|
1
|
Wilson RS, Barnes LL, Mendes de Leon CF,
Aggarwal NT, Schneider JS, Bach J, Pilat J, Beckett LA, Arnold SE,
Evans DA and Bennett DA: Depressive symptoms, cognitive decline,
and risk of AD in older persons. Neurology. 59:364–370. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Querfurth HW and LaFerla FM: Alzheimer's
disease. N Engl J Med. 362:329–344. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kubota T: Epigenome: What we learned from
Rett syndrome, a neurological disease caused by mutation of a
methyl-CpG binding protein. Rinsho Shinkeigaku. 53:1339–1341.
2013.In Japanese. View Article : Google Scholar
|
|
4
|
Alonso Vilatela ME, Lopez-Lopez M and
Yescas-Gomez P: Genetics of Alzheimer's disease. Genetics of
Alzheimer's disease. 43:622–631. 2012.
|
|
5
|
Tang LL, Liu Q, Bu SZ, Xu LT, Wang QW, Mai
YF and Duan SW: The effect of environmental factors and DNA
methylation on type 2 diabetes mellitus. Yi Chuan. 35:1143–1152.
2013.In Chinese. View Article : Google Scholar
|
|
6
|
Zhang W, Zheng Y and Hou L:
Pharmacogenomic discovery delineating the genetic basis of drug
response. Curr Genet Med Rep. 1:143–149. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Wang T, Garcia JG and Zhang W: Epigenetic
regulation in particulate matter-mediated cardiopulmonary
toxicities: A systems biology perspective. Curr Pharmacogenomics
Person Med. 10:314–321. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Jiang D, Hong Q, Shen Y, Xu Y, Zhu H, Li
Y, Xu C, Ouyang G and Duan S: The diagnostic value of DNA
methylation in leukemia: A systematic review and meta-analysis.
PloS One. 9:e968222014. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Cheng J, Wang L, Xu L, Wang H, Liu P, Bu
S, Ye M, Zhang L, Wang Q and Duan S: Gender-dependent miR-375
promoter methylation and the risk of type 2 diabetes. Exp Ther Med.
5:1687–1692. 2013.PubMed/NCBI
|
|
10
|
Tang LL, Liu Q, Bu SZ, Xu LT, Wang QW, Mai
YF and Duan SW: The effect of environmental factors and DNA
methylation on type 2 diabetes mellitus. Yi Chuan. 35:1143–1152.
2013.In Chinese. View Article : Google Scholar
|
|
11
|
Xu L, Zheng D, Wang L, Jiang D, Liu H, Xu
L, Liao Q, Zhang L, Liu P, Shi X, et al: GCK gene-body
hypomethylation is associated with the risk of coronary heart
disease. Biomed Res Int. 2014:1517232014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Jiang D, Zheng D, Wang L, Huang Y, Liu H,
Xu L, Liao Q, Liu P, Shi X, Wang Z, et al: Elevated PLA2G7 gene
promoter methylation as a gender-specific marker of aging increases
the risk of coronary heart disease in females. PloS One.
8:e597522013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Cheng J, Wang Y, Zhou K, Wang L, Li J,
Zhuang Q, Xu X, Xu L, Zhang K, Dai D, et al: Male-specific
association between dopamine receptor D4 gene methylation and
schizophrenia. PloS One. 9:e891282014. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hodgson N, Trivedi M, Muratore C, Li S and
Deth R: Soluble oligomers of amyloid-b cause changes in redox
state, DNA methylation and gene transcription by inhibiting EAAT3
mediated cysteine uptake. J Alzheimers Dis. 36:197–209. 2013.
|
|
15
|
Ji Huihui, Zhou Xiaohui, Chen Zhongming,
Li Ying, Zhou Dongsheng, Zhuo Renjie, Duan Shiwei and Wang Qinwen:
Research progress of DNA methylation in Alzheimer's disease. Chi J
Cell Biol. 36:1551–1559. 2014.
|
|
16
|
Al Akeel R: Role of epigenetic
reprogramming of host genes in bacterial pathogenesis. Saudi J Biol
Sci. 20:305–309. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Fatemi M, Pao MM, Jeong S, Gal-Yam EN,
Egger G, Weisenberger DJ and Jones PA: Footprinting of mammalian
promoters: Use of a CpG DNA methyltransferase revealing nucleosome
positions at a single molecule level. Nucleic Acids Res.
33:e1762005. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yu Z, Kong Q and Kone BC: Aldosterone
reprograms promoter methylation to regulate αENaC transcription in
the collecting duct. Am J Physiol Renal Physiol. 305:F1006–F1013.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Moen EL, Zhang X, Mu W, Delaney SM, Wing
C, McQuade J, Myers J, Godley LA, Dolan ME and Zhang W: Genome-wide
variation of cytosine modifications between European and African
populations and the implications for complex traits. Genetics.
194:987–996. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Moen EL, Stark AL, Zhang W, Dolan ME and
Godley LA: The role of gene body cytosine modifications in MGMT
expression and sensitivity to temozolomide. Mol Cancer Ther.
13:1334–1344. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Kirley A, Hawi Z, Daly G, McCarron M,
Mullins C, Millar N, Waldman I, Fitzgerald M and Gill M:
Dopaminergic system genes in ADHD: Toward a biological hypothesis.
Neuropsychopharmacology. 27:607–619. 2002.PubMed/NCBI
|
|
22
|
Lin WY, Wu BT, Lee CC, Sheu JJ, Liu SH,
Wang WF, Tsai CH, Liu HP and Tsai FJ: Association analysis of
dopaminergic gene variants (Comt, Drd4 And Dat1) with Alzheimer s
disease. J Biol Regul Homeost Agents. 26:401–410. 2012.PubMed/NCBI
|
|
23
|
Docherty SJ, Davis OS, Haworth CM, Plomin
R, D'Souza U and Mill J: A genetic association study of DNA
methylation levels in the DRD4 gene region finds associations with
nearby SNPs. Behav Brain Funct. 8:312012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhang H, Herman AI, Kranzler HR, Anton RF,
Zhao H, Zheng W and Gelernter J: Array-based profiling of DNA
methylation changes associated with alcohol dependence. Alcohol
Clin Exp Res. 37(Suppl 1): E108–E115. 2013. View Article : Google Scholar
|
|
25
|
Mill J and Heijmans BT: From promises to
practical strategies in epigenetic epidemiology. Nat Rev Genet.
14:585–594. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Klengel T, Mehta D, Anacker C, Rex-Haffner
M, Pruessner JC, Pariante CM, Pace TW, Mercer KB, Mayberg HS,
Bradley B, et al: Allele-specific FKBP5 DNA demethylation mediates
gene-childhood trauma interactions. Nature Neurosci. 16:33–41.
2013. View Article : Google Scholar
|
|
27
|
Provencal N, Suderman MJ, Guillemin C,
Massart R, Ruggiero A, Wang D, Bennett AJ, Pierre PJ, Friedman DP,
Côté SM, et al: The signature of maternal rearing in the methylome
in rhesus macaque prefrontal cortex and T cells. J Neurosci.
32:15626–15642. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Liu X, Zheng Y, Zhang W, Zhang X,
Lioyd-Jones DM, Baccarelli AA, Ning H, Fornage M, He K, Liu K and
Hou L: Blood methylomics in response to arsenic exposure in a
low-exposed US population. J Expo Sci Environ Epidemiol.
24:145–149. 2014. View Article : Google Scholar
|
|
29
|
Fiedler U, Wiltfang J, Peters N and
Benninghoff J: Advances in the diagnostics of Alzheimer's disease.
Nervenarzt. 83:661–673. 2012.In German. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Doumas BT: Standards for total serum
protein assays-a collaborative study. Clin Chem. 21:1159–1166.
1975.PubMed/NCBI
|
|
31
|
McPherson IG and Everard DW: Serum albumin
estimation: Modification of the bromcresol green method. Clinic
Chim Acta. 37:117–121. 1972. View Article : Google Scholar
|
|
32
|
Yang X, Liu B, Sang Y, Yuan Y, Pu J, Liu
Y, Li Z, Feng J, Xie Y, Tang R, et al: Kinetic analysis of the
lactate-dehydrogenase-coupled reaction process and measurement of
alanine transaminase by an integration strategy. Anal Sci.
26:1193–1198. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Nath RL and Ghosh NK: A preliminary report
on the determination of the normal values of serum alkaline
phosphatase activity by velocity constant method. Bull Calcutta Sch
Trop Med. 10:71–72. 1962.PubMed/NCBI
|
|
34
|
Zhang GH, Cong AR, Xu GB, Li CB, Yang RF
and Xia TA: An enzymatic cycling method for the determination of
serum total bile acids with recombinant 3alpha-hydroxysteroid
dehydrogenase. Biochem Biophys Res Commun. 326:87–92. 2005.
View Article : Google Scholar
|
|
35
|
Roberts RF and Roberts WL: Performance
characteristics of a recombinant enzymatic cycling assay for
quantification of total homocysteine in serum or plasma. Clin Chim
Acta. 344:95–99. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Jaynes PK, Feld RD and Johnson GF: An
enzymic, reaction-rate assay for serum creatinine with a
centrifugal analyzer. Clin Chem. 28:114–117. 1982.PubMed/NCBI
|
|
37
|
Tabacco A, Meiattini F, Moda E and Tarli
P: Simplified enzymic/colorimetric serum urea nitrogen
determination. Clin Chem. 25:336–337. 1979.PubMed/NCBI
|
|
38
|
Whitlow K and Gochman N: Continuous-flow
enzymic method evaluated for measurement of serum triglycerides
with use of an improved lipase reagent. Clin Chem. 24:2018–2019.
1978.PubMed/NCBI
|
|
39
|
Knob M and Rosenmund H: Enzymic
determination of total serum cholesterol with centrifugal analyzers
(author's transl). Z Klin Chem Klin Biochem. 13:493–498. 1975.In
German. PubMed/NCBI
|
|
40
|
Hunziker P and Keller H: A mechanized
enzymic method for the determination of uric acid (author's
transl). Z Klin Chem Klin Biochem. 13:89–96. 1975.In German.
PubMed/NCBI
|
|
41
|
Asrow G: Semiautomated enzymic micro
methods for blood glucose and lactic acid on a single filtrate.
Anal Biochem. 28:130–138. 1969. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Egloff M, Léglise D, Duvillard L,
Steinmetz J, Boyer MJ, Ruelland A, Agher R and Beucler I:
Multicenter evaluation on different analyzers of three methods for
direct HDL-cholesterol assay. Ann Biol Clin (Paris). 57:561–572.
1999.
|
|
43
|
DaCol P and Kostner GM:
Immunoquantification of total apolipoprotein B in serum by
nephelometry: Influence of lipase treatment and detergents. Clin
Chem. 29:1045–1050. 1983.PubMed/NCBI
|
|
44
|
Girault A, Loiseau D and Girault M:
Quantitative determination of apolipoprotein A in human serum by
laser nephelometry. Ric Clin Lab. 11(Suppl 2): S19–S29. 1981.
|
|
45
|
Cazzolato G, Prakasch G, Green S and
Kostner GM: The determination of lipoprotein Lp(a) by rate and
endpoint nephelometry. Clin Chim Acta. 135:203–208. 1983.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Deyo RA, Pope RM and Persellin RH:
Interference by rheumatoid factor with the detection of C-reactive
protein by the latex agglutination method. J Rheumatol. 7:279–287.
1980.PubMed/NCBI
|
|
47
|
Rifai N and Silverman LM: A simple
immunotechnique for the determination of serum concentration of
apolipoprotein E. Clin Chim Acta. 163:207–213. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ma J, Cheng J, Wang L, Wang H, Xu L, Liu
P, Bu S, Zhang L, Le Y, Ye M, et al: No association between IRS-1
promoter methylation and type 2 diabetes. Mol Med Rep. 8:949–953.
2013.PubMed/NCBI
|
|
49
|
Zhang LN, Liu PP, Wang L, Yuan F, Xu L,
Xin Y, Fei LJ, Zhong QL, Huang Y, Xu L, et al: Lower ADD1 gene
promoter DNA methylation increases the risk of essential
hypertension. PloS One. 8:e634552013. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zemek F, Drtinova L, Nepovimova E, Sepsova
V, Korabecny J, Klimes J and Kuca K: Outcomes of Alzheimer's
disease therapy with acetylcholinesterase inhibitors and memantine.
Expert Opin Drug Saf. 13:759–774. 2014.PubMed/NCBI
|
|
51
|
Pritchard AL, Ratcliffe L, Sorour E, Haque
S, Holder R, Bentham P and Lendon CL: Investigation of dopamine
receptors in susceptibility to behavioural and psychological
symptoms in Alzheimer's disease. Int J Geriatr Psychiatry.
24:1020–1025. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Fratiglioni L, Viitanen M, von Strauss E,
Tontodonati V, Herlitz A and Winblad B: Very old women at highest
risk of dementia and Alzheimer's disease: Incidence data from the
Kungsholmen Project, Stockholm. Neurology. 48:132–138. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Penaloza CG, Estevez B, Han DM, Norouzi M,
Lockshin RA and Zakeri Z: Sex-dependent regulation of cytochrome
P450 family members Cyp1a1, Cyp2e1, and Cyp7b1 by methylation of
DNA. FASEB J. 28:966–977. 2014. View Article : Google Scholar :
|
|
54
|
Piferrer F: Epigenetics of sex
determination and gonadogenesis. Dev Dyn. 242:360–370. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Siegmund KD, Connor CM, Campan M, Long TI,
Weisenberger DJ, Biniszkiewicz D, Jaenisch R, Laird PW and Akbarian
S: DNA methylation in the human cerebral cortex is dynamically
regulated throughout the life span and involves differentiated
neurons. PloS One. 2:e8952007. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Paula-Lima AC, Tricerri MA, Brito-Moreira
J, Bomfim TR, Oliveira FF, Magdesian MH, Grinberg LT, Panizzutti R
and Ferreira ST: Human apolipoprotein A-I binds amyloid-beta and
prevents Abeta-induced neurotoxicity. Int J Biochem Cell Biol.
41:1361–1370. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Fagan AM, Younkin LH, Morris JC, Fryer JD,
Cole TG, Younkin SG and Holtzman DM: Differences in the
Abeta40/Abeta42 ratio associated with cerebrospinal fluid
lipoproteins as a function of apolipoprotein E genotype. Ann
Neurol. 48:201–210. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Emanuele E, Peros E, Tomaino C, Feudatari
E, Bernardi L, Binetti G, Maletta R, Micieli G, Bruni AC and
Geroldi D: Relation of apolipoprotein(a) size to alzheimer's
disease and vascular dementia. Dement Geriatr Cogn Disord.
18:189–196. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Solfrizzi V, Panza F, D'Introno A,
Colacicco AM, Capurso C, Basile AM and Capurso A: Lipoprotein(a),
apolipoprotein E genotype, and risk of Alzheimer's disease. J
Neurol Neurosurg Psychiatry. 72:732–736. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Suszynska-Zajczyk J, Luczak M, Marczak L
and Jakubowski H: Inactivation of the paraoxonase 1 gene affects
the expression of mouse brain proteins involved in
neurodegeneration. J Alzheimers Dis. 42:247–260. 2014.PubMed/NCBI
|
|
61
|
Nazef K, Khelil M, Chelouti H, Kacimi G,
Bendini M, Tazir M, Belarbi S, El Hadi Cherifi M and Djerdjouri B:
Hyperhomocysteinemia is a risk factor for Alzheimer's disease in an
Algerian population. Arch Med Res. 45:247–250. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Hosseinzadeh S, Dabidi Roshan V and
Pourasghar M: Effects of intermittent aerobic training on passive
avoidance test (shuttle box) and stress markers in the dorsal
hippocampus of wistar rats exposed to administration of
homocysteine. Iran J Psychiatry Behav Sci. 7:37–44. 2013.
|
|
63
|
Lu YQ, Luo Y, He ZF, Chen J, Yan BL, Wang
Y and Yu Q: Hydroxysafflor yellow A ameliorates
homocysteine-induced Alzheimer-like pathologic dysfunction and
memory/synaptic disorder. Rejuvenation Res. 16:446–452. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Yarchoan M, Louneva N, Xie SX, Swenson FJ,
Hu W, Soares H, Trojanowski JQ, Lee VM, Kling MA, Shaw LM, et al:
Association of plasma C-reactive protein levels with the diagnosis
of Alzheimer's disease. J Neurol Sci. 333:9–12. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Duong T, Nikolaeva M and Acton PJ:
C-reactive protein-like immunoreactivity in the neurofibrillary
tangles of Alzheimer's disease. Brain Res. 749:152–156. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Iwamoto N, Nishiyama E, Ohwada J and Arai
H: Demonstration of CRP immunoreactivity in brains of Alzheimer's
disease: Immunohistochemical study using formic acid pretreatment
of tissue sections. Neurosci Lett. 177:23–26. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ponnayyan Sulochana S, Sharma K, Mullangi
R and Sukumaran SK: Review of the validated HPLC and LC-MS/MS
methods for determination of drugs used in clinical practice for
Alzheimer's disease. Biomed Chromatogr. 28:1431–1490. 2014.
View Article : Google Scholar : PubMed/NCBI
|