Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
July-2016 Volume 14 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2016 Volume 14 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (Review)

  • Authors:
    • Shuping Peng
    • Dan Gao
    • Chengde Gao
    • Pingpin Wei
    • Man Niu
    • Cijun Shuai
  • View Affiliations / Copyright

    Affiliations: Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China, State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, Hunan 410083, P.R. China
    Copyright: © Peng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 623-629
    |
    Published online on: May 24, 2016
       https://doi.org/10.3892/mmr.2016.5335
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Osteogenesis is a complex multi-step process involving the differentiation of mesenchymal stem cells (MSCs) into osteoblast progenitor cells, preosteoblasts, osteoblasts and osteocytes, and the crosstalk between multiple cell types for the formation and remodeling of bone. The signaling regulatory networks during osteogenesis include various components, including growth factors, transcription factors, micro (mi)RNAs and effectors, a number of which form feedback loops controlling the balance of osteogenic differentiation by positive or negative regulation. miRNAs have been found to be important regulators of osteogenic signaling pathways in multiple aspects and multiple signaling pathways. The present review focusses on the progress in elucidating the role of miRNA in the osteogenesis signaling networks of MSCs as a substitute for bone implantation the the field of bone tissue engineering. In particular, the review classifies which miRNAs promote or suppress the osteogenic process, and summarizes which signaling pathway these miRNAs are involved in. Improvements in knowledge of the characteristics of miRNAs in osteogenesis provide an important step for their application in translational investigations of bone tissue engineering and bone disease.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Brennecke J, Hipfner DR, Stark A, Russell RB and Cohen SM: Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in drosophila. Cell. 113:25–36. 2003. View Article : Google Scholar : PubMed/NCBI

2 

Bartel DP and Chen CZ: Micromanagers of gene expression: The potentially widespread influence of metazoan micrornas. Nat Rev Genet. 5:396–400. 2004. View Article : Google Scholar : PubMed/NCBI

3 

Hyun J, Wang S, Kim J, Rao KM, Park SY, Chung I, Ha CS, Kim SW, Yun YH and Jung Y: MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression. Nat Commun. 7:109932016. View Article : Google Scholar : PubMed/NCBI

4 

Cui Y, Han J, Xiao Z, Chen T, Wang B, Chen B, Liu S, Han S, Fang Y, Wei J, et al: The miR-20-Rest-Wnt signaling axis regulates neural progenitor cell differentiation. Sci Rep. 6:233002016. View Article : Google Scholar : PubMed/NCBI

5 

Gao Y, Chen L, Song H, Chen Y, Wang R and Feng B: A double-negative feedback loop between E2F3b and miR-200b regulates docetaxel chemosensitivity of human lung adenocarcinoma cells. Oncotarget. Mar 25–2016.Epub ahead of print.

6 

Ma L, Ma S, Zhao G, Yang L, Zhang P, Yi Q and Cheng S: miR-708/LSD1 axis regulates the proliferation and invasion of breast cancer cells. Cancer Med. 5:684–692. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Kim VN: Microrna biogenesis: Coordinated cropping and dicing. Nat Rev Mol Cell Biol. 6:376–385. 2005. View Article : Google Scholar : PubMed/NCBI

8 

Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, et al: Microrna expression profiles classify human cancers. Nature. 435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI

9 

Thum T and Mayr M: Review focus on the role of microRNA in cardiovascular biology and disease. Cardiovasc Res. 93:543–544. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Van Rooij E and Olson EN: Microrna therapeutics for cardiovascular disease: Opportunities and obstacles. Nat Rev Drug Discov. 11:860–872. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Oryan A, Alidadi S, Moshiri A and Bigham-Sadegh A: Bone morphogenetic proteins: A powerful osteoinductive compound with non-negligible side effects and limitations. Biofactors. 40:459–481. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Yuan Z, Li Q, Luo S, Liu Z, Luo D, Zhang B, Zhang D, Rao P and Xiao J: PPARγ and Wnt signaling in adipogenic and osteogenic differentiation of mesenchymal stem cells. Curr Stem Cell Res Ther. 11:216–225. 2016. View Article : Google Scholar

13 

Ongaro A, Pellati A, Bagheri L, Rizzo P, Caliceti C, Massari L and De Mattei M: Characterization of notch signaling during osteogenic differentiation in human osteosarcoma cell line MG63. J Cell Physiol. Mar 4–2016.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

14 

Chen YJ, Yao CC, Huang CH, Chang HH and Young TH: Hexosamine-induced TGF-β signaling and osteogenic differentiation of dental pulp stem cells are dependent on N-acetylglucosaminyltransferase V. Biomed Res Int. 2015:9243972015.

15 

Marupanthorn K, Tantrawatpan C, Tantikanlayaporn D, Kheolamai P and Manochantr S: The effects of TNF-α on osteogenic differentiation of umbilical cord derived mesenchymal stem cells. J Med Assoc Thai. 98(Suppl 3): S34–S40. 2015.

16 

Lian JB, Stein GS, van Wijnen AJ, Stein JL, Hassan MQ, Gaur T and Zhang Y: microRNA control of bone formation and homeostasis. Nat Rev Endocrinol. 8:212–227. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Van Wijnen AJ, van de Peppel J, van Leeuwen JP, Lian JB, Stein GS, Westendorf JJ, Oursler MJ, Im HJ, Taipaleenmäki H, Hesse E, et al: Microrna functions in osteogenesis and dysfunctions in osteoporosis. Curr Osteoporos Rep. 11:72–82. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Dong S, Yang B, Guo H and Kang F: microRNAs regulate osteogenesis and chondrogenesis. Biochem Biophys Res Commun. 418:587–591. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Lamplot JD, Qin J, Nan G, Wang J, Liu X, Yin L, Tomal J, Li R, Shui W, Zhang H, et al: Bmp9 signaling in stem cell differentiation and osteogenesis. Am J Stem Cells. 2:1–21. 2013.PubMed/NCBI

20 

Peng Y, Kang Q, Cheng H, Li X, Sun MH, Jiang W, Luu HH, Park JY, Haydon RC and He TC: Transcriptional characterization of bone morphogenetic proteins (BMPs)-mediated osteogenic signaling. J Cell Biochem. 90:1149–1165. 2003. View Article : Google Scholar : PubMed/NCBI

21 

Hupkes M, Sotoca AM, Hendriks JM, van Zoelen EJ and Dechering KJ: Microrna mir-378 promotes BMP2-induced osteogenic differentiation of mesenchymal progenitor cells. BMC Mol Biol. 15:12014. View Article : Google Scholar : PubMed/NCBI

22 

Wagner ER, Zhu G, Zhang BQ, Luo Q, Shi Q, Huang E, Gao Y, Gao JL, Kim SH, Rastegar F, et al: The therapeutic potential of the Wnt signaling pathway in bone disorders. Curr Mol Pharmacol. 4:14–25. 2011. View Article : Google Scholar

23 

Kim JH, Liu X, Wang J, Chen X, Zhang H, Kim SH, Cui J, Li R, Zhang W, Kong Y, et al: Wnt signaling in bone on and its therapeutic potential for bone diseases. Ther Adv Musculoskelet Dis. 5:13–31. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Marcellini S, Henriquez JP and Bertin A: Control of osteogenesis by the canonical Wnt and Bmp pathways in vivo: Cooperation and antagonism between the canonical Wnt and BMP pathways as cells differentiate from osteochondroprogenitors to osteoblasts and osteocytes. Bioessays. 34:953–962. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Krause U and Gregory CA: Potential of modulating Wnt signaling pathway toward the development of bone anabolic agent. Curr Mol Pharmacol. 5:164–173. 2012. View Article : Google Scholar

26 

Wang Q, Cai J, Cai XH and Chen L: Mir-346 regulates osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting the Wnt/β-catenin pathway. PLoS One. 8:e722662013. View Article : Google Scholar

27 

Westendorf JJ, Kahler RA and Schroeder TM: Wnt signaling in osteoblasts and bone diseases. Gene. 341:19–39. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Logan CY and Nusse R: The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 20:781–810. 2004. View Article : Google Scholar : PubMed/NCBI

29 

Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS and Lian JB: Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem. 280:33132–33140. 2005. View Article : Google Scholar : PubMed/NCBI

30 

Wang T and Xu Z: Mir-27 promotes osteoblast differentiation by modulating Wnt signaling. BiochemBiophys Res Commun. 402:186–189. 2010. View Article : Google Scholar

31 

Zhang WB, Zhong WJ and Wang L: A signal-amplification circuit between miR-218 and Wnt/β-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation. Bone. 58:59–66. 2014. View Article : Google Scholar

32 

Li Y, Li SQ, Gao YM, Li J and Zhang B: Crucial role of Notch signaling in osteogenic differentiation of periodontal ligament stem cells in osteoporotic rats. Cell Biol Int. 38:729–736. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Shimizu T, Tanaka T, Iso T, Doi H, Sato H, Kawai-Kowase K, Arai M and Kurabayashi M: Notch signaling induces osteogenic differentiation and mineralization of vascular smooth muscle cells role of Msx2 gene induction via Notch-RBP-Jk signaling. Arterioscler Thromb Vasc Biol. 29:1104–1111. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Shimizu T, Tanaka T, Iso T, Matsui H, Ooyama Y, Kawai-Kowase K, Arai M and Kurabayashi M: Notch signaling pathway enhances bone morphogenetic protein 2 (BMP2) responsiveness of Msx2 gene to induce osteogenic differentiation and mineralization of vascular smooth muscle cells. J Biol Chem. 286:19138–19148. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Shindo K, Kawashima N, Sakamoto K, Yamaguchi A, Umezawa A, Takagi M, Katsube K and Suda H: Osteogenic differentiation of the mesenchymal progenitor cells, Kusa is suppressed by Notch signaling. Exp Cell Res. 290:370–380. 2003. View Article : Google Scholar : PubMed/NCBI

36 

Ugarte F, Ryser M, Thieme S, Fierro FA, Navratiel K, Bornhäuser M and Brenner S: Notch signaling enhances osteogenic differentiation while inhibiting adipogenesis in primary human bone marrow stromal cells. Exp Hematol. 37:867–875. 2009. View Article : Google Scholar

37 

Sun F, Wan M, Xu X, Gao B, Zhou Y, Sun J, Cheng L, Klein OD, Zhou X and Zheng L: Crosstalk between miR-34a and notch signaling promotes differentiation in apical papilla stem cells (SCAPs). J Dent Res. 93:589–595. 2014.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

38 

Li J, Dong J, Zhang ZH, Zhang DC, You XY, Zhong Y, Chen MS and Liu SM: Mir-10a restores human mesenchymal stem cell differentiation by repressing KLF4. J Cell Physiol. 228:2324–2336. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Gamez B, Rodriguez-Carballo E, Bartrons R, Rosa JL and Ventura F: microRNA-322 (miR-322) and its target protein Tob2 modulate osterix (osx) mrna stability. J Biol Chem. 288:14264–14275. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Yang N, Wang G, Hu C, Shi Y, Liao L, Shi S, Cai Y, Cheng S, Wang X, Liu Y, et al: Tumor necrosis factor α suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis. J Bone Miner Res. 28:559–573. 2013. View Article : Google Scholar

41 

Laine SK, Alm JJ, Virtanen SP, Aro HT and Laitala-Leinonen TK: microRNAs miR-96, miR-124 and miR-199a regulate gene expression in human bone marrow-derived mesenchymal stem cells. J Cell Biochem. 113:2687–2695. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Huang S, Wang S, Bian C, Yang Z, Zhou H, Zeng Y, Li H, Han Q and Zhao RC: Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression. Stem Cells Dev. 21:2531–2540. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Li Z, Hassan MQ, Jafferji M, Aqeilan RI, Garzon R, Croce CM, van Wijnen AJ, Stein JL, Stein GS and Lian JB: Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem. 284:15676–15684. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Crane JL and Cao X: Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling. J Clin Invest. 124:466–472. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Kim YJ, Bae SW, Yu SS, Bae YC and Jung JS: Mir-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J Bone Miner Res. 24:816–825. 2009. View Article : Google Scholar

46 

Hwang S, Park SK, Lee HY, Kim SW, Lee JS, Choi EK, You D, Kim CS and Suh N: Mir-140-5p suppresses BMP2-mediated osteogenesis in undifferentiated human mesenchymal stem cells. FEBS Lett. 588:2957–2963. 2014. View Article : Google Scholar : PubMed/NCBI

47 

Xie Q, Wang Z, Bi X, Zhou H, Wang Y, Gu P and Fan X: Effects of miR-31 on the osteogenesis of human mesenchymal stem cells. Biochem Biophys Res Commun. 446:98–104. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Baglio SR, Devescovi V, Granchi D and Baldini N: microRNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation reveals osterix regulation by miR-31. Gene. 527:321–331. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Deng Y, Wu S, Zhou H, Bi X, Wang Y, Hu Y, Gu P and Fan X: Effects of a miR-31, Runx2 and Satb2 regulatory loop on the osteogenic differentiation of bone mesenchymal stem cells. Stem Cells Dev. 22:2278–2286. 2013. View Article : Google Scholar : PubMed/NCBI

50 

Wang J, Guan X, Guo F, Zhou J, Chang A, Sun B, Cai Y, Ma Z, Dai C, Li X and Wang B: Mir-30e reciprocally regulates the differentiation of adipocytes and osteoblasts by directly targeting low-density lipoprotein receptor-related protein 6. Cell Death Dis. 4:e8452013. View Article : Google Scholar : PubMed/NCBI

51 

Wu T, Zhou H, Hong Y, Li J, Jiang X and Huang H: miR-30 family members negatively regulate osteoblast differentiation. J Biol Chem. 287:7503–7511. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Liu Y, Liu W, Hu C, Xue Z, Wang G, Ding B, Luo H, Tang L, Kong X, Chen X, et al: miR-17 modulates osteogenic differentiation through a coherent feed-forward loop in mesenchymal stem cells isolated from periodontal ligaments of patients with periodontitis. Stem Cells. 29:1804–1816. 2011. View Article : Google Scholar : PubMed/NCBI

53 

Li H, Li T, Wang S, Wei J, Fan J, Li J, Han Q, Liao L, Shao C and Zhao RC: miR-17-5p and miR-106a are involved in the balance between osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells. Stem Cell Res. 10:313–324. 2013. View Article : Google Scholar : PubMed/NCBI

54 

Kim EJ, Kang IH, Lee JW, Jang WG and Koh JT: miR-433 mediates ERRγ-suppressed osteoblast differentiation via direct targeting to Runx2 mRNA in C3H10T1/2 cells. Life Sci. 92:562–568. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Kim YJ, Hwang SH, Lee SY, Shin KK, Cho HH, Bae YC and Jung JS: miR-486-5p induces replicative senescence of human adipose tissue-derived mesenchymal stem cells and its expression is controlled by high glucose. Stem Cells Dev. 21:1749–1760. 2012. View Article : Google Scholar

56 

Tome M, López-Romero P, Albo C, Sepúlveda JC, Fernández-Gutiérrez B, Dopazo A, Bernad A and González MA: miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death Differ. 18:985–995. 2011. View Article : Google Scholar :

57 

Schaap-Oziemlak AM, Raymakers RA, Bergevoet SM, Gilissen C, Jansen BJ, Adema GJ, Kögler G, le Sage C, Agami R, van der Reijden BA and Jansen JH: microRNA hsa-miR-135b regulates mineralization in osteogenic differentiation of human unrestricted somatic stem cells. Stem Cells Dev. 19:877–885. 2010. View Article : Google Scholar

58 

Ng TK, Carballosa CM, Pelaez D, Wong HK, Choy KW, Pang CP and Cheung HS: Nicotine alters microRNA expression and hinders human adult stem cell regenerative potential. Stem Cells Dev. 22:781–790. 2013. View Article : Google Scholar

59 

Chen HC, Lee YS, Sieber M, Lu HT, Wei PC, Wang CN, Peng HH, Chao AS, Cheng PJ, Chang SD, et al: microRNA and messenger RNA analyses of mesenchymal stem cells derived from teeth and the Wharton jelly of umbilical cord. Stem Cells Dev. 21:911–922. 2012. View Article : Google Scholar

60 

Dong R, Du J, Wang L, Wang J, Ding G, Wang S and Fan Z: Comparison of long noncoding RNA and mRNA expression profiles in mesenchymal stem cells derived from human periodontal ligament and bone marrow. Biomed Res Int. 2014:3178532014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Peng S, Gao D, Gao C, Wei P, Niu M and Shuai C: MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (Review). Mol Med Rep 14: 623-629, 2016.
APA
Peng, S., Gao, D., Gao, C., Wei, P., Niu, M., & Shuai, C. (2016). MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (Review). Molecular Medicine Reports, 14, 623-629. https://doi.org/10.3892/mmr.2016.5335
MLA
Peng, S., Gao, D., Gao, C., Wei, P., Niu, M., Shuai, C."MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (Review)". Molecular Medicine Reports 14.1 (2016): 623-629.
Chicago
Peng, S., Gao, D., Gao, C., Wei, P., Niu, M., Shuai, C."MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (Review)". Molecular Medicine Reports 14, no. 1 (2016): 623-629. https://doi.org/10.3892/mmr.2016.5335
Copy and paste a formatted citation
x
Spandidos Publications style
Peng S, Gao D, Gao C, Wei P, Niu M and Shuai C: MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (Review). Mol Med Rep 14: 623-629, 2016.
APA
Peng, S., Gao, D., Gao, C., Wei, P., Niu, M., & Shuai, C. (2016). MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (Review). Molecular Medicine Reports, 14, 623-629. https://doi.org/10.3892/mmr.2016.5335
MLA
Peng, S., Gao, D., Gao, C., Wei, P., Niu, M., Shuai, C."MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (Review)". Molecular Medicine Reports 14.1 (2016): 623-629.
Chicago
Peng, S., Gao, D., Gao, C., Wei, P., Niu, M., Shuai, C."MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (Review)". Molecular Medicine Reports 14, no. 1 (2016): 623-629. https://doi.org/10.3892/mmr.2016.5335
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team