastructural
analysis of experimental diabetic rat myocardium. Manifestation of
a cardiomyopathy. Diabetes. 34:876–883. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Mulhern ML, Madson CJ, Danford A, Ikesugi
K, Kador PF and Shinohara T: The unfolded protein response in lens
epithelial cells from galactosemic rat lenses. Invest Ophthalmol
Vis Sci. 47:3951–3959. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Nikitina EK, Abrosimenkova NN and Rebrov
LB: Changes in rat skeletal muscle actin during postmortem
autolysis. Vopr Med Khim. 36:65–68. 1990.In Russian. PubMed/NCBI
|
|
73
|
Zhong X, Wang L, Wang Y, Dong S, Leng X,
Jia J, Zhao Y, Li H, Zhang X, Xu C, et al: Exogenous hydrogen
sulfide attenuates diabetic myocardial injury through cardiac
mitochondrial protection. Mol Cell Biochem. 371:187–198. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Ma Y and Hendershot LM: The unfolding tale
of the unfolded protein response. Cell. 107:827–830. 2001.
View Article : Google Scholar
|
|
75
|
Wiest DL, Burkhardt JK, Hester S, Hortsch
M, Meyer DI and Argon Y: Membrane biogenesis during B cell
differentiation: Most endoplasmic reticulum proteins are expressed
coordinately. J Cell Biol. 110:1501–1511. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Iwakoshi NN, Lee AH, Vallabhajosyula P,
Otipoby KL, Rajewsky K and Glimcher LH: Plasma cell differentiation
and the unfolded protein response intersect at the transcription
factor XBP-1. Nat Immunol. 4:321–329. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Okada K, Minamino T, Tsukamoto Y, Liao Y,
Tsukamoto O, Takashima S, Hirata A, Fujita M, Nagamachi Y, Nakatani
T, et al: Prolonged endoplasmic reticulum stress in hypertrophic
and failing heart after aortic constriction: Possible contribution
of endoplasmic reticulum stress to cardiac myocyte apoptosis.
Circulation. 110:705–712. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Gunn KE, Gifford NM, Mori K and Brewer JW:
A role for the unfolded protein response in optimizing antibody
secretion. Mol Immunol. 41:919–927. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Cardozo AK, Ortis F, Storling J, Feng YM,
Rasschaert J, Tonnesen M, Van Eylen F, Mandrup-Poulsen T, Herchuelz
A and Eizirik DL: Cytokines downregulate the sarcoendoplasmic
reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum
Ca2+, leading to induction of endoplasmic reticulum stress in
pancreatic beta-cells. Diabetes. 54:452–461. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Mao W, Iwai C, Keng PC, Vulapalli R and
Liang CS: Norepinephrine-induced oxidative stress causes PC-12 cell
apoptosis by both endoplasmic reticulum stress and mitochondrial
intrinsic pathway: Inhibition of phosphatidylinositol 3-kinase
survival pathway. Am J Physiol Cell Physiol. 290:C1373–C1384. 2006.
View Article : Google Scholar
|
|
81
|
Schröder M and Kaufman RJ: The mammalian
unfolded protein response. Annu Rev Biochem. 74:739–789. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Yoshida H, Okada T, Haze K, Yanagi H, Yura
T, Negishi M and Mori K: ATF6 activated by proteolysis binds in the
presence of NF-Y (CBF) directly to the cis-acting element
responsible for the mammalian unfolded protein response. Mol Cell
Biol. 20:6755–6767. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Wang XZ, Lawson B, Brewer JW, Zinszner H,
Sanjay A, Mi LJ, Boorstein R, Kreibich G, Hendershot LM and Ron D:
Signals from the stressed endoplasmic reticulum induce
C/EBP-homologous protein (CHOP/GADD153). Mol Cell Biol.
16:4273–4280. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zinszner H, Kuroda M, Wang X, Batchvarova
N, Lightfoot RT, Remotti H, Stevens JL and Ron D: CHOP is
implicated in programmed cell death in response to impaired
function of the endoplasmic reticulum. Genes Dev. 12:982–995. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Oyadomari S, Koizumi A, Takeda K, Gotoh T,
Akira S, Araki E and Mori M: Targeted disruption of the Chop gene
delays endoplasmic reticulum stress-mediated diabetes. J Clin
Invest. 109:525–532. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Moldoveanu E, Stoian I, Voinea L, Marta D
and Popescu LM: BCL-2-general considerations. Haematologia (Budap).
29:167–180. 1998.
|
|
87
|
Wang ZC, Wang JF, Li YB, Guo CX, Liu Y,
Fang F and Gong SL: Involvement of endoplasmic reticulum stress in
apoptosis of testicular cells induced by low-dose radiation. J
Huazhong University of Science and Technology Med Sci. 33:551–558.
2013.In Chinese. View Article : Google Scholar
|
|
88
|
Chang CF, Wang TM, Wang JH, Huang SC and
Lu TW: Adolescents after Pemberton's osteotomy for developmental
dysplasia of the hip displayed greater joint loading than healthy
controls in affected and unaffected limbs during gait. J Orthop
Res. 29:1034–1041. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Chen L, Ren F, Zhang H, Wen T, Piao Z,
Zhou L, Zheng S, Zhang J, Chen Y, Han Y, et al: Inhibition of
glycogen synthase kinase 3beta ameliorates D-GalN/LPS-induced liver
injury by reducing endoplasmic reticulum stress-triggered
apoptosis. PloS One. 7:e452022012. View Article : Google Scholar
|
|
90
|
Qiu ZL, Zhang JP and Guo XC: Endoplasmic
reticulum stress and vascular endothelial cell apoptosis. Acta
Academiae Medicinae Sinicae. 36:102–107. 2014.In Chinese.
|
|
91
|
Fujita A, Sasaki H, Doi A, Okamoto K,
Matsuno S, Furuta H, Nishi M, Nakao T, Tsuno T, Taniguchi H and
Nanjo K: Ferulic acid prevents pathological and functional
abnormalities of the kidney in Otsuka Long-Evans Tokushima Fatty
diabetic rats. Diabetes Res Clin Pract. 79:11–17. 2008. View Article : Google Scholar
|
|
92
|
Thyagaraju BM and Muralidhara: Ferulic
acid supplements abrogate oxidative impairments in liver and testis
in the streptozotocin-diabetic rat. Zoolog Sci. 25:854–860. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Xu X, Xiao H, Zhao J and Zhao T:
Cardioprotective effect of sodium ferulate in diabetic rats. Int J
Med Sci. 9:291–300. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Ju Y, Untereiner A, Wu L and Yang G:
H2S-induced S-sulfhydration of pyruvate carboxylase
contributes to gluconeogenesis in liver cells. Biochim Biophys
Acta. 1850:2293–2303. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Xue R, Hao DD, Sun JP, Li WW, Zhao MM, Li
XH, Chen Y, Zhu JH, Ding YJ, Liu J and Zhu YC: Hydrogen sulfide
treatment promotes glucose uptake by increasing insulin receptor
sensitivity and ameliorates kidney lesions in type 2 diabetes.
Antioxid Redox Signal. 19:5–23. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Hu N, Dong M and Ren J: Role of
mitochondrial injury and apoptosis. Am J Physiol Regul Integr Comp
Physiol. 306:R761–R771. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
He C, Zhu H, Li H, Zou MH and Xie Z:
Dissociation of Bcl-2-Beclin1 complex by activated AMPK enhances
cardiac autophagy and protects against cardiomyocyte apoptosis in
diabetes. Diabetes. 62:1270–1281. 2013. View Article : Google Scholar :
|