Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
August-2016 Volume 14 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2016 Volume 14 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Neurogenesis-based epigenetic therapeutics for Alzheimer's disease (Review)

  • Authors:
    • Xueyuan Li
    • Xinjie Bao
    • Renzhi Wang
  • View Affiliations / Copyright

    Affiliations: Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
  • Pages: 1043-1053
    |
    Published online on: June 10, 2016
       https://doi.org/10.3892/mmr.2016.5390
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Alzheimer's disease (AD) is a worldwide health problem with multiple pathogenic causes including aging, and genetic and environmental factors. As the interfaces between genes and the environment, epigenetic mechanisms, including DNA methylation, histone modification and microRNAs, are also involved in the pathogenesis of AD. Neurogenesis occurs throughout life in the normal adult brain of mammals. The neurogenic process, consisting of the proliferation, differentiation and maturation of neural stem cells (NSC), is regulated via epigenetic mechanisms by controlling the expression of specific sets of genes. In the pathology of AD, due to impairments in epigenetic mechanisms, the generation of neurons from NSCs is damaged, which exacerbates the loss of neurons and the deficits in learning and memory function associated with AD. Based on neurogenesis, a number of therapeutic strategies have shown capability in promoting neuronal generation to compensate for the neurons lost in AD, thereby improving cognitive function through epigenetic modifications. This provides potential for the treatment of AD by stimulating neurogenesis using epigenetic strategies. The present review discusses the epigenetics of AD and adult neurogenesis, and summarizes the neurogenesis-based epigenetic therapies targeted at AD. Such a review may offer information for the guidance of future developments of therapeutic strategies for AD.
View Figures
View References

1 

Li XY, Bao XJ and Wang RZ: Potential of neural stem cell-based therapies for Alzheimer's disease. J Neurosci Res. 93:1313–1324. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Graff J, Kim D, Dobbin MM and Tsai LH: Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiol Rev. 91:603–649. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Zawia NH, Lahiri DK and Cardozo-Pelaez F: Epigenetics, oxidative stress, and Alzheimer disease. Free Radic Biol Med. 46:1241–1249. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Day JJ and Sweatt JD: Epigenetic treatments for cognitive impairments. Neuropsychopharmacology. 37:247–260. 2012. View Article : Google Scholar

5 

Emsley JG, Mitchell BD, Kempermann G and Macklis JD: Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog Neurobiol. 75:321–341. 2005. View Article : Google Scholar : PubMed/NCBI

6 

Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, Possnert G, Druid H and Frisén J: Neurogenesis in the striatum of the adult human brain. Cell. 156:1072–1083. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Kohyama J, Kojima T, Takatsuka E, Yamashita T, Namiki J, Hsieh J, Gage FH, Namihira M, Okano H, Sawamoto K and Nakashima K: Epigenetic regulation of neural cell differentiation plasticity in the adult mammalian brain. Proc Natl Acad Sci USA. 105:18012–18017. 2008. View Article : Google Scholar : PubMed/NCBI

8 

Taher N, McKenzie C, Garrett R, Baker M, Fox N and Isaacs GD: Amyloid-β alters the DNA methylation status of cell-fate genes in an Alzheimer's disease model. J Alzheimers Dis. 38:831–844. 2014.

9 

Rodriguez JJ, Jones VC and Verkhratsky A: Impaired cell proliferation in the subventricular zone in an Alzheimer's disease model. Neuroreport. 20:907–912. 2009. View Article : Google Scholar : PubMed/NCBI

10 

Lee ST, Chu K, Jung KH, Kim JH, Huh JY, Yoon H, Park DK, Lim JY, Kim JM, Jeon D, et al: miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Ann Neurol. 72:269–277. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Jordan JD, Ming GL and Song H: Adult neurogenesis as a potential therapy for neurodegenerative diseases. Discov Med. 6:144–147. 2006.

12 

Qing H, He G, Ly PT, Fox CJ, Staufenbiel M, Cai F, Zhang Z, Wei S, Sun X, Chen CH, et al: Valproic acid inhibits Abeta production, neuritic plaque formation, and behavioral deficits in Alzheimer's disease mouse models. J Exp Med. 205:2781–2789. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Li X, Bao X and Wang R: Experimental models of Alzheimer's disease for deciphering the pathogenesis and therapeutic screening (Review). Int J Mol Med. 37:271–283. 2016.Review.

14 

West RL, Lee JM and Maroun LE: Hypomethylation of the amyloid precursor protein gene in the brain of an Alzheimer's disease patient. J Mol Neurosci. 6:141–146. 1995. View Article : Google Scholar : PubMed/NCBI

15 

Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Genda Y and Ukitsu M: Reduction with age in methylcytosine in the promoter region -224 approximately -101 of the amyloid precursor protein gene in autopsy human cortex. Brain Res Mol Brain Res. 70:288–292. 1999. View Article : Google Scholar : PubMed/NCBI

16 

Barrachina M and Ferrer I: DNA methylation of Alzheimer disease and tauopathy-related genes in postmortem brain. J Neuropathol Exp Neurol. 68:880–891. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Ladd-Acosta C, Pevsner J, Sabunciyan S, Yolken RH, Webster MJ, Dinkins T, Callinan PA, Fan JB, Potash JB and Feinberg AP: DNA methylation signatures within the human brain. Am J Hum Genet. 81:1304–1315. 2007. View Article : Google Scholar : PubMed/NCBI

18 

Wang SC, Oelze B and Schumacher A: Age-specific epigenetic drift in late-onset Alzheimer's disease. PloS One. 3:e26982008. View Article : Google Scholar : PubMed/NCBI

19 

Chouliaras L, Mastroeni D, Delvaux E, Grover A, Kenis G, Hof PR, Steinbusch HW, Coleman PD, Rutten BP and van den Hove DL: Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer's disease patients. Neurobiol Aging. 34:2091–2099. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Condliffe D, Wong A, Troakes C, Proitsi P, Patel Y, Chouliaras L, Fernandes C, Cooper J, Lovestone S, Schalkwyk L, et al: Cross-region reduction in 5-hydroxymethylcytosine in Alzheimer's disease brain. Neurobiol Aging. 35:1850–1854. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Hoyaux D, Decaestecker C, Heizmann CW, Vogl T, Schäfer BW, Salmon I, Kiss R and Pochet R: S100 proteins in corpora amylacea from normal human brain. Brain Res. 867:280–288. 2000. View Article : Google Scholar : PubMed/NCBI

22 

Iraola-Guzmán S, Estivill X and Rabionet R: DNA methylation in neurodegenerative disorders: A missing link between genome and environment? Clin Genet. 80:1–14. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Urdinguio RG, Sanchez-Mut JV and Esteller M: Epigenetic mechanisms in neurological diseases: Genes, syndromes and therapies. Lancet Neurol. 8:1056–1072. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Wang S, Wang R, Chen L, Bennett DA, Dickson DW and Wang DS: Expression and functional profiling of neprilysin, insulin-degrading enzyme, and endothelin-converting enzyme in prospectively studied elderly and Alzheimer's brain. J Neurochem. 115:47–57. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Sanchez-Mut JV, Aso E, Heyn H, Matsuda T, Bock C, Ferrer I and Esteller M: Promoter hypermethylation of the phosphatase DUSP22 mediates PKA-dependent TAU phosphorylation and CREB activation in Alzheimer's disease. Hippocampus. 24:363–368. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Narayan PJ, Lill C, Faull R, Curtis MA and Dragunow M: Increased acetyl and total histone levels in post-mortem Alzheimer's disease brain. Neurobiol Dis. 74:281–294. 2015. View Article : Google Scholar

27 

Lithner CU, Lacor PN, Zhao WQ, Mustafiz T, Klein WL, Sweatt JD and Hernandez CM: Disruption of neocortical histone H3 homeostasis by soluble Aβ: Implications for Alzheimer's disease. Neurobiol Aging. 34:2081–2090. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Zhang K, Schrag M, Crofton A, Trivedi R, Vinters H and Kirsch W: Targeted proteomics for quantification of histone acetylation in Alzheimer's disease. Proteomics. 12:1261–1268. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol-Doering A, Opitz L, et al: Altered histone acetylation is associated with age-dependent memory impairment in mice. Science. 328:753–756. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Kanai Y, Akatsu H, Iizuka H and Morimoto C: Could serum antibody to poly(ADP-ribose) and/or histone H1 be marker for senile dementia of Alzheimer type? Ann NY Acad Sci. 1109:338–344. 2007. View Article : Google Scholar : PubMed/NCBI

31 

Chouliaras L, van den Hove DL, Kenis G, Draanen Mv, Hof PR, van Os J, Steinbusch HW, Schmitz C and Rutten BP: Histone deacetylase 2 in the mouse hippocampus: Attenuation of age-related increase by caloric restriction. Curr Alzheimer Res. 10:868–876. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Graff J, Rei D, Guan JS, Wang WY, Seo J, Hennig KM, Nieland TJ, Fass DM, Kao PF, Kahn M, et al: An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature. 483:222–226. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Maciotta S, Meregalli M and Torrente Y: The involvement of microRNAs in neurodegenerative diseases. Front Cell Neurosci. 7:2652013. View Article : Google Scholar

34 

Schonrock N, Matamales M, Ittner LM and Götz J: MicroRNA networks surrounding APP and amyloid-β metabolism-implications for Alzheimer's disease. Exp Neurol. 235:447–454. 2012. View Article : Google Scholar

35 

Delay C, Calon F, Mathews P and Hébert SS: Alzheimer-specific variants in the 3′UTR of Amyloid precursor protein affect microRNA function. Mol Neurodegener. 6:702011. View Article : Google Scholar

36 

Long JM and Lahiri DK: MicroRNA-101 downregulates Alzheimer's amyloid-β precursor protein levels in human cell cultures and is differentially expressed. Biochem Biophys Res Commun. 404:889–895. 2011. View Article : Google Scholar

37 

Niwa R, Zhou F, Li C and Slack FJ: The expression of the Alzheimer's amyloid precursor protein-like gene is regulated by developmental timing microRNAs and their targets in Caenorhabditis elegans. Dev Biol. 315:418–425. 2008. View Article : Google Scholar : PubMed/NCBI

38 

Rodriguez-Ortiz CJ, Baglietto-Vargas D, Martinez-Coria H, LaFerla FM and Kitazawa M: Upregulation of miR-181 decreases c-Fos and SIRT-1 in the hippocampus of 3xTg-AD mice. J Alzheimers Dis. 42:1229–1238. 2014.PubMed/NCBI

39 

Smith P, Al Hashimi A, Girard J, Delay C and Hébert SS: In vivo regulation of amyloid precursor protein neuronal splicing by microRNAs. J Neurochem. 116:240–247. 2011. View Article : Google Scholar

40 

Fang M, Wang J, Zhang X, Geng Y, Hu Z, Rudd JA, Ling S, Chen W and Han S: The miR-124 regulates the expression of BACE1/β-secretase correlated with cell death in Alzheimer's disease. Toxicol Lett. 209:94–105. 2012. View Article : Google Scholar

41 

Liu W, Liu C, Zhu J, Shu P, Yin B, Gong Y, Qiang B, Yuan J and Peng X: MicroRNA-16 targets amyloid precursor protein to potentially modulate Alzheimer's-associated pathogenesis in SAMP8 mice. Neurobiol Aging. 33:522–534. 2012. View Article : Google Scholar

42 

Hebert SS, Horré K, Nicolaï L, Bergmans B, Papadopoulou AS, Delacourte A and De Strooper B: MicroRNA regulation of Alzheimer's amyloid precursor protein expression. Neurobiol Dis. 33:422–428. 2009. View Article : Google Scholar

43 

Hébert SS, Sergeant N and Buée L: MicroRNAs and the regulation of tau metabolism. Int J Alzheimers Dis. 2012:4065612012.PubMed/NCBI

44 

Absalon S, Kochanek DM, Raghavan V and Krichevsky AM: MiR-26b, upregulated in Alzheimer's disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J Neurosci. 33:14645–14659. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Banzhaf-Strathmann J, Benito E, May S, Arzberger T, Tahirovic S, Kretzschmar H, Fischer A and Edbauer D: MicroRNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer's disease. EMBO J. 33:1667–1680. 2014. View Article : Google Scholar : PubMed/NCBI

46 

Ma DK, Jang MH, Guo JU, Kitabatake Y, Chang ML, Pow-Anpongkul N, Flavell RA, Lu B, Ming GL and Song H: Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science. 323:1074–1077. 2009. View Article : Google Scholar : PubMed/NCBI

47 

Santiard-Baron D, Gosset P, Nicole A, Sinet PM, Christen Y and Ceballos-Picot I: Identification of beta-amyloid-responsive genes by RNA differential display: Early induction of a DNA damage-inducible gene, gadd45. Exp Neurol. 158:206–213. 1999. View Article : Google Scholar : PubMed/NCBI

48 

Uberti D, Carsana T, Bernardi E, Rodella L, Grigolato P, Lanni C, Racchi M, Govoni S and Memo M: Selective impairment of p53-mediated cell death in fibroblasts from sporadic Alzheimer's disease patients. J Cell Sci. 115:3131–3138. 2002.PubMed/NCBI

49 

Santiard-Baron D, Lacoste A, Ellouk-Achard S, Soulié C, Nicole A, Sarasin A and Ceballos-Picot I: The amyloid peptide induces early genotoxic damage in human preneuron NT2. Mutat Res. 479:113–120. 2001. View Article : Google Scholar : PubMed/NCBI

50 

Bihaqi SW and Zawia NH: Alzheimer's disease biomarkers and epigenetic intermediates following exposure to Pb in vitro. Curr Alzheimer Res. 9:555–562. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Stagni F, Giacomini A, Guidi S, Ciani E, Ragazzi E, Filonzi M, De Iasio R, Rimondini R and Bartesaghi R: Long-term effects of neonatal treatment with fluoxetine on cognitive performance in Ts65Dn mice. Neurobiol Dis. 74:204–218. 2015. View Article : Google Scholar

52 

Bie B, Wu J, Yang H, Xu JJ, Brown DL and Naguib M: Epigenetic suppression of neuroligin 1 underlies amyloid-induced memory deficiency. Nat Neurosci. 17:223–231. 2014. View Article : Google Scholar : PubMed/NCBI

53 

Noutel J, Hong YK, Leu B, Kang E and Chen C: Experience-dependent retinogeniculate synapse remodeling is abnormal in MeCP2-deficient mice. Neuron. 70:35–42. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Roux JC, Zala D, Panayotis N, Borges-Correia A, Saudou F and Villard L: Modification of Mecp2 dosage alters axonal transport through the Huntingtin/Hap1 pathway. Neurobiol Dis. 45:786–795. 2012. View Article : Google Scholar

55 

Chen KL, Wang SS, Yang YY, Yuan RY, Chen RM and Hu CJ: The epigenetic effects of amyloid-beta(1–40) on global DNA and neprilysin genes in murine cerebral endothelial cells. Biochem Biophys Res Commun. 378:57–61. 2009. View Article : Google Scholar

56 

Iwata A, Nagata K, Hatsuta H, Takuma H, Bundo M, Iwamoto K, Tamaoka A, Murayama S, Saido T and Tsuji S: Altered CpG methylation in sporadic Alzheimer's disease is associated with APP and MAPT dysregulation. Hum Mol Genet. 23:648–656. 2014. View Article : Google Scholar

57 

Wilkins HM, Carl SM, Weber SG, Ramanujan SA, Festoff BW, Linseman DA and Swerdlow RH: Mitochondrial lysates induce inflammation and Alzheimer's disease-relevant changes in microglial and neuronal cells. J Alzheimers Dis. 45:305–318. 2015.

58 

Garcia I, Crowther AJ, Gama V, Miller CR, Deshmukh M and Gershon TR: Bax deficiency prolongs cerebellar neurogenesis, accelerates medulloblastoma formation and paradoxically increases both malignancy and differentiation. Oncogene. 32:2304–2314. 2013. View Article : Google Scholar

59 

Keleshian VL, Modi HR, Rapoport SI and Rao JS: Aging is associated with altered inflammatory, arachidonic acid cascade, and synaptic markers, influenced by epigenetic modifications, in the human frontal cortex. J Neurochem. 125:63–73. 2013. View Article : Google Scholar : PubMed/NCBI

60 

Fleming JL, Phiel CJ and Toland AE: The role for oxidative stress in aberrant DNA methylation in Alzheimer's disease. Curr Alzheimer Res. 9:1077–1096. 2012. View Article : Google Scholar

61 

Gu X, Sun J, Li S, Wu X and Li L: Oxidative stress induces DNA demethylation and histone acetylation in SH-SY5Y cells: Potential epigenetic mechanisms in gene transcription in Aβ production. Neurobiol Aging. 34:1069–1079. 2013. View Article : Google Scholar

62 

Jin K and Galvan V: Endogenous neural stem cells in the adult brain. J Neuroimmune Pharmacol. 2:236–242. 2007. View Article : Google Scholar : PubMed/NCBI

63 

de Almeida Sassi F, Lunardi Brunetto A, Schwartsmann G, Roesler R and Abujamra AL: Glioma revisited: From neuro-genesis and cancer stem cells to the epigenetic regulation of the niche. J Oncol. 2012:5378612012. View Article : Google Scholar

64 

Doetsch F, Caillé I, Lim DA, Garcia-Verdugo JM and Alvarez-Buylla A: Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell. 97:703–716. 1999. View Article : Google Scholar : PubMed/NCBI

65 

Schaeffer EL, Novaes BA, da Silva ER, Skaf HD and Mendes-Neto AG: Strategies to promote differentiation of newborn neurons into mature functional cells in Alzheimer brain. Prog Neuropsychopharmacol Biol Psychiatry. 33:1087–1102. 2009. View Article : Google Scholar : PubMed/NCBI

66 

Seri B, García-Verdugo JM, McEwen BS and Alvarez-Buylla A: Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci. 21:7153–7160. 2001.PubMed/NCBI

67 

Garzón-Muvdi T and Quinones-Hinojosa A: Neural stem cell niches and homing: Recruitment and integration into functional tissues. ILAR J. 51:3–23. 2009. View Article : Google Scholar

68 

Sahay A, Wilson DA and Hen R: Pattern separation: A common function for new neurons in hippocampus and olfactory bulb. Neuron. 70:582–588. 2011. View Article : Google Scholar : PubMed/NCBI

69 

Shors TJ: From stem cells to grandmother cells: How neurogenesis relates to learning and memory. Cell Stem Cell. 3:253–258. 2008. View Article : Google Scholar : PubMed/NCBI

70 

Fitzsimons CP, van Bodegraven E, Schouten M, Lardenoije R, Kompotis K, Kenis G, van den Hurk M, Boks MP, Biojone C, Joca S, et al: Epigenetic regulation of adult neural stem cells: Implications for Alzheimer's disease. Mol Neurodegener. 9:252014. View Article : Google Scholar : PubMed/NCBI

71 

Moore KA and Lemischka IR: Stem cells and their niches. Science. 311:1880–1885. 2006. View Article : Google Scholar : PubMed/NCBI

72 

Shihabuddin LS, Horner PJ, Ray J and Gage FH: Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci. 20:8727–8735. 2000.PubMed/NCBI

73 

Seidenfaden R, Desoeuvre A, Bosio A, Virard I and Cremer H: Glial conversion of SVZ-derived committed neuronal precursors after ectopic grafting into the adult brain. Mol Cell Neurosci. 32:187–198. 2006. View Article : Google Scholar : PubMed/NCBI

74 

Siebzehnrubl FA and Steindler DA: Isolating and culturing of precursor cells from the adult human brain. Methods Mol Biol. 1059:79–86. 2013. View Article : Google Scholar : PubMed/NCBI

75 

Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N, Tamura A, Kirino T and Nakafuku M: Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell. 110:429–441. 2002. View Article : Google Scholar : PubMed/NCBI

76 

Singh RP, Shiue K, Schomberg D and Zhou FC: Cellular epigenetic modifications of neural stem cell differentiation. Cell Transplant. 18:1197–1211. 2009. View Article : Google Scholar : PubMed/NCBI

77 

Yang G, Song Y, Zhou X, Deng Y, Liu T, Weng G, Yu D and Pan S: DNA methyltransferase 3, a target of microRNA-29c, contributes to neuronal proliferation by regulating the expression of brain-derived neurotrophic factor. Mol Med Rep. 12:1435–1442. 2015.PubMed/NCBI

78 

Wu H, Coskun V, Tao J, Xie W, Ge W, Yoshikawa K, Li E, Zhang Y and Sun YE: Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science. 329:444–448. 2010. View Article : Google Scholar : PubMed/NCBI

79 

Challen GA, Sun D, Jeong M, Luo M, Jelinek J, Berg JS, Bock C, Vasanthakumar A, Gu H, Xi Y, et al: Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet. 44:23–31. 2011. View Article : Google Scholar : PubMed/NCBI

80 

Wu Z, Huang K, Yu J, Le T, Namihira M, Liu Y, Zhang J, Xue Z, Cheng L and Fan G: Dnmt3a regulates both proliferation and differentiation of mouse neural stem cells. J Neurosci Res. 90:1883–1891. 2012. View Article : Google Scholar : PubMed/NCBI

81 

Li X, Barkho BZ, Luo Y, Smrt RD, Santistevan NJ, Liu C, Kuwabara T, Gage FH and Zhao X: Epigenetic regulation of the stem cell mitogen Fgf-2 by Mbd1 in adult neural stem/progenitor cells. J Biol Chem. 283:27644–27652. 2008. View Article : Google Scholar : PubMed/NCBI

82 

Adefuin AM, Kimura A, Noguchi H, Nakashima K and Namihira M: Epigenetic mechanisms regulating differentiation of neural stem/precursor cells. Epigenomics. 6:637–649. 2014. View Article : Google Scholar : PubMed/NCBI

83 

Zhao X, Ueba T, Christie BR, Barkho B, McConnell MJ, Nakashima K, Lein ES, Eadie BD, Willhoite AR, Muotri AR, et al: Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc Natl Acad Sci USA. 100:6777–6782. 2003. View Article : Google Scholar : PubMed/NCBI

84 

Tsujimura K, Abematsu M, Kohyama J, Namihira M and Nakashima K: Neuronal differentiation of neural precursor cells is promoted by the methyl-CpG-binding protein MeCP2. Exp Neurol. 219:104–111. 2009. View Article : Google Scholar : PubMed/NCBI

85 

Kishi N and Macklis JD: MeCP2 functions largely cell-autonomously, but also non-cell-autonomously, in neuronal maturation and dendritic arborization of cortical pyramidal neurons. Exp Neurol. 222:51–58. 2010. View Article : Google Scholar :

86 

Johnson AA, Sarthi J, Pirooznia SK, Reube W and Elefant F: Increasing Tip60 HAT levels rescues axonal transport defects and associated behavioral phenotypes in a Drosophila Alzheimer's disease model. J Neurosci. 33:7535–7547. 2013. View Article : Google Scholar : PubMed/NCBI

87 

Sharma R, Ottenhof T, Rzeczkowska PA and Niles LP: Epigenetic targets for melatonin: Induction of histone H3 hyperacetylation and gene expression in C17.2 neural stem cells. J Pineal Res. 45:277–284. 2008. View Article : Google Scholar : PubMed/NCBI

88 

Dozawa M, Kono H, Sato Y, Ito Y, Tanaka H and Ohshima T: Valproic acid, a histone deacetylase inhibitor, regulates cell proliferation in the adult zebrafish optic tectum. Dev Dyn. 243:1401–1415. 2014. View Article : Google Scholar : PubMed/NCBI

89 

Huang HY, Liu DD, Chang HF, Chen WF, Hsu HR, Kuo JS and Wang MJ: Histone deacetylase inhibition mediates urocortin-induced antiproliferation and neuronal differentiation in neural stem cells. Stem Cells. 30:2760–2773. 2012. View Article : Google Scholar : PubMed/NCBI

90 

Liu H, Wu H, Wang Y, Wang Y, Wu X, Ju S and Wang X: Inhibition of class II histone deacetylase blocks proliferation and promotes neuronal differentiation of the embryonic rat neural progenitor cells. Acta Neurobiol Exp (Wars). 72:365–376. 2012.

91 

Jawerka M, Colak D, Dimou L, Spiller C, Lagger S, Montgomery RL, Olson EN, Wurst W, Göttlicher M and Götz M: The specific role of histone deacetylase 2 in adult neurogenesis. Neuron Glia Biol. 6:93–107. 2010. View Article : Google Scholar : PubMed/NCBI

92 

Foti SB, Chou A, Moll AD and Roskams AJ: HDAC inhibitors dysregulate neural stem cell activity in the postnatal mouse brain. Int J Dev Neurosci. 31:434–447. 2013. View Article : Google Scholar : PubMed/NCBI

93 

Foret MR, Sandstrom RS, Rhodes CT, Wang Y, Berger MS and Lin CH: Molecular targets of chromatin repressive mark H3K9me3 in primate progenitor cells within adult neurogenic niches. Front Genet. 5:2522014. View Article : Google Scholar : PubMed/NCBI

94 

Contestabile A and Sintoni S: Histone acetylation in neurodevelopment. Curr Pharm Des. 19:5043–5050. 2013. View Article : Google Scholar : PubMed/NCBI

95 

Acquati S, Greco A, Licastro D, Bhagat H, Ceric D, Rossini Z, Grieve J, Shaked-Rabi M, Henriquez NV, Brandner S, et al: Epigenetic regulation of survivin by Bmi1 is cell type specific during corticogenesis and in gliomas. Stem Cells. 31:190–202. 2013. View Article : Google Scholar

96 

Chatoo W, Abdouh M, Duparc RH and Bernier G: Bmi1 distinguishes immature retinal progenitor/stem cells from the main progenitor cell population and is required for normal retinal development. Stem Cells. 28:1412–1423. 2010. View Article : Google Scholar : PubMed/NCBI

97 

He S, Iwashita T, Buchstaller J, Molofsky AV, Thomas D and Morrison SJ: Bmi-1 over-expression in neural stem/progenitor cells increases proliferation and neurogenesis in culture but has little effect on these functions in vivo. Dev Biol. 328:257–272. 2009. View Article : Google Scholar : PubMed/NCBI

98 

Zencak D, Lingbeek M, Kostic C, Tekaya M, Tanger E, Hornfeld D, Jaquet M, Munier FL, Schorderet DF, van Lohuizen M and Arsenijevic Y: Bmi1 loss produces an increase in astroglial cells and a decrease in neural stem cell population and proliferation. J Neurosci. 25:5774–5783. 2005. View Article : Google Scholar : PubMed/NCBI

99 

Molofsky AV, He S, Bydon M, Morrison SJ and Pardal R: Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev. 19:1432–1437. 2005. View Article : Google Scholar : PubMed/NCBI

100 

Fasano CA, Phoenix TN, Kokovay E, Lowry N, Elkabetz Y, Dimos JT, Lemischka IR, Studer L and Temple S: Bmi-1 cooperates with Foxg1 to maintain neural stem cell self-renewal in the forebrain. Genes Dev. 23:561–574. 2009. View Article : Google Scholar : PubMed/NCBI

101 

Ma DK, Marchetto MC, Guo JU, Ming GL, Gage FH and Song H: Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci. 13:1338–1344. 2010. View Article : Google Scholar : PubMed/NCBI

102 

Pasini D, Malatesta M, Jung HR, Walfridsson J, Willer A, Olsson L, Skotte J, Wutz A, Porse B, Jensen ON and Helin K: Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Nucleic Acids Res. 38:4958–4969. 2010. View Article : Google Scholar : PubMed/NCBI

103 

Fouse SD, Shen Y, Pellegrini M, et al: Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell. 2:160–169. 2008. View Article : Google Scholar : PubMed/NCBI

104 

Lim DA, Huang YC, Swigut T, Mirick AL, Garcia-Verdugo JM, Wysocka J, Ernst P and Alvarez-Buylla A: Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature. 458:529–533. 2009. View Article : Google Scholar : PubMed/NCBI

105 

Potts MB, Siu JJ, Price JD, Salinas RD, Cho MJ, Ramos AD, Hahn J, Margeta M, Oldham MC and Lim DA: Analysis of Mll1 deficiency identifies neurogenic transcriptional modules and Brn4 as a factor for direct astrocyte-to-neuron reprogramming. Neurosurgery. 75:472–482. 2014. View Article : Google Scholar : PubMed/NCBI

106 

Steffen PA, Fonseca JP, Gänger C, Dworschak E, Kockmann T, Beisel C and Ringrose L: Quantitative in vivo analysis of chromatin binding of Polycomb and Trithorax group proteins reveals retention of ASH1 on mitotic chromatin. Nucleic Acids Res. 41:5235–5250. 2013. View Article : Google Scholar : PubMed/NCBI

107 

Jepsen K, Solum D, Zhou T, McEvilly RJ, Kim HJ, Glass CK, Hermanson O and Rosenfeld MG: SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature. 450:415–419. 2007. View Article : Google Scholar : PubMed/NCBI

108 

Liu C, Teng ZQ, Santistevan NJ, Szulwach KE, Guo W, Jin P and Zhao X: Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell. 6:433–444. 2010. View Article : Google Scholar : PubMed/NCBI

109 

Shalom-Feuerstein R, Serror L, De La Forest Divonne S, Petit I, Aberdam E, Camargo L, Damour O, Vigouroux C, Solomon A, Gaggioli C, et al: Pluripotent stem cell model reveals essential roles for miR-450b-5p and miR-184 in embryonic corneal lineage specification. Stem Cells. 30:898–909. 2012. View Article : Google Scholar : PubMed/NCBI

110 

Cheng LC, Pastrana E, Tavazoie M and Doetsch F: miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nature Neurosci. 12:399–408. 2009. View Article : Google Scholar : PubMed/NCBI

111 

Martini S, Bernoth K, Main H, Ortega GD, Lendahl U, Just U and Schwanbeck R: A critical role for Sox9 in notch-induced astrogliogenesis and stem cell maintenance. Stem Cells. 31:741–751. 2013. View Article : Google Scholar : PubMed/NCBI

112 

Smrt RD, Szulwach KE, Pfeiffer RL, Li X, Guo W, Pathania M, Teng ZQ, Luo Y, Peng J, Bordey A, et al: MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells. 28:1060–1070. 2010. View Article : Google Scholar : PubMed/NCBI

113 

Szulwach KE, Li X, Smrt RD, Li Y, Luo Y, Lin L, Santistevan NJ, Li W, Zhao X and Jin P: Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol. 189:127–141. 2010. View Article : Google Scholar : PubMed/NCBI

114 

Pathania M, Torres-Reveron J, Yan L, Kimura T, Lin TV, Gordon V, Teng ZQ, Zhao X, Fulga TA, Van Vactor D and Bordey A: miR-132 enhances dendritic morphogenesis, spine density, synaptic integration and survival of newborn olfactory bulb neurons. PloS One. 7:e381742012. View Article : Google Scholar

115 

Yang D, Li T, Wang Y, Tang Y, Cui H, Tang Y, Zhang X, Chen D, Shen N and Le W: miR-132 regulates the differentiation of dopamine neurons by directly targeting Nurr1 expression. J Cell Sci. 125:1673–1682. 2012. View Article : Google Scholar : PubMed/NCBI

116 

Remenyi J, Hunter CJ, Cole C, Ando H, Impey S, Monk CE, Martin KJ, Barton GJ, Hutvagner G and Arthur JS: Regulation of the miR-212/132 locus by MSK1 and CREB in response to neurotrophins. Biochem J. 428:281–291. 2010. View Article : Google Scholar : PubMed/NCBI

117 

Imamura T, Uesaka M and Nakashima K: Epigenetic setting and reprogramming for neural cell fate determination and differentiation. Philos Trans R Soc Lond B Biol Sci. 369:201305112014. View Article : Google Scholar : PubMed/NCBI

118 

Shin Y, Yang K, Han S, Park HJ, Seok Heo Y, Cho SW and Chung S: Reconstituting vascular microenvironment of neural stem cell niche in three-dimensional extracellular matrix. Adv Healthc Mater. 3:1457–1464. 2014. View Article : Google Scholar : PubMed/NCBI

119 

Mohamed Ariff I, Mitra A and Basu A: Epigenetic regulation of self-renewal and fate determination in neural stem cells. J Neurosci Res. 90:529–539. 2012. View Article : Google Scholar

120 

Degano AL, Park MJ, Penati J, Li Q and Ronnett GV: MeCP2 is required for activity-dependent refinement of olfactory circuits. Mol Cell Neurosci. 59:63–75. 2014. View Article : Google Scholar : PubMed/NCBI

121 

Zhou Z, Hong EJ, Cohen S, Zhao WN, Ho HY, Schmidt L, Chen WG, Lin Y, Savner E, Griffith EC, et al: Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron. 52:255–269. 2006. View Article : Google Scholar : PubMed/NCBI

122 

Feng J, Zhou Y, Campbell SL, Le T, Li E, Sweatt JD, Silva AJ and Fan G: Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci. 13:423–430. 2010. View Article : Google Scholar : PubMed/NCBI

123 

Abuhatzira L, Makedonski K, Kaufman Y, Razin A and Shemer R: MeCP2 deficiency in the brain decreases BDNF levels by REST/CoREST-mediated repression and increases TRKB production. Epigenetics. 2:214–222. 2007. View Article : Google Scholar : PubMed/NCBI

124 

Chen M, Takano-Maruyama M, Pereira-Smith OM, Gaufo GO and Tominaga K: MRG15, a component of HAT and HDAC complexes, is essential for proliferation and differentiation of neural precursor cells. J Neurosci Res. 87:1522–1531. 2009. View Article : Google Scholar

125 

Park HG, Yu HS, Park S, Ahn YM, Kim YS and Kim SH: Repeated treatment with electroconvulsive seizures induces HDAC2 expression and down-regulation of NMDA receptor-related genes through histone deacetylation in the rat frontal cortex. Int J Neuropsychopharmacol. 17:1487–1500. 2014. View Article : Google Scholar : PubMed/NCBI

126 

Kuzumaki N, Ikegami D, Tamura R, Hareyama N, Imai S, Narita M, Torigoe K, Niikura K, Takeshima H, Ando T, et al: Hippocampal epigenetic modification at the brain-derived neurotrophic factor gene induced by an enriched environment. Hippocampus. 21:127–132. 2011. View Article : Google Scholar

127 

Follert P, Cremer H and Béclin C: MicroRNAs in brain development and function: A matter of flexibility and stability. Front Mol Neurosci. 7:52014. View Article : Google Scholar : PubMed/NCBI

128 

Kisliouk T, Cramer T and Meiri N: Heat stress attenuates new cell generation in the hypothalamus: A role for miR-138. Neuroscience. 277:624–636. 2014. View Article : Google Scholar : PubMed/NCBI

129 

Liu Q, Fan X, Zhu J, Xu G, Li Y and Liu X: Co-culturing improves the OGD-injured neuron repairing and NSCs differentiation via notch pathway activation. Neurosci Lett. 559:1–6. 2014. View Article : Google Scholar

130 

Li Q, Ford MC, Lavik EB and Madri JA: Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: An in vitro study. J Neurosci Res. 84:1656–1668. 2006. View Article : Google Scholar : PubMed/NCBI

131 

Young A, Assey KS, Sturkie CD, West FD, Machacek DW and Stice SL: Glial cell line-derived neurotrophic factor enhances in vitro differentiation of mid-/hindbrain neural progenitor cells to dopaminergic-like neurons. J Neurosci Res. 88:3222–3232. 2010. View Article : Google Scholar : PubMed/NCBI

132 

Gómez-Gaviro MV, Scott CE, Sesay AK, Matheu A, Booth S, Galichet C and Lovell-Badge R: Betacellulin promotes cell proliferation in the neural stem cell niche and stimulates neurogenesis. Proc Natl Acad Sci USA. 109:1317–1322. 2012. View Article : Google Scholar : PubMed/NCBI

133 

Stolp HB and Molnár Z: Neurogenic niches in the brain: Help and hindrance of the barrier systems. Front Neurosci. 9:202015. View Article : Google Scholar : PubMed/NCBI

134 

Zhao C, Deng W and Gage FH: Mechanisms and functional implications of adult neurogenesis. Cell. 132:645–660. 2008. View Article : Google Scholar : PubMed/NCBI

135 

Bewernick BH and Schlaepfer TE: Chronic depression as a model disease for cerebral aging. Dialogues Clin Neurosci. 15:77–85. 2013.PubMed/NCBI

136 

Bufill E, Blesa R and Augustí J: Alzheimer's disease: An evolutionary approach. J Anthropol Sci. 91:135–157. 2013.PubMed/NCBI

137 

Hamilton A and Holscher C: The effect of ageing on neurogenesis and oxidative stress in the APP(swe)/PS1(deltaE9) mouse model of Alzheimer's disease. Brain Res. 1449:83–93. 2012. View Article : Google Scholar : PubMed/NCBI

138 

Walsh K, Megyesi J and Hammond R: Human central nervous system tissue culture: A historical review and examination of recent advances. Neurobiol Dis. 18:2–18. 2005. View Article : Google Scholar : PubMed/NCBI

139 

Abramov AY, Canevari L and Duchen MR: Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J Neurosci. 23:5088–5095. 2003.PubMed/NCBI

140 

Schindowski K, Belarbi K, Bretteville A, Ando K and Buée L: Neurogenesis and cell cycle-reactivated neuronal death during pathogenic tau aggregation. Genes Brain Behav. 7(Suppl 1): S92–S100. 2008. View Article : Google Scholar

141 

Hsieh J, Nakashima K, Kuwabara T, Mejia E and Gage FH: Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci USA. 101:16659–16664. 2004. View Article : Google Scholar : PubMed/NCBI

142 

Noh H and Seo H: Age-dependent effects of valproic acid in Alzheimer's disease (AD) mice are associated with nerve growth factor (NGF) regulation. Neuroscience. 266:255–265. 2014. View Article : Google Scholar : PubMed/NCBI

143 

Sung YM, Lee T, Yoon H, DiBattista AM, Song JM, Sohn Y, Moffat EI, Turner RS, Jung M, Kim J and Hoe HS: Mercaptoacetamide-based class II HDAC inhibitor lowers Aβ levels and improves learning and memory in a mouse model of Alzheimer's disease. Exp Neurol. 239:192–201. 2013. View Article : Google Scholar

144 

Klein C, Mathis C, Leva G, Patte-Mensah C, Cassel JC, Maitre M and Mensah-Nyagan AG: γ-Hydroxybutyrate (Xyrem) ameliorates clinical symptoms and neuropathology in a mouse model of Alzheimer's disease. Neurobiol Aging. 36:832–844. 2015. View Article : Google Scholar

145 

Kim MJ, Seong AR, Yoo JY, Jin CH, Lee YH, Kim YJ, Lee J, Jun WJ and Yoon HG: Gallic acid, a histone acetyltransferase inhibitor, suppresses β-amyloid neurotoxicity by inhibiting microglial-mediated neuroinflammation. Mol Nutr Food Res. 55:1798–1808. 2011. View Article : Google Scholar : PubMed/NCBI

146 

Peedicayil J: Role of epigenetics in pharmacotherapy, psychotherapy and nutritional management of mental disorders. J Clin Pharm Ther. 37:499–501. 2012. View Article : Google Scholar : PubMed/NCBI

147 

Montgomery SE, Sepehry AA, Wangsgaard JD and Koenig JE: The effect of S-adenosylmethionine on cognitive performance in mice: An animal model meta-analysis. PloS One. 9:e1077562014. View Article : Google Scholar : PubMed/NCBI

148 

Papakostas GI, Cassiello CF and Iovieno N: Folates and S-adenosylmethionine for major depressive disorder. Can J Psychiatry. 57:406–413. 2012.PubMed/NCBI

149 

Papakostas GI, Shelton RC, Zajecka JM, Etemad B, Rickels K, Clain A, Baer L, Dalton ED, Sacco GR, Schoenfeld D, et al: L-methylfolate as adjunctive therapy for SSRI-resistant major depression: Results of two randomized, double-blind, parallel-sequential trials. Am J Psychiatry. 169:1267–1274. 2012. View Article : Google Scholar : PubMed/NCBI

150 

Zhang J, Li P and Wang Y, Liu J, Zhang Z, Cheng W and Wang Y: Ameliorative effects of a combination of baicalin, jasminoidin and cholic acid on ibotenic acid-induced dementia model in rats. PloS One. 8:e566582013. View Article : Google Scholar : PubMed/NCBI

151 

Fava M, Shelton RC and Zajecka JM: Evidence for the use of l-methylfolate combined with antidepressants in MDD. J Clin Psychiatry. 72:e252011. View Article : Google Scholar : PubMed/NCBI

152 

McCaddon A and Hudson PR: L-methylfolate, methylcobalamin, and N-acetylcysteine in the treatment of Alzheimer's disease-related cognitive decline. CNS Spectr. 15(Suppl 1): S2–S5. 2010.discussion 6, 2010.

153 

Zhang C, Cheng Y, Wang H, Wang C, Wilson SP, Xu J and Zhang HT: RNA interference-mediated knockdown of long-form phosphodiesterase-4D (PDE4D) enzyme reverses amyloid-β42-induced memory deficits in mice. J Alzheimers Dis. 38:269–280. 2014.

154 

Wu J, Bao J, Kim M, Yuan S, Tang C, Zheng H, Mastick GS, Xu C and Yan W: Two miRNA clusters, miR-34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis. Proc Natl Acad Sci USA. 111:E2851–E2857. 2014. View Article : Google Scholar : PubMed/NCBI

155 

Zovoilis A, Agbemenyah HY, Agis-Balboa RC, Stilling RM, Edbauer D, Rao P, Farinelli L, Delalle I, Schmitt A, Falkai P, et al: microRNA-34c is a novel target to treat dementias. EMBO J. 30:4299–4308. 2011. View Article : Google Scholar : PubMed/NCBI

156 

Bolognin S, Blanchard J, Wang X, Basurto-Islas G, Tung YC, Kohlbrenner E, Grundke-Iqbal I and Iqbal K: An experimental rat model of sporadic Alzheimer's disease and rescue of cognitive impairment with a neurotrophic peptide. Acta Neuropathol. 123:133–151. 2012. View Article : Google Scholar

157 

Kazim SF, Blanchard J, Dai CL, Tung YC, LaFerla FM, Iqbal IG and Iqbal K: Disease modifying effect of chronic oral treatment with a neurotrophic peptidergic compound in a triple transgenic mouse model of Alzheimer's disease. Neurobiol Dis. 71:110–130. 2014. View Article : Google Scholar : PubMed/NCBI

158 

Mellott TJ, Pender SM, Burke RM, Langley EA and Blusztajn JK: IGF2 ameliorates amyloidosis, increases cholinergic marker expression and raises BMP9 and neurotrophin levels in the hippocampus of the APPswePS1dE9 Alzheimer's disease model mice. PloS One. 9:e942872014. View Article : Google Scholar : PubMed/NCBI

159 

Prakash A, Medhi B and Chopra K: Granulocyte colony stimulating factor (GCSF) improves memory and neurobe-havior in an amyloid-β induced experimental model of Alzheimer's disease. Pharmacol Biochem Behav. 110:46–57. 2013. View Article : Google Scholar : PubMed/NCBI

160 

Jiang P, Li C, Xiang Z and Jiao B: Tanshinone IIA reduces the risk of Alzheimer's disease by inhibiting iNOS, MMP2 and NF-κBp65 transcription and translation in the temporal lobes of rat models of Alzheimer's disease. Mol Med Rep. 10:689–694. 2014.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li X, Bao X and Wang R: Neurogenesis-based epigenetic therapeutics for Alzheimer's disease (Review). Mol Med Rep 14: 1043-1053, 2016.
APA
Li, X., Bao, X., & Wang, R. (2016). Neurogenesis-based epigenetic therapeutics for Alzheimer's disease (Review). Molecular Medicine Reports, 14, 1043-1053. https://doi.org/10.3892/mmr.2016.5390
MLA
Li, X., Bao, X., Wang, R."Neurogenesis-based epigenetic therapeutics for Alzheimer's disease (Review)". Molecular Medicine Reports 14.2 (2016): 1043-1053.
Chicago
Li, X., Bao, X., Wang, R."Neurogenesis-based epigenetic therapeutics for Alzheimer's disease (Review)". Molecular Medicine Reports 14, no. 2 (2016): 1043-1053. https://doi.org/10.3892/mmr.2016.5390
Copy and paste a formatted citation
x
Spandidos Publications style
Li X, Bao X and Wang R: Neurogenesis-based epigenetic therapeutics for Alzheimer's disease (Review). Mol Med Rep 14: 1043-1053, 2016.
APA
Li, X., Bao, X., & Wang, R. (2016). Neurogenesis-based epigenetic therapeutics for Alzheimer's disease (Review). Molecular Medicine Reports, 14, 1043-1053. https://doi.org/10.3892/mmr.2016.5390
MLA
Li, X., Bao, X., Wang, R."Neurogenesis-based epigenetic therapeutics for Alzheimer's disease (Review)". Molecular Medicine Reports 14.2 (2016): 1043-1053.
Chicago
Li, X., Bao, X., Wang, R."Neurogenesis-based epigenetic therapeutics for Alzheimer's disease (Review)". Molecular Medicine Reports 14, no. 2 (2016): 1043-1053. https://doi.org/10.3892/mmr.2016.5390
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team