|
1
|
Li XY, Bao XJ and Wang RZ: Potential of
neural stem cell-based therapies for Alzheimer's disease. J
Neurosci Res. 93:1313–1324. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Graff J, Kim D, Dobbin MM and Tsai LH:
Epigenetic regulation of gene expression in physiological and
pathological brain processes. Physiol Rev. 91:603–649. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zawia NH, Lahiri DK and Cardozo-Pelaez F:
Epigenetics, oxidative stress, and Alzheimer disease. Free Radic
Biol Med. 46:1241–1249. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Day JJ and Sweatt JD: Epigenetic
treatments for cognitive impairments. Neuropsychopharmacology.
37:247–260. 2012. View Article : Google Scholar
|
|
5
|
Emsley JG, Mitchell BD, Kempermann G and
Macklis JD: Adult neurogenesis and repair of the adult CNS with
neural progenitors, precursors, and stem cells. Prog Neurobiol.
75:321–341. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ernst A, Alkass K, Bernard S, Salehpour M,
Perl S, Tisdale J, Possnert G, Druid H and Frisén J: Neurogenesis
in the striatum of the adult human brain. Cell. 156:1072–1083.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Kohyama J, Kojima T, Takatsuka E,
Yamashita T, Namiki J, Hsieh J, Gage FH, Namihira M, Okano H,
Sawamoto K and Nakashima K: Epigenetic regulation of neural cell
differentiation plasticity in the adult mammalian brain. Proc Natl
Acad Sci USA. 105:18012–18017. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Taher N, McKenzie C, Garrett R, Baker M,
Fox N and Isaacs GD: Amyloid-β alters the DNA methylation status of
cell-fate genes in an Alzheimer's disease model. J Alzheimers Dis.
38:831–844. 2014.
|
|
9
|
Rodriguez JJ, Jones VC and Verkhratsky A:
Impaired cell proliferation in the subventricular zone in an
Alzheimer's disease model. Neuroreport. 20:907–912. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Lee ST, Chu K, Jung KH, Kim JH, Huh JY,
Yoon H, Park DK, Lim JY, Kim JM, Jeon D, et al: miR-206 regulates
brain-derived neurotrophic factor in Alzheimer disease model. Ann
Neurol. 72:269–277. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Jordan JD, Ming GL and Song H: Adult
neurogenesis as a potential therapy for neurodegenerative diseases.
Discov Med. 6:144–147. 2006.
|
|
12
|
Qing H, He G, Ly PT, Fox CJ, Staufenbiel
M, Cai F, Zhang Z, Wei S, Sun X, Chen CH, et al: Valproic acid
inhibits Abeta production, neuritic plaque formation, and
behavioral deficits in Alzheimer's disease mouse models. J Exp Med.
205:2781–2789. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Li X, Bao X and Wang R: Experimental
models of Alzheimer's disease for deciphering the pathogenesis and
therapeutic screening (Review). Int J Mol Med. 37:271–283.
2016.Review.
|
|
14
|
West RL, Lee JM and Maroun LE:
Hypomethylation of the amyloid precursor protein gene in the brain
of an Alzheimer's disease patient. J Mol Neurosci. 6:141–146. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Tohgi H, Utsugisawa K, Nagane Y, Yoshimura
M, Genda Y and Ukitsu M: Reduction with age in methylcytosine in
the promoter region -224 approximately -101 of the amyloid
precursor protein gene in autopsy human cortex. Brain Res Mol Brain
Res. 70:288–292. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Barrachina M and Ferrer I: DNA methylation
of Alzheimer disease and tauopathy-related genes in postmortem
brain. J Neuropathol Exp Neurol. 68:880–891. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ladd-Acosta C, Pevsner J, Sabunciyan S,
Yolken RH, Webster MJ, Dinkins T, Callinan PA, Fan JB, Potash JB
and Feinberg AP: DNA methylation signatures within the human brain.
Am J Hum Genet. 81:1304–1315. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wang SC, Oelze B and Schumacher A:
Age-specific epigenetic drift in late-onset Alzheimer's disease.
PloS One. 3:e26982008. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Chouliaras L, Mastroeni D, Delvaux E,
Grover A, Kenis G, Hof PR, Steinbusch HW, Coleman PD, Rutten BP and
van den Hove DL: Consistent decrease in global DNA methylation and
hydroxymethylation in the hippocampus of Alzheimer's disease
patients. Neurobiol Aging. 34:2091–2099. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Condliffe D, Wong A, Troakes C, Proitsi P,
Patel Y, Chouliaras L, Fernandes C, Cooper J, Lovestone S,
Schalkwyk L, et al: Cross-region reduction in
5-hydroxymethylcytosine in Alzheimer's disease brain. Neurobiol
Aging. 35:1850–1854. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Hoyaux D, Decaestecker C, Heizmann CW,
Vogl T, Schäfer BW, Salmon I, Kiss R and Pochet R: S100 proteins in
corpora amylacea from normal human brain. Brain Res. 867:280–288.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Iraola-Guzmán S, Estivill X and Rabionet
R: DNA methylation in neurodegenerative disorders: A missing link
between genome and environment? Clin Genet. 80:1–14. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Urdinguio RG, Sanchez-Mut JV and Esteller
M: Epigenetic mechanisms in neurological diseases: Genes, syndromes
and therapies. Lancet Neurol. 8:1056–1072. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wang S, Wang R, Chen L, Bennett DA,
Dickson DW and Wang DS: Expression and functional profiling of
neprilysin, insulin-degrading enzyme, and endothelin-converting
enzyme in prospectively studied elderly and Alzheimer's brain. J
Neurochem. 115:47–57. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Sanchez-Mut JV, Aso E, Heyn H, Matsuda T,
Bock C, Ferrer I and Esteller M: Promoter hypermethylation of the
phosphatase DUSP22 mediates PKA-dependent TAU phosphorylation and
CREB activation in Alzheimer's disease. Hippocampus. 24:363–368.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Narayan PJ, Lill C, Faull R, Curtis MA and
Dragunow M: Increased acetyl and total histone levels in
post-mortem Alzheimer's disease brain. Neurobiol Dis. 74:281–294.
2015. View Article : Google Scholar
|
|
27
|
Lithner CU, Lacor PN, Zhao WQ, Mustafiz T,
Klein WL, Sweatt JD and Hernandez CM: Disruption of neocortical
histone H3 homeostasis by soluble Aβ: Implications for Alzheimer's
disease. Neurobiol Aging. 34:2081–2090. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhang K, Schrag M, Crofton A, Trivedi R,
Vinters H and Kirsch W: Targeted proteomics for quantification of
histone acetylation in Alzheimer's disease. Proteomics.
12:1261–1268. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Peleg S, Sananbenesi F, Zovoilis A,
Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL,
Gogol-Doering A, Opitz L, et al: Altered histone acetylation is
associated with age-dependent memory impairment in mice. Science.
328:753–756. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kanai Y, Akatsu H, Iizuka H and Morimoto
C: Could serum antibody to poly(ADP-ribose) and/or histone H1 be
marker for senile dementia of Alzheimer type? Ann NY Acad Sci.
1109:338–344. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Chouliaras L, van den Hove DL, Kenis G,
Draanen Mv, Hof PR, van Os J, Steinbusch HW, Schmitz C and Rutten
BP: Histone deacetylase 2 in the mouse hippocampus: Attenuation of
age-related increase by caloric restriction. Curr Alzheimer Res.
10:868–876. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Graff J, Rei D, Guan JS, Wang WY, Seo J,
Hennig KM, Nieland TJ, Fass DM, Kao PF, Kahn M, et al: An
epigenetic blockade of cognitive functions in the neurodegenerating
brain. Nature. 483:222–226. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Maciotta S, Meregalli M and Torrente Y:
The involvement of microRNAs in neurodegenerative diseases. Front
Cell Neurosci. 7:2652013. View Article : Google Scholar
|
|
34
|
Schonrock N, Matamales M, Ittner LM and
Götz J: MicroRNA networks surrounding APP and amyloid-β
metabolism-implications for Alzheimer's disease. Exp Neurol.
235:447–454. 2012. View Article : Google Scholar
|
|
35
|
Delay C, Calon F, Mathews P and Hébert SS:
Alzheimer-specific variants in the 3′UTR of Amyloid precursor
protein affect microRNA function. Mol Neurodegener. 6:702011.
View Article : Google Scholar
|
|
36
|
Long JM and Lahiri DK: MicroRNA-101
downregulates Alzheimer's amyloid-β precursor protein levels in
human cell cultures and is differentially expressed. Biochem
Biophys Res Commun. 404:889–895. 2011. View Article : Google Scholar
|
|
37
|
Niwa R, Zhou F, Li C and Slack FJ: The
expression of the Alzheimer's amyloid precursor protein-like gene
is regulated by developmental timing microRNAs and their targets in
Caenorhabditis elegans. Dev Biol. 315:418–425. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Rodriguez-Ortiz CJ, Baglietto-Vargas D,
Martinez-Coria H, LaFerla FM and Kitazawa M: Upregulation of
miR-181 decreases c-Fos and SIRT-1 in the hippocampus of 3xTg-AD
mice. J Alzheimers Dis. 42:1229–1238. 2014.PubMed/NCBI
|
|
39
|
Smith P, Al Hashimi A, Girard J, Delay C
and Hébert SS: In vivo regulation of amyloid precursor protein
neuronal splicing by microRNAs. J Neurochem. 116:240–247. 2011.
View Article : Google Scholar
|
|
40
|
Fang M, Wang J, Zhang X, Geng Y, Hu Z,
Rudd JA, Ling S, Chen W and Han S: The miR-124 regulates the
expression of BACE1/β-secretase correlated with cell death in
Alzheimer's disease. Toxicol Lett. 209:94–105. 2012. View Article : Google Scholar
|
|
41
|
Liu W, Liu C, Zhu J, Shu P, Yin B, Gong Y,
Qiang B, Yuan J and Peng X: MicroRNA-16 targets amyloid precursor
protein to potentially modulate Alzheimer's-associated pathogenesis
in SAMP8 mice. Neurobiol Aging. 33:522–534. 2012. View Article : Google Scholar
|
|
42
|
Hebert SS, Horré K, Nicolaï L, Bergmans B,
Papadopoulou AS, Delacourte A and De Strooper B: MicroRNA
regulation of Alzheimer's amyloid precursor protein expression.
Neurobiol Dis. 33:422–428. 2009. View Article : Google Scholar
|
|
43
|
Hébert SS, Sergeant N and Buée L:
MicroRNAs and the regulation of tau metabolism. Int J Alzheimers
Dis. 2012:4065612012.PubMed/NCBI
|
|
44
|
Absalon S, Kochanek DM, Raghavan V and
Krichevsky AM: MiR-26b, upregulated in Alzheimer's disease,
activates cell cycle entry, tau-phosphorylation, and apoptosis in
postmitotic neurons. J Neurosci. 33:14645–14659. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Banzhaf-Strathmann J, Benito E, May S,
Arzberger T, Tahirovic S, Kretzschmar H, Fischer A and Edbauer D:
MicroRNA-125b induces tau hyperphosphorylation and cognitive
deficits in Alzheimer's disease. EMBO J. 33:1667–1680. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ma DK, Jang MH, Guo JU, Kitabatake Y,
Chang ML, Pow-Anpongkul N, Flavell RA, Lu B, Ming GL and Song H:
Neuronal activity-induced Gadd45b promotes epigenetic DNA
demethylation and adult neurogenesis. Science. 323:1074–1077. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Santiard-Baron D, Gosset P, Nicole A,
Sinet PM, Christen Y and Ceballos-Picot I: Identification of
beta-amyloid-responsive genes by RNA differential display: Early
induction of a DNA damage-inducible gene, gadd45. Exp Neurol.
158:206–213. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Uberti D, Carsana T, Bernardi E, Rodella
L, Grigolato P, Lanni C, Racchi M, Govoni S and Memo M: Selective
impairment of p53-mediated cell death in fibroblasts from sporadic
Alzheimer's disease patients. J Cell Sci. 115:3131–3138.
2002.PubMed/NCBI
|
|
49
|
Santiard-Baron D, Lacoste A, Ellouk-Achard
S, Soulié C, Nicole A, Sarasin A and Ceballos-Picot I: The amyloid
peptide induces early genotoxic damage in human preneuron NT2.
Mutat Res. 479:113–120. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Bihaqi SW and Zawia NH: Alzheimer's
disease biomarkers and epigenetic intermediates following exposure
to Pb in vitro. Curr Alzheimer Res. 9:555–562. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Stagni F, Giacomini A, Guidi S, Ciani E,
Ragazzi E, Filonzi M, De Iasio R, Rimondini R and Bartesaghi R:
Long-term effects of neonatal treatment with fluoxetine on
cognitive performance in Ts65Dn mice. Neurobiol Dis. 74:204–218.
2015. View Article : Google Scholar
|
|
52
|
Bie B, Wu J, Yang H, Xu JJ, Brown DL and
Naguib M: Epigenetic suppression of neuroligin 1 underlies
amyloid-induced memory deficiency. Nat Neurosci. 17:223–231. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Noutel J, Hong YK, Leu B, Kang E and Chen
C: Experience-dependent retinogeniculate synapse remodeling is
abnormal in MeCP2-deficient mice. Neuron. 70:35–42. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Roux JC, Zala D, Panayotis N,
Borges-Correia A, Saudou F and Villard L: Modification of Mecp2
dosage alters axonal transport through the Huntingtin/Hap1 pathway.
Neurobiol Dis. 45:786–795. 2012. View Article : Google Scholar
|
|
55
|
Chen KL, Wang SS, Yang YY, Yuan RY, Chen
RM and Hu CJ: The epigenetic effects of amyloid-beta(1–40) on
global DNA and neprilysin genes in murine cerebral endothelial
cells. Biochem Biophys Res Commun. 378:57–61. 2009. View Article : Google Scholar
|
|
56
|
Iwata A, Nagata K, Hatsuta H, Takuma H,
Bundo M, Iwamoto K, Tamaoka A, Murayama S, Saido T and Tsuji S:
Altered CpG methylation in sporadic Alzheimer's disease is
associated with APP and MAPT dysregulation. Hum Mol Genet.
23:648–656. 2014. View Article : Google Scholar
|
|
57
|
Wilkins HM, Carl SM, Weber SG, Ramanujan
SA, Festoff BW, Linseman DA and Swerdlow RH: Mitochondrial lysates
induce inflammation and Alzheimer's disease-relevant changes in
microglial and neuronal cells. J Alzheimers Dis. 45:305–318.
2015.
|
|
58
|
Garcia I, Crowther AJ, Gama V, Miller CR,
Deshmukh M and Gershon TR: Bax deficiency prolongs cerebellar
neurogenesis, accelerates medulloblastoma formation and
paradoxically increases both malignancy and differentiation.
Oncogene. 32:2304–2314. 2013. View Article : Google Scholar
|
|
59
|
Keleshian VL, Modi HR, Rapoport SI and Rao
JS: Aging is associated with altered inflammatory, arachidonic acid
cascade, and synaptic markers, influenced by epigenetic
modifications, in the human frontal cortex. J Neurochem. 125:63–73.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Fleming JL, Phiel CJ and Toland AE: The
role for oxidative stress in aberrant DNA methylation in
Alzheimer's disease. Curr Alzheimer Res. 9:1077–1096. 2012.
View Article : Google Scholar
|
|
61
|
Gu X, Sun J, Li S, Wu X and Li L:
Oxidative stress induces DNA demethylation and histone acetylation
in SH-SY5Y cells: Potential epigenetic mechanisms in gene
transcription in Aβ production. Neurobiol Aging. 34:1069–1079.
2013. View Article : Google Scholar
|
|
62
|
Jin K and Galvan V: Endogenous neural stem
cells in the adult brain. J Neuroimmune Pharmacol. 2:236–242. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
de Almeida Sassi F, Lunardi Brunetto A,
Schwartsmann G, Roesler R and Abujamra AL: Glioma revisited: From
neuro-genesis and cancer stem cells to the epigenetic regulation of
the niche. J Oncol. 2012:5378612012. View Article : Google Scholar
|
|
64
|
Doetsch F, Caillé I, Lim DA,
Garcia-Verdugo JM and Alvarez-Buylla A: Subventricular zone
astrocytes are neural stem cells in the adult mammalian brain.
Cell. 97:703–716. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Schaeffer EL, Novaes BA, da Silva ER, Skaf
HD and Mendes-Neto AG: Strategies to promote differentiation of
newborn neurons into mature functional cells in Alzheimer brain.
Prog Neuropsychopharmacol Biol Psychiatry. 33:1087–1102. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Seri B, García-Verdugo JM, McEwen BS and
Alvarez-Buylla A: Astrocytes give rise to new neurons in the adult
mammalian hippocampus. J Neurosci. 21:7153–7160. 2001.PubMed/NCBI
|
|
67
|
Garzón-Muvdi T and Quinones-Hinojosa A:
Neural stem cell niches and homing: Recruitment and integration
into functional tissues. ILAR J. 51:3–23. 2009. View Article : Google Scholar
|
|
68
|
Sahay A, Wilson DA and Hen R: Pattern
separation: A common function for new neurons in hippocampus and
olfactory bulb. Neuron. 70:582–588. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Shors TJ: From stem cells to grandmother
cells: How neurogenesis relates to learning and memory. Cell Stem
Cell. 3:253–258. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Fitzsimons CP, van Bodegraven E, Schouten
M, Lardenoije R, Kompotis K, Kenis G, van den Hurk M, Boks MP,
Biojone C, Joca S, et al: Epigenetic regulation of adult neural
stem cells: Implications for Alzheimer's disease. Mol Neurodegener.
9:252014. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Moore KA and Lemischka IR: Stem cells and
their niches. Science. 311:1880–1885. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Shihabuddin LS, Horner PJ, Ray J and Gage
FH: Adult spinal cord stem cells generate neurons after
transplantation in the adult dentate gyrus. J Neurosci.
20:8727–8735. 2000.PubMed/NCBI
|
|
73
|
Seidenfaden R, Desoeuvre A, Bosio A,
Virard I and Cremer H: Glial conversion of SVZ-derived committed
neuronal precursors after ectopic grafting into the adult brain.
Mol Cell Neurosci. 32:187–198. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Siebzehnrubl FA and Steindler DA:
Isolating and culturing of precursor cells from the adult human
brain. Methods Mol Biol. 1059:79–86. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Nakatomi H, Kuriu T, Okabe S, Yamamoto S,
Hatano O, Kawahara N, Tamura A, Kirino T and Nakafuku M:
Regeneration of hippocampal pyramidal neurons after ischemic brain
injury by recruitment of endogenous neural progenitors. Cell.
110:429–441. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Singh RP, Shiue K, Schomberg D and Zhou
FC: Cellular epigenetic modifications of neural stem cell
differentiation. Cell Transplant. 18:1197–1211. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Yang G, Song Y, Zhou X, Deng Y, Liu T,
Weng G, Yu D and Pan S: DNA methyltransferase 3, a target of
microRNA-29c, contributes to neuronal proliferation by regulating
the expression of brain-derived neurotrophic factor. Mol Med Rep.
12:1435–1442. 2015.PubMed/NCBI
|
|
78
|
Wu H, Coskun V, Tao J, Xie W, Ge W,
Yoshikawa K, Li E, Zhang Y and Sun YE: Dnmt3a-dependent nonpromoter
DNA methylation facilitates transcription of neurogenic genes.
Science. 329:444–448. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Challen GA, Sun D, Jeong M, Luo M, Jelinek
J, Berg JS, Bock C, Vasanthakumar A, Gu H, Xi Y, et al: Dnmt3a is
essential for hematopoietic stem cell differentiation. Nat Genet.
44:23–31. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Wu Z, Huang K, Yu J, Le T, Namihira M, Liu
Y, Zhang J, Xue Z, Cheng L and Fan G: Dnmt3a regulates both
proliferation and differentiation of mouse neural stem cells. J
Neurosci Res. 90:1883–1891. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Li X, Barkho BZ, Luo Y, Smrt RD,
Santistevan NJ, Liu C, Kuwabara T, Gage FH and Zhao X: Epigenetic
regulation of the stem cell mitogen Fgf-2 by Mbd1 in adult neural
stem/progenitor cells. J Biol Chem. 283:27644–27652. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Adefuin AM, Kimura A, Noguchi H, Nakashima
K and Namihira M: Epigenetic mechanisms regulating differentiation
of neural stem/precursor cells. Epigenomics. 6:637–649. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhao X, Ueba T, Christie BR, Barkho B,
McConnell MJ, Nakashima K, Lein ES, Eadie BD, Willhoite AR, Muotri
AR, et al: Mice lacking methyl-CpG binding protein 1 have deficits
in adult neurogenesis and hippocampal function. Proc Natl Acad Sci
USA. 100:6777–6782. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Tsujimura K, Abematsu M, Kohyama J,
Namihira M and Nakashima K: Neuronal differentiation of neural
precursor cells is promoted by the methyl-CpG-binding protein
MeCP2. Exp Neurol. 219:104–111. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Kishi N and Macklis JD: MeCP2 functions
largely cell-autonomously, but also non-cell-autonomously, in
neuronal maturation and dendritic arborization of cortical
pyramidal neurons. Exp Neurol. 222:51–58. 2010. View Article : Google Scholar :
|
|
86
|
Johnson AA, Sarthi J, Pirooznia SK, Reube
W and Elefant F: Increasing Tip60 HAT levels rescues axonal
transport defects and associated behavioral phenotypes in a
Drosophila Alzheimer's disease model. J Neurosci. 33:7535–7547.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Sharma R, Ottenhof T, Rzeczkowska PA and
Niles LP: Epigenetic targets for melatonin: Induction of histone H3
hyperacetylation and gene expression in C17.2 neural stem cells. J
Pineal Res. 45:277–284. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Dozawa M, Kono H, Sato Y, Ito Y, Tanaka H
and Ohshima T: Valproic acid, a histone deacetylase inhibitor,
regulates cell proliferation in the adult zebrafish optic tectum.
Dev Dyn. 243:1401–1415. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Huang HY, Liu DD, Chang HF, Chen WF, Hsu
HR, Kuo JS and Wang MJ: Histone deacetylase inhibition mediates
urocortin-induced antiproliferation and neuronal differentiation in
neural stem cells. Stem Cells. 30:2760–2773. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Liu H, Wu H, Wang Y, Wang Y, Wu X, Ju S
and Wang X: Inhibition of class II histone deacetylase blocks
proliferation and promotes neuronal differentiation of the
embryonic rat neural progenitor cells. Acta Neurobiol Exp (Wars).
72:365–376. 2012.
|
|
91
|
Jawerka M, Colak D, Dimou L, Spiller C,
Lagger S, Montgomery RL, Olson EN, Wurst W, Göttlicher M and Götz
M: The specific role of histone deacetylase 2 in adult
neurogenesis. Neuron Glia Biol. 6:93–107. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Foti SB, Chou A, Moll AD and Roskams AJ:
HDAC inhibitors dysregulate neural stem cell activity in the
postnatal mouse brain. Int J Dev Neurosci. 31:434–447. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Foret MR, Sandstrom RS, Rhodes CT, Wang Y,
Berger MS and Lin CH: Molecular targets of chromatin repressive
mark H3K9me3 in primate progenitor cells within adult neurogenic
niches. Front Genet. 5:2522014. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Contestabile A and Sintoni S: Histone
acetylation in neurodevelopment. Curr Pharm Des. 19:5043–5050.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Acquati S, Greco A, Licastro D, Bhagat H,
Ceric D, Rossini Z, Grieve J, Shaked-Rabi M, Henriquez NV, Brandner
S, et al: Epigenetic regulation of survivin by Bmi1 is cell type
specific during corticogenesis and in gliomas. Stem Cells.
31:190–202. 2013. View Article : Google Scholar
|
|
96
|
Chatoo W, Abdouh M, Duparc RH and Bernier
G: Bmi1 distinguishes immature retinal progenitor/stem cells from
the main progenitor cell population and is required for normal
retinal development. Stem Cells. 28:1412–1423. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
He S, Iwashita T, Buchstaller J, Molofsky
AV, Thomas D and Morrison SJ: Bmi-1 over-expression in neural
stem/progenitor cells increases proliferation and neurogenesis in
culture but has little effect on these functions in vivo. Dev Biol.
328:257–272. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Zencak D, Lingbeek M, Kostic C, Tekaya M,
Tanger E, Hornfeld D, Jaquet M, Munier FL, Schorderet DF, van
Lohuizen M and Arsenijevic Y: Bmi1 loss produces an increase in
astroglial cells and a decrease in neural stem cell population and
proliferation. J Neurosci. 25:5774–5783. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Molofsky AV, He S, Bydon M, Morrison SJ
and Pardal R: Bmi-1 promotes neural stem cell self-renewal and
neural development but not mouse growth and survival by repressing
the p16Ink4a and p19Arf senescence pathways. Genes Dev.
19:1432–1437. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Fasano CA, Phoenix TN, Kokovay E, Lowry N,
Elkabetz Y, Dimos JT, Lemischka IR, Studer L and Temple S: Bmi-1
cooperates with Foxg1 to maintain neural stem cell self-renewal in
the forebrain. Genes Dev. 23:561–574. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Ma DK, Marchetto MC, Guo JU, Ming GL, Gage
FH and Song H: Epigenetic choreographers of neurogenesis in the
adult mammalian brain. Nat Neurosci. 13:1338–1344. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Pasini D, Malatesta M, Jung HR,
Walfridsson J, Willer A, Olsson L, Skotte J, Wutz A, Porse B,
Jensen ON and Helin K: Characterization of an antagonistic switch
between histone H3 lysine 27 methylation and acetylation in the
transcriptional regulation of Polycomb group target genes. Nucleic
Acids Res. 38:4958–4969. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Fouse SD, Shen Y, Pellegrini M, et al:
Promoter CpG methylation contributes to ES cell gene regulation in
parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27
trimethylation. Cell Stem Cell. 2:160–169. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Lim DA, Huang YC, Swigut T, Mirick AL,
Garcia-Verdugo JM, Wysocka J, Ernst P and Alvarez-Buylla A:
Chromatin remodelling factor Mll1 is essential for neurogenesis
from postnatal neural stem cells. Nature. 458:529–533. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Potts MB, Siu JJ, Price JD, Salinas RD,
Cho MJ, Ramos AD, Hahn J, Margeta M, Oldham MC and Lim DA: Analysis
of Mll1 deficiency identifies neurogenic transcriptional modules
and Brn4 as a factor for direct astrocyte-to-neuron reprogramming.
Neurosurgery. 75:472–482. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Steffen PA, Fonseca JP, Gänger C,
Dworschak E, Kockmann T, Beisel C and Ringrose L: Quantitative in
vivo analysis of chromatin binding of Polycomb and Trithorax group
proteins reveals retention of ASH1 on mitotic chromatin. Nucleic
Acids Res. 41:5235–5250. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Jepsen K, Solum D, Zhou T, McEvilly RJ,
Kim HJ, Glass CK, Hermanson O and Rosenfeld MG: SMRT-mediated
repression of an H3K27 demethylase in progression from neural stem
cell to neuron. Nature. 450:415–419. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Liu C, Teng ZQ, Santistevan NJ, Szulwach
KE, Guo W, Jin P and Zhao X: Epigenetic regulation of miR-184 by
MBD1 governs neural stem cell proliferation and differentiation.
Cell Stem Cell. 6:433–444. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Shalom-Feuerstein R, Serror L, De La
Forest Divonne S, Petit I, Aberdam E, Camargo L, Damour O,
Vigouroux C, Solomon A, Gaggioli C, et al: Pluripotent stem cell
model reveals essential roles for miR-450b-5p and miR-184 in
embryonic corneal lineage specification. Stem Cells. 30:898–909.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Cheng LC, Pastrana E, Tavazoie M and
Doetsch F: miR-124 regulates adult neurogenesis in the
subventricular zone stem cell niche. Nature Neurosci. 12:399–408.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Martini S, Bernoth K, Main H, Ortega GD,
Lendahl U, Just U and Schwanbeck R: A critical role for Sox9 in
notch-induced astrogliogenesis and stem cell maintenance. Stem
Cells. 31:741–751. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Smrt RD, Szulwach KE, Pfeiffer RL, Li X,
Guo W, Pathania M, Teng ZQ, Luo Y, Peng J, Bordey A, et al:
MicroRNA miR-137 regulates neuronal maturation by targeting
ubiquitin ligase mind bomb-1. Stem Cells. 28:1060–1070. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Szulwach KE, Li X, Smrt RD, Li Y, Luo Y,
Lin L, Santistevan NJ, Li W, Zhao X and Jin P: Cross talk between
microRNA and epigenetic regulation in adult neurogenesis. J Cell
Biol. 189:127–141. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Pathania M, Torres-Reveron J, Yan L,
Kimura T, Lin TV, Gordon V, Teng ZQ, Zhao X, Fulga TA, Van Vactor D
and Bordey A: miR-132 enhances dendritic morphogenesis, spine
density, synaptic integration and survival of newborn olfactory
bulb neurons. PloS One. 7:e381742012. View Article : Google Scholar
|
|
115
|
Yang D, Li T, Wang Y, Tang Y, Cui H, Tang
Y, Zhang X, Chen D, Shen N and Le W: miR-132 regulates the
differentiation of dopamine neurons by directly targeting Nurr1
expression. J Cell Sci. 125:1673–1682. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Remenyi J, Hunter CJ, Cole C, Ando H,
Impey S, Monk CE, Martin KJ, Barton GJ, Hutvagner G and Arthur JS:
Regulation of the miR-212/132 locus by MSK1 and CREB in response to
neurotrophins. Biochem J. 428:281–291. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Imamura T, Uesaka M and Nakashima K:
Epigenetic setting and reprogramming for neural cell fate
determination and differentiation. Philos Trans R Soc Lond B Biol
Sci. 369:201305112014. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Shin Y, Yang K, Han S, Park HJ, Seok Heo
Y, Cho SW and Chung S: Reconstituting vascular microenvironment of
neural stem cell niche in three-dimensional extracellular matrix.
Adv Healthc Mater. 3:1457–1464. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Mohamed Ariff I, Mitra A and Basu A:
Epigenetic regulation of self-renewal and fate determination in
neural stem cells. J Neurosci Res. 90:529–539. 2012. View Article : Google Scholar
|
|
120
|
Degano AL, Park MJ, Penati J, Li Q and
Ronnett GV: MeCP2 is required for activity-dependent refinement of
olfactory circuits. Mol Cell Neurosci. 59:63–75. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Zhou Z, Hong EJ, Cohen S, Zhao WN, Ho HY,
Schmidt L, Chen WG, Lin Y, Savner E, Griffith EC, et al:
Brain-specific phosphorylation of MeCP2 regulates
activity-dependent Bdnf transcription, dendritic growth, and spine
maturation. Neuron. 52:255–269. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Feng J, Zhou Y, Campbell SL, Le T, Li E,
Sweatt JD, Silva AJ and Fan G: Dnmt1 and Dnmt3a maintain DNA
methylation and regulate synaptic function in adult forebrain
neurons. Nat Neurosci. 13:423–430. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Abuhatzira L, Makedonski K, Kaufman Y,
Razin A and Shemer R: MeCP2 deficiency in the brain decreases BDNF
levels by REST/CoREST-mediated repression and increases TRKB
production. Epigenetics. 2:214–222. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Chen M, Takano-Maruyama M, Pereira-Smith
OM, Gaufo GO and Tominaga K: MRG15, a component of HAT and HDAC
complexes, is essential for proliferation and differentiation of
neural precursor cells. J Neurosci Res. 87:1522–1531. 2009.
View Article : Google Scholar
|
|
125
|
Park HG, Yu HS, Park S, Ahn YM, Kim YS and
Kim SH: Repeated treatment with electroconvulsive seizures induces
HDAC2 expression and down-regulation of NMDA receptor-related genes
through histone deacetylation in the rat frontal cortex. Int J
Neuropsychopharmacol. 17:1487–1500. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Kuzumaki N, Ikegami D, Tamura R, Hareyama
N, Imai S, Narita M, Torigoe K, Niikura K, Takeshima H, Ando T, et
al: Hippocampal epigenetic modification at the brain-derived
neurotrophic factor gene induced by an enriched environment.
Hippocampus. 21:127–132. 2011. View Article : Google Scholar
|
|
127
|
Follert P, Cremer H and Béclin C:
MicroRNAs in brain development and function: A matter of
flexibility and stability. Front Mol Neurosci. 7:52014. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Kisliouk T, Cramer T and Meiri N: Heat
stress attenuates new cell generation in the hypothalamus: A role
for miR-138. Neuroscience. 277:624–636. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Liu Q, Fan X, Zhu J, Xu G, Li Y and Liu X:
Co-culturing improves the OGD-injured neuron repairing and NSCs
differentiation via notch pathway activation. Neurosci Lett.
559:1–6. 2014. View Article : Google Scholar
|
|
130
|
Li Q, Ford MC, Lavik EB and Madri JA:
Modeling the neurovascular niche: VEGF- and BDNF-mediated
cross-talk between neural stem cells and endothelial cells: An in
vitro study. J Neurosci Res. 84:1656–1668. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Young A, Assey KS, Sturkie CD, West FD,
Machacek DW and Stice SL: Glial cell line-derived neurotrophic
factor enhances in vitro differentiation of mid-/hindbrain neural
progenitor cells to dopaminergic-like neurons. J Neurosci Res.
88:3222–3232. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Gómez-Gaviro MV, Scott CE, Sesay AK,
Matheu A, Booth S, Galichet C and Lovell-Badge R: Betacellulin
promotes cell proliferation in the neural stem cell niche and
stimulates neurogenesis. Proc Natl Acad Sci USA. 109:1317–1322.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Stolp HB and Molnár Z: Neurogenic niches
in the brain: Help and hindrance of the barrier systems. Front
Neurosci. 9:202015. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Zhao C, Deng W and Gage FH: Mechanisms and
functional implications of adult neurogenesis. Cell. 132:645–660.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Bewernick BH and Schlaepfer TE: Chronic
depression as a model disease for cerebral aging. Dialogues Clin
Neurosci. 15:77–85. 2013.PubMed/NCBI
|
|
136
|
Bufill E, Blesa R and Augustí J:
Alzheimer's disease: An evolutionary approach. J Anthropol Sci.
91:135–157. 2013.PubMed/NCBI
|
|
137
|
Hamilton A and Holscher C: The effect of
ageing on neurogenesis and oxidative stress in the
APP(swe)/PS1(deltaE9) mouse model of Alzheimer's disease. Brain
Res. 1449:83–93. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Walsh K, Megyesi J and Hammond R: Human
central nervous system tissue culture: A historical review and
examination of recent advances. Neurobiol Dis. 18:2–18. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Abramov AY, Canevari L and Duchen MR:
Changes in intracellular calcium and glutathione in astrocytes as
the primary mechanism of amyloid neurotoxicity. J Neurosci.
23:5088–5095. 2003.PubMed/NCBI
|
|
140
|
Schindowski K, Belarbi K, Bretteville A,
Ando K and Buée L: Neurogenesis and cell cycle-reactivated neuronal
death during pathogenic tau aggregation. Genes Brain Behav. 7(Suppl
1): S92–S100. 2008. View Article : Google Scholar
|
|
141
|
Hsieh J, Nakashima K, Kuwabara T, Mejia E
and Gage FH: Histone deacetylase inhibition-mediated neuronal
differentiation of multipotent adult neural progenitor cells. Proc
Natl Acad Sci USA. 101:16659–16664. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Noh H and Seo H: Age-dependent effects of
valproic acid in Alzheimer's disease (AD) mice are associated with
nerve growth factor (NGF) regulation. Neuroscience. 266:255–265.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Sung YM, Lee T, Yoon H, DiBattista AM,
Song JM, Sohn Y, Moffat EI, Turner RS, Jung M, Kim J and Hoe HS:
Mercaptoacetamide-based class II HDAC inhibitor lowers Aβ levels
and improves learning and memory in a mouse model of Alzheimer's
disease. Exp Neurol. 239:192–201. 2013. View Article : Google Scholar
|
|
144
|
Klein C, Mathis C, Leva G, Patte-Mensah C,
Cassel JC, Maitre M and Mensah-Nyagan AG: γ-Hydroxybutyrate (Xyrem)
ameliorates clinical symptoms and neuropathology in a mouse model
of Alzheimer's disease. Neurobiol Aging. 36:832–844. 2015.
View Article : Google Scholar
|
|
145
|
Kim MJ, Seong AR, Yoo JY, Jin CH, Lee YH,
Kim YJ, Lee J, Jun WJ and Yoon HG: Gallic acid, a histone
acetyltransferase inhibitor, suppresses β-amyloid neurotoxicity by
inhibiting microglial-mediated neuroinflammation. Mol Nutr Food
Res. 55:1798–1808. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Peedicayil J: Role of epigenetics in
pharmacotherapy, psychotherapy and nutritional management of mental
disorders. J Clin Pharm Ther. 37:499–501. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Montgomery SE, Sepehry AA, Wangsgaard JD
and Koenig JE: The effect of S-adenosylmethionine on cognitive
performance in mice: An animal model meta-analysis. PloS One.
9:e1077562014. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Papakostas GI, Cassiello CF and Iovieno N:
Folates and S-adenosylmethionine for major depressive disorder. Can
J Psychiatry. 57:406–413. 2012.PubMed/NCBI
|
|
149
|
Papakostas GI, Shelton RC, Zajecka JM,
Etemad B, Rickels K, Clain A, Baer L, Dalton ED, Sacco GR,
Schoenfeld D, et al: L-methylfolate as adjunctive therapy for
SSRI-resistant major depression: Results of two randomized,
double-blind, parallel-sequential trials. Am J Psychiatry.
169:1267–1274. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Zhang J, Li P and Wang Y, Liu J, Zhang Z,
Cheng W and Wang Y: Ameliorative effects of a combination of
baicalin, jasminoidin and cholic acid on ibotenic acid-induced
dementia model in rats. PloS One. 8:e566582013. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Fava M, Shelton RC and Zajecka JM:
Evidence for the use of l-methylfolate combined with
antidepressants in MDD. J Clin Psychiatry. 72:e252011. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
McCaddon A and Hudson PR: L-methylfolate,
methylcobalamin, and N-acetylcysteine in the treatment of
Alzheimer's disease-related cognitive decline. CNS Spectr. 15(Suppl
1): S2–S5. 2010.discussion 6, 2010.
|
|
153
|
Zhang C, Cheng Y, Wang H, Wang C, Wilson
SP, Xu J and Zhang HT: RNA interference-mediated knockdown of
long-form phosphodiesterase-4D (PDE4D) enzyme reverses
amyloid-β42-induced memory deficits in mice. J Alzheimers Dis.
38:269–280. 2014.
|
|
154
|
Wu J, Bao J, Kim M, Yuan S, Tang C, Zheng
H, Mastick GS, Xu C and Yan W: Two miRNA clusters, miR-34b/c and
miR-449, are essential for normal brain development, motile
ciliogenesis, and spermatogenesis. Proc Natl Acad Sci USA.
111:E2851–E2857. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Zovoilis A, Agbemenyah HY, Agis-Balboa RC,
Stilling RM, Edbauer D, Rao P, Farinelli L, Delalle I, Schmitt A,
Falkai P, et al: microRNA-34c is a novel target to treat dementias.
EMBO J. 30:4299–4308. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Bolognin S, Blanchard J, Wang X,
Basurto-Islas G, Tung YC, Kohlbrenner E, Grundke-Iqbal I and Iqbal
K: An experimental rat model of sporadic Alzheimer's disease and
rescue of cognitive impairment with a neurotrophic peptide. Acta
Neuropathol. 123:133–151. 2012. View Article : Google Scholar
|
|
157
|
Kazim SF, Blanchard J, Dai CL, Tung YC,
LaFerla FM, Iqbal IG and Iqbal K: Disease modifying effect of
chronic oral treatment with a neurotrophic peptidergic compound in
a triple transgenic mouse model of Alzheimer's disease. Neurobiol
Dis. 71:110–130. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Mellott TJ, Pender SM, Burke RM, Langley
EA and Blusztajn JK: IGF2 ameliorates amyloidosis, increases
cholinergic marker expression and raises BMP9 and neurotrophin
levels in the hippocampus of the APPswePS1dE9 Alzheimer's disease
model mice. PloS One. 9:e942872014. View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Prakash A, Medhi B and Chopra K:
Granulocyte colony stimulating factor (GCSF) improves memory and
neurobe-havior in an amyloid-β induced experimental model of
Alzheimer's disease. Pharmacol Biochem Behav. 110:46–57. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Jiang P, Li C, Xiang Z and Jiao B:
Tanshinone IIA reduces the risk of Alzheimer's disease by
inhibiting iNOS, MMP2 and NF-κBp65 transcription and translation in
the temporal lobes of rat models of Alzheimer's disease. Mol Med
Rep. 10:689–694. 2014.PubMed/NCBI
|