|
1
|
Guzman MG, Halstead SB, Artsob H, Buchy P,
Farrar J, Gubler DJ, Hunsperger E, Kroeger A, Margolis HS, Martínez
E, et al: Dengue: A continuing global threat. Nat Rev Microbiol.
8(12 Suppl): S7–S16. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Henchal EA and Putnak JR: The dengue
viruses. Clin Microbiol Rev. 3:376–396. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Halstead SB, Nimmannitya S and Cohen SN:
Observations related to pathogenesis of dengue haemorrhagic fever.
IV Relation of disease severity to antibody response and virus
recovered. Yale J Biol Med. 42:311–328. 1970.PubMed/NCBI
|
|
4
|
Gibbons RV, Kalanarooj S, Jarman RG,
Nisalak A, Vaughn DW, Endy TP, Mammen MP Jr and Srikiatkhachorn A:
Analysis of repeat hospital admissions for dengue to estimate the
frequency of third or fourth dengue infections resulting in
admissions and dengue hemorrhagic fever, and serotype sequences. Am
J Trop Med Hyg. 77:910–913. 2007.PubMed/NCBI
|
|
5
|
Poh MK, Shui G, Xie X, Shi PY, Wenk MR and
Gu F: U18666A, an intra-cellular cholesterol transport inhibitor,
inhibits dengue virus entry and replication. Antiviral Res.
93:191–198. 2012. View Article : Google Scholar
|
|
6
|
Lee CJ, Lin HR, Liao CL and Lin YL:
Cholesterol effectively blocks entry of flavivirus. J Virol.
82:6470–6480. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Chazal N and Gerlier D: Virus entry,
assembly, budding and membrane rafts. Microbiol Mol Biol Rev.
67:226–237. 2003. View Article : Google Scholar :
|
|
8
|
Rothwell C, Lebreton A, Young Ng C, Lim
JY, Liu W, Vasudevan S, Labow M, Gu F and Gaither LA: Cholesterol
biosynthesis modulation regulates dengue viral replication.
Virology. 389:8–19. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Carro AC and Damonte EB: Requirement of
cholesterol in the viral envelop for dengue virus infection. Virus
Res. 174:78–87. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Martínez-Gutierrez M, Castellanos JE and
Gallego-Gómez J: Statins reduce dengue virus production via
decreased virion assembly. Intervirology. 54:202–216. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Umashankar M, Sánchez-San Martín C, Liao
M, Reilly B, Guo A, Taylor G and Kielian M: Differential
cholesterol binding by class II fusion proteins determines membrane
fusion properties. J Virol. 82:9245–9253. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ali N, Allam H, Bader T, May R,
Basalingappa KM, Berry WL, Chandrakesan P, Qu D, Weygant N, Bronze
MS, et al: Fluvastatin interferes with hepatitis C virus
replication via microtubule bundling an a doublecortin-like
kinase-mediated mechanism. PloS One. 8:e803042013. View Article : Google Scholar
|
|
13
|
Liu SY, Aliyari R, Chikere K, Li G,
Marsden MD, Pernet O, Guo H, Nusbaum R, Zack JA, et al:
Interferon-inducible cholesterol-25-hydroxylase broadly inhibits
viral entry by production of 25-hydroxycholesterol. Immunity.
38:92–105. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Dai J, Pan W and Wang P: ISG15 facilitates
cellular antiviral response to dengue and west nile virus infection
in vitro. Virol J. 8:4682011. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Blanc M, Hsieh WY, Robertson KA, Kropp KA,
Forster T, Shui G, Lacaze P, Watterson S, Grifitts SJ, Spann NJ, et
al: The transcription factor STAT-1 couples macrophage synthesis of
25-hydroxycholesterol to the interferon antiviral response.
Immunity. 38:106–118. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Reyes-Del Valle J, Chávez-Salinas S,
Medina F and Del Angel RM: Heat shock protein 90 and heat shock
protein 70 are components of dengue virus receptor complex in human
cells. J Virol. 79:4557–4567. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Soto-Acosta R, Mosso C, Cervantes-Salazar
M, Puerta-Guardo H, Medina F, Favari L, Ludert JE and del Angel RM:
The increase in cholesterol levels at early stages after dengue
virus infection correlates with an augment in LDL particle uptake
and HMG-CoA reductase activity. Virology. 442:132–147. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Peña J and Harris E: Early dengue virus
protein synthesis induces extensive rearrangement of the
endoplasmic reticulum independent of the UPR and SREBP-2 pathway.
PloS One. 7:e382022012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Gudleski-O'Regan N, Greco TM, Cristea IM
and Shenk T: Increased expression of LDL receptor-related protein 1
during human cytomegalovirus infection reduces virion cholesterol
and infectivity. Cell Host Microbe. 12:86–96. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Guabiraba R, Marques RE, Besnard AG,
Fagundes CT, Souza DG, Ryffel B and Teixeira MM: Role of the
chemokine receptors CCR1, CCR2 and CCR4 in the pathogenesis of
experimental dengue infection in mice. PloS One. 5:e156802010.
View Article : Google Scholar
|
|
21
|
Reis SR, Sampaio AL, Henriques Md, Gandini
M, Azeredo EL and Kubelka CF: An in vitro model for dengue virus
infection that exhibits human monocyte infection, multiple cytokine
production and dexamethasone immunomodulation. Mem Inst Oswaldo
Cruz. 102:983–990. 2007. View Article : Google Scholar
|