|
1
|
Kelaiditi E, Cesari M, Canevelli M, van
Kan GA, Ousset PJ, Gillette-Guyonnet S, Ritz P, Duveau F, Soto ME,
Provencher V, et al: Cognitive frailty: Rational and definition
from an (I.A.N.A./I.A.G.G.) international consensus group. J Nutr
Health Aging. 17:726–734. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ruan Q, Yu Z, Chen M, Bao Z, Li J and He
W: Cognitive frailty, a novel target for the prevention of elderly
dependency. Ageing Res Rev. 20:1–10. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Buerger K, Frisoni G, Uspenskaya O, Ewers
M, Zetterberg H, Geroldi C, Binetti G, Johannsen P, Rossini PM,
Wahlund LO, et al: Validation of Alzheimer's disease CSF and plasma
biological markers: The multicentre reliability study of the pilot
European Alzheimer's disease neuroimaging initiative (E-ADNI). Exp
Gerontol. 44:579–585. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Yang T, Hong S, O'Malley T, Sperling RA,
Walsh DM and Selkoe DJ: New ELISAs with high specificity for
soluble oligomers of amyloid β-protein detect natural Aβ oligomers
in human brain but not CSF. Alzheimers Dement. 9:99–112. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Dixon-Woods M, Agarwal S, Jones D, Young B
and Sutton A: Synthesising qualitative and quantitative evidence: A
review of possible methods. J Health Serv Res Policy. 10:45–53.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Hannes K and Macaitis K: A move to more
systematic and transparent approaches in qualitative evidence
synthesis: Update on a review of published papers. Qual Res.
12:402–442. 2012. View Article : Google Scholar
|
|
7
|
McKhann GM, Knopman DS, Chertkow H, Hyman
BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux
R, et al: The diagnosis of dementia due to Alzheimer's disease:
Recommendations from the national institute on Aging-Alzheimer's
association workgroups on diagnostic guidelines for Alzheimer's
disease. Alzheimers Dement. 7:263–269. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Albert MS, DeKosky ST, Dickson D, Dubois
B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen
RC, et al: The diagnosis of mild cognitive impairment due to
Alzheimer's disease: Recommendations from the national institute on
Aging-Alzheimer's association workgroups on diagnostic guidelines
for Alzheimer's disease. Alzheimers Dement. 7:270–279. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Barnett-Page E and Thomas J: Methods for
the synthesis of qualitative research: A critical review. BMC Med
Res Methodol. 9:592009. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Grant MJ and Booth A: A typology of
reviews: An analysis of 14 review types and associated
methodologies. Health Info Libr J. 26:91–108. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Noel-Storr AH, McCleery JM, Richard E,
Ritchie CW, Flicker L, Cullum SJ, Davis D, Quinn TJ, Hyde C, Rutjes
AW, et al: Reporting standards for studies of diagnostic test
accuracy in dementia: The STARDdem Initiative. Neurology.
83:364–373. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Padovani A, Borroni B, Colciaghi F,
Pettenati C, Cottini E, Agosti C, Lenzi GL, Caltagirone C,
Trabucchi M, Cattabeni F and Di Luca M: Abnormalities in the
pattern of platelet amyloid precursor protein forms in patients
with mild cognitive impairment and Alzheimer disease. Arch Neurol.
59:71–75. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Borroni B, Colciaghi F, Caltagirone C,
Rozzini L, Broglio L, Cattabeni F, Di Luca M and Padovani A:
Platelet amyloid precursor protein abnormalities in mild cognitive
impairment predict conversion to dementia of Alzheimer type: A
2-year follow-up study. Arch Neurol. 60:1740–1744. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Baskin F, Rosenberg RN, Iyer L, Hynan L
and Cullum CM: Platelet APP isoform ratios correlate with declining
cognition in AD. Neurology. 54:1907–1909. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Prodan CI, Ross ED, Stoner JA, Cowan LD,
Vincent AS and Dale GL: Coated-platelet levels and progression from
mild cognitive impairment to Alzheimer disease. Neurology.
76:247–252. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lewczuk P, Kornhuber J, Vanmechelen E,
Peters O, Heuser I, Maier W, Jessen F, Bürger K, Hampel H, Frölich
L, et al: Amyloid beta peptides in plasma in early diagnosis of
Alzheimer's disease: A multicenter study with multiplexing. Exp
Neurol. 223:366–370. 2010. View Article : Google Scholar
|
|
17
|
Gurol ME, Irizarry MC, Smith EE, Raju S,
Diaz-Arrastia R, Bottiglieri T, Rosand J, Growdon JH and Greenberg
SM: Plasma beta-amyloid and white matter lesions in AD, MCI, and
cerebral amyloid angiopathy. Neurology. 66:23–29. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Lopez OL, Kuller LH, Mehta PD, Becker JT,
Gach HM, Sweet RA, Chang YF, Tracy R and DeKosky ST: Plasma amyloid
levels and the risk of AD in normal subjects in the cardiovascular
health study. Neurology. 70:1664–1671. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Rissin DM, Kan CW, Campbell TG, Howes SC,
Fournier DR, Song L, Piech T, Patel PP, Chang L, Rivnak AJ, et al:
Single-molecule enzyme-linked immunosorbent assay detects serum
proteins at subfemtomolar concentrations. Nat Biotechnol.
28:595–599. 2010. View
Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zetterberg H, Wilson D, Andreasson U,
Minthon L, Blennow K, Randall J and Hansson O: Plasma tau levels in
Alzheimer's disease. Alzheimers Res Ther. 5:92013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Zhang Z, Song M, Liu X, Kang SS, Kwon IS,
Duong DM, Seyfried NT, Hu WT, Liu Z, Wang JZ, et al: Cleavage of
tau by asparagine endopeptidase mediates the neurofibrillary
pathology in Alzheimer's disease. Nat Med. 20:1254–1262. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Mapstone M, Cheema AK, Fiandaca MS, Zhong
X, Mhyre TR, MacArthur LH, Hall WJ, Fisher SG, Peterson DR, Haley
JM, et al: Plasma phospholipids identify antecedent memory
impairment in older adults. Nat Med. 20:415–418. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Whiley L, Sen A, Heaton J, Proitsi P,
García-Gómez D, Leung R, Smith N, Thambisetty M, Kloszewska I,
Mecocci P, et al: Evidence of altered phosphatidylcholine
metabolism in Alzheimer's disease. Neurobiol Aging. 35:271–278.
2014. View Article : Google Scholar
|
|
24
|
Nitsch RM, Blusztajn JK, Pittas AG, Slack
BE, Growdon JH and Wurtman RJ: Evidence for a membrane defect in
Alzheimer disease brain. Proc Natl Acad Sci USA. 89:1671–1675.
1992. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Marksteiner J, Imarhiagbe D, Defrancesco
M, Deisenhammer EA, Kemmler G and Humpel C: Analysis of 27
vascular-related proteins reveals that NT-proBNP is a potential
biomarker for Alzheimer's disease and mild cognitive impairment: A
pilot-study. Exp Gerontol. 50:114–121. 2014. View Article : Google Scholar
|
|
26
|
Hye A, Riddoch-Contreras J, Baird AL,
Ashton NJ, Bazenet C, Leung R, Westman E, Simmons A, Dobson R,
Sattlecker M, et al: Plasma proteins predict conversion to dementia
from prodromal disease. Alzheimers Dement. 10:799–807.e2. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Lane R, Feldman HH, Meyer J, He Y, Ferris
SH, Nordberg A, Darreh-Shori T, Soininen H, Pirttilä T, Farlow MR,
et al: Synergistic effect of apolipoprotein E epsilon4 and
butyrylcholinesterase K-variant on progression from mild cognitive
impairment to Alzheimer's disease. Pharmacogenet Genomics.
18:289–298. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Soares HD, Potter WZ, Pickering E, Kuhn M,
Immermann FW, Shera DM, Ferm M, Dean RA, Simon AJ, Swenson F, et
al: Plasma biomarkers associated with the apolipoprotein E genotype
and Alzheimer disease. Arch Neurol. 69:1310–1317. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Sattlecker M, Kiddle SJ, Newhouse S,
Proitsi P, Nelson S, Williams S, Johnston C, Killick R, Simmons A,
Westman E, et al: Alzheimer's disease biomarker discovery using
SOMAscan multiplexed protein technology. Alzheimers Dement.
10:724–734. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Jessen F, Lewczuk P, Gür O, Block W, Ende
G, Frölich L, Hammen T, Arlt S, Kornhuber J, Kucinski T, et al:
Association of N-acetylaspartate and cerebrospinal fluid Aβ42 in
dementia. J Alzheimers Dis. 27:393–399. 2011.
|
|
31
|
Craig-Schapiro R, Perrin RJ, Roe CM, Xiong
C, Carter D, Cairns NJ, Mintun MA, Peskind ER, Li G, Galasko DR, et
al: YKL-40: A novel prognostic fluid biomarker for preclinical
Alzheimer's disease. Biol Psychiatry. 68:903–912. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Schipper HM, Chertkow H, Mehindate K,
Frankel D, Melmed C and Bergman H: Evaluation of heme oxygenase-1
as a systemic biological marker of sporadic AD. Neurology.
54:1297–1304. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Mangialasche F, Westman E, Kivipelto M,
Muehlboeck JS, Cecchetti R, Baglioni M, Tarducci R, Gobbi G,
Floridi P, Soininen H, et al: Classification and prediction of
clinical diagnosis of Alzheimer's disease based on MRI and plasma
measures of α-/γ-tocotrienols and γ-tocopherol. J Intern Med.
273:602–621. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Babiloni C, Bosco P, Ghidoni R, Del Percio
C, Squitti R, Binetti G, Benussi L, Ferri R, Frisoni G, Lanuzza B,
et al: Homocysteine and electroencephalographic rhythms in
Alzheimer disease: A multicentric study. Neuroscience. 145:942–954.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Rinaldi P, Polidori MC, Metastasio A,
Mariani E, Mattioli P, Cherubini A, Catani M, Cecchetti R, Senin U
and Mecocci P: Plasma antioxidants are similarly depleted in mild
cognitive impairment and in Alzheimer's disease. Neurobiol Aging.
24:915–919. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Squitti R, Bressi F, Pasqualetti P,
Bonomini C, Ghidoni R, Binetti G, Cassetta E, Moffa F, Ventriglia
M, Vernieri F and Rossini PM: Longitudinal prognostic value of
serum 'free' copper in patients with Alzheimer disease. Neurology.
72:50–55. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Pavlopoulos E, Jones S, Kosmidis S, Close
M, Kim C, Kovalerchik O, Small SA and Kandel ER: Molecular
mechanism for age-related memory loss: The histone-binding protein
RbAp48. Sci Transl Med. 5:200ra1152013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Hertz L, Chen Y and Waagepetersen HS:
Effects of ketone bodies in Alzheimer's disease in relation to
neural hypometabolism, β-amyloid toxicity, and astrocyte function.
J Neurochem. 134:7–20. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Nettiksimmons J, Ayonayon H, Harris T,
Phillips C, Rosano C, Satterfield S and Yaffe K; Health ABC Study:
Development and validation of risk index for cognitive decline
using blood-derived markers. Neurology. 84:696–702. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Apostolova LG, Hwang KS, Avila D, Elashoff
D, Kohannim O, Teng E, Sokolow S, Jack CR, Jagust WJ, Shaw L, et
al: Brain amyloidosis ascertainment from cognitive, imaging, and
peripheral blood protein measures. Neurology. 84:729–737. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Smits LL, Pijnenburg YA, van der Vlies AE,
Koedam EL, Bouwman FH, Reuling IE, Scheltens P and van der Flier
WM: Early onset APOE E4-negative Alzheimer's disease patients show
faster cognitive decline on non-memory domains. Eur
Neuropsychopharmacol. 25:1010–1017. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Michaelson DM: APOE ε4: The most prevalent
yet understudied risk factor for Alzheimer's disease. Alzheimers
Dement. 10:861–868. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Lautner R, Palmqvist S, Mattsson N,
Andreasson U, Wallin A, Pålsson E, Jakobsson J, Herukka SK, Owenius
R, Olsson B, et al: Apolipoprotein E genotype and the diagnostic
accuracy of cerebrospinal fluid biomarkers for Alzheimer disease.
JAMA Psychiatry. 71:1183–1191. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Helbecque N, Berr C, Cottel D,
Fromentin-David I, Sazdovitch V, Ricolfi F, Ducimetière P, Di Menza
C and Amouyel P: VLDL receptor polymorphism, cognitive impairment,
and dementia. Neurology. 56:1183–1188. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Riemenschneider M, Lautenschlager N,
Wagenpfeil S, Diehl J, Drzezga A and Kurz A: Cerebrospinal fluid
tau and beta-amyloid 42 proteins identify Alzheimer disease in
subjects with mild cognitive impairment. Arch Neurol. 59:1729–1734.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wolfsgruber S, Jessen F, Koppara A,
Kleineidam L, Schmidtke K, Frölich L, Kurz A, Schulz S, Hampel H,
Heuser I, et al: Subjective cognitive decline is related to CSF
biomarkers of AD in patients with MCI. Neurology. 84:1261–1268.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ewers M, Mattsson N, Minthon L, Molinuevo
JL, Antonell A, Popp J, Jessen F, Herukka SK, Soininen H, Maetzler
W, et al: CSF biomarkers for the differential diagnosis of
Alzheimer's disease: A large-scale international multicenter study.
Alzheimers Dement. 11:1306–1315. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Landau SM, Lu M, Joshi AD, Pontecorvo M,
Mintun MA, Trojanowski JQ, Shaw LM and Jagust WJ; Alzheimer's
Disease Neuroimaging Initiative: Comparing positron emission
tomography imaging and cerebrospinal fluid measurements of
β-amyloid. Ann Neurol. 74:826–836. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Nettiksimmons J, Harvey D, Brewer J,
Carmichael O, DeCarli C, Jack CR Jr, Petersen R, Shaw LM,
Trojanowski JQ, Weiner MW, et al: Subtypes based on cerebrospinal
fluid and magnetic resonance imaging markers in normal elderly
predict cognitive decline. Neurobiol Aging. 31:1419–1428. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Okonkwo OC, Alosco ML, Griffith HR, Mielke
MM, Shaw LM, Trojanowski JQ and Tremont G; Alzheimer's Disease
Neuroimaging Initiative: Cerebrospinal fluid abnormalities and rate
of decline in everyday function across the dementia spectrum:
Normal aging, mild cognitive impairment and Alzheimer disease. Arch
Neurol. 67:688–696. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Mattsson N, Zetterberg H, Hansson O,
Andreasen N, Parnetti L, Jonsson M, Herukka SK, van der Flier WM,
Blankenstein MA, Ewers M, et al: CSF biomarkers and incipient
Alzheimer disease in patients with mild cognitive impairment. JAMA.
302:385–393. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Landau SM, Harvey D, Madison CM, Reiman
EM, Foster NL, Aisen PS, Petersen RC, Shaw LM, Trojanowski JQ, Jack
CR Jr, et al: Comparing predictors of conversion and decline in
mild cognitive impairment. Neurology. 75:230–238. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Van Rossum IA, Vos SJ, Burns L, Knol DL,
Scheltens P, Soininen H, Wahlund LO, Hampel H, Tsolaki M, Minthon
L, et al: Injury markers predict time to dementia in subjects with
MCI and amyloid pathology. Neurology. 79:1809–1816. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Vemuri P, Wiste HJ, Weigand SD, Shaw LM,
Trojanowski JQ, Weiner MW, Knopman DS, Petersen RC and Jack CR Jr;
Alzheimer's Disease Neuroimaging Initiative: MRI and CSF biomarkers
in normal, MCI, and AD subjects: Predicting future clinical change.
Neurology. 73:294–301. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Eckerström C, Olsson E, Bjerke M, Malmgren
H, Edman A, Wallin A and Nordlund A: A combination of
neuropsychological, neuroimaging, and cerebrospinal fluid markers
predicts conversion from mild cognitive impairment to dementia. J
Alzheimers Dis. 36:421–431. 2013.PubMed/NCBI
|
|
56
|
Shaffer JL, Petrella JR, Sheldon FC,
Choudhury KR, Calhoun VD, Coleman RE and Doraiswamy PM; Alzheimer's
Disease Neuroimaging Initiative: Predicting cognitive decline in
subjects at risk for Alzheimer disease by using combined
cerebrospinalfluid, MR imaging, and PET biomarkers. Radiology.
266:583–591. 2013. View Article : Google Scholar :
|
|
57
|
Ewers M, Walsh C, Trojanowski JQ, Shaw LM,
Petersen RC, Jack CR Jr, Feldman HH, Bokde AL, Alexander GE,
Scheltens P, et al: Prediction of conversion from mild cognitive
impairment to Alzheimer's disese dementia based upon biomarkers and
neuropsychological test performance. Neurobiol Aging. 33:1203–1214.
2012. View Article : Google Scholar
|
|
58
|
Vemuri P, Wiste HJ, Weigand SD, Knopman
DS, Trojanowski JQ, Shaw LM, Bernstein MA, Aisen PS, Weiner M,
Petersen RC, et al: Serial MRI and CSF biomarkers in normal aging,
MCI, and AD. Neurology. 75:143–151. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Blennow K, Wallin A, Fredman P, Karlsson
I, Gottfries CG and Svennerholm L: Blood-brain barrier disturbance
in patients with Alzheimer's disease is related to vascular
factors. Acta Neurol Scand. 81:323–326. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Skoog I, Wallin A, Fredman P, Hesse C,
Aevarsson O, Karlsson I, Gottfries CG and Blennow K: A population
study on blood-brain barrier function in 85-year-olds: Relation to
Alzheimer's disease and vascular dementia. Neurology. 50:966–971.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Halliday MR, Pomara N, Sagare AP, Mack WJ,
Frangione B and Zlokovic BV: Relationship between cyclophilin a
levels and matrix metalloproteinase 9 activity in cerebrospinal
fluid of cognitively normal apolipoprotein e4 carriers and
blood-brain barrier breakdown. JAMA Neurol. 70:1198–1200. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Matsumoto Y, Yanase D, Noguchi-Shinohara
M, Ono K, Yoshita M and Yamada M: Blood-brain barrier permeability
correlates with medial temporal lobe atrophy but not with
amyloid-beta protein transport across the blood-brain barrier in
Alzheimer's disease. Dement Geriatr Cogn Disord. 23:241–245. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Montagne A, Barnes SR, Sweeney MD,
Halliday MR, Sagare AP, Zhao Z, Toga AW, Jacobs RE, Liu CY, Amezcua
L, et al: Blood-brain barrier breakdown in the aging human
hippo-campus. Neuron. 85:296–302. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zetterberg H, Andreasson U, Hansson O, Wu
G, Sankaranarayanan S, Andersson ME, Buchhave P, Londos E, Umek RM,
Minthon L, et al: Elevated cerebrospinal fluid BACE1 activity in
incipient Alzheimer disease. Arch Neurol. 65:1102–1107. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ewers M, Zhong Z, Bürger K, Wallin A,
Blennow K, Teipel SJ, Shen Y and Hampel H: Increased CSF-BACE 1
activity is associated with ApoE-epsilon 4 genotype in subjects
with mild cognitive impairment and Alzheimer's disease. Brain.
131:1252–1258. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Olsson A, Höglund K, Sjögren M, Andreasen
N, Minthon L, Lannfelt L, Buerger K, Möller HJ, Hampel H, Davidsson
P and Blennow K: Measurement of alpha- and beta-secretase cleaved
amyloid precursor protein in cerebrospinal fluid from Alzheimer
patients. Exp Neurol. 183:74–80. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Perneczky R, Tsolakidou A, Arnold A,
Diehl-Schmid J, Grimmer T, Förstl H, Kurz A and Alexopoulos P: CSF
soluble amyloid precursor proteins in the diagnosis of incipient
Alzheimer disease. Neurology. 77:35–38. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Lewczuk P, Popp J, Lelental N, Kölsch H,
Maier W, Kornhuber J and Jessen F: Cerebrospinal fluid soluble
amyloid-β protein precursor as a potential novel biomarkers of
Alzheimer's disease. J Alzheimers Dis. 28:119–125. 2012.
|
|
69
|
Hansson O, Zetterberg H, Buchhave P,
Andreasson U, Londos E, Minthon L and Blennow K: Prediction of
Alzheimer's disease using the CSF Abeta42/Abeta40 ratio in patients
with mild cognitive impairment. Dement Geriatr Cogn Disord.
23:316–320. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Hölttä M, Hansson O, Andreasson U, Hertze
J, Minthon L, Nägga K, Andreasen N, Zetterberg H and Blennow K:
Evaluating amyloid-β oligomers in cerebrospinal fluid as a
biomarker for Alzheimer's disease. PLoS One. 8:e663812013.
View Article : Google Scholar
|
|
71
|
Herskovits AZ, Locascio JJ, Peskind ER, Li
G and Hyman BT: A Luminex assay detects amyloid β oligomers in
Alzheimer's disease cerebrospinal fluid. PLoS One. 8:e678982013.
View Article : Google Scholar
|
|
72
|
Lesne SE, Sherman MA, Grant M, Kuskowski
M, Schneider JA, Bennett DA and Ashe KH: Brain amyloid-β oligomers
in ageing and Alzheimer's disease. Brain. 136:1383–1398. 2013.
View Article : Google Scholar
|
|
73
|
Savage MJ, Kalinina J, Wolfe A, Tugusheva
K, Korn R, Cash-Mason T, Maxwell JW, Hatcher NG, Haugabook SJ, Wu
G, et al: A sensitive aβ oligomer assay discriminates Alzheimer's
and aged control cerebrospinal fluid. J Neurosci. 34:2884–2897.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Yang T, O'Malley TT, Kanmert D, Jerecic J,
Zieske LR, Zetterberg H, Hyman BT, Walsh DM and Selkoe DJ: A highly
sensitive novel immunoassay specifically detects low levels of
soluble Aβ oligomers in human cerebrospinal fluid. Alzheimers Res
Ther. 7:142015. View Article : Google Scholar
|
|
75
|
Nabers A, Ollesch J, Schartner J, Kötting
C, Genius J, Hafermann H, Klafki H, Gerwert K and Wiltfang J:
Amyloid-β-secondary structure distribution in cerebrospinal fluid
and blood measured by an immune-infrared-sensor: A biomarker
candidate for Alzheimer's disease. Anal Chem. 88:2755–2762. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kvartsberg H, Duits FH, Ingelsson M,
Andreasen N, Öhrfelt A, Andersson K, Brinkmalm G, Lannfelt L,
Minthon L, Hansson O, et al: Cerebrospinal fluid levels of the
synaptic protein neurogranin correlates with cognitive decline in
prodromal Alzheimer's disease. Alzheimers Dement. 11:1180–1190.
2015. View Article : Google Scholar
|
|
77
|
Portelius E, Zetterberg H, Skillbäck T,
Törnqvist U, Andreasson U, Trojanowski JQ, Weiner MW, Shaw LM,
Mattsson N and Blennow K; Alzheimer's Disease Neuroimaging
Initiative: Cerebrospinal fluid neurogranin: Relation to cognition
and neurodegeneration in Alzheimer's disease. Brain. 138:3373–3385.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Kester MI, Teunissen CE, Crimmins DL,
Herries EM, Ladenson JH, Scheltens P, van der Flier WM, Morris JC,
Holtzman DM and Fagan AM: Neurogranin as a cerebrospinal fluid
biomarker for synaptic loss in symptomatic Alzheimer disease. JAMA
Neurol. 72:1275–1280. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Sjögren M, Rosengren L, Minthon L,
Davidsson P, Blennow K and Wallin A: Cytoskeleton proteins in CSF
distinguish frontotemporal dementia from AD. Neurology.
54:1960–1964. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Sjögren M, Davidsson P, Gottfries J,
Vanderstichele H, Edman A, Vanmechelen E, Wallin A and Blennow K:
The cerebrospinal fluid levels of tau, growth-associated protein-43
and soluble amyloid precursor proteincorrelate in Alzheimer's
disease, reflecting a common pathophysiological process. Dement
Geriatr Cogn Disord. 12:257–264. 2001. View Article : Google Scholar
|
|
81
|
de la Monte SM, Ghanbari K, Frey WH,
Beheshti I, Averback P, Hauser SL, Ghanbari HA and Wands JR:
Characterization of the AD7C-NTP cDNA expression in Alzheimer's
disease and measurement of a 41-kDprotein in cerebrospinal fluid. J
Clin Invest. 100:3093–3104. 1997. View Article : Google Scholar
|
|
82
|
Tarawneh R, D'Angelo G, Macy E, Xiong C,
Carter D, Cairns NJ, Fagan AM, Head D, Mintun MA, Ladenson JH, et
al: Visinin-like protein-1: Diagnostic and prognostic biomarker in
Alzheimer disease. Ann Neurol. 70:274–285. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Tarawneh R, Lee JM, Ladenson JH, Morris JC
and Holtzman DM: CSF VILIP-1 predicts rates of cognitive decline in
early Alzheimer disease. Neurology. 78:709–719. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Tarawneh R, Head D, Allison S, Buckles V,
Fagan AM, Ladenson JH, Morris JC and Holtzman DM: Cerebrospinal
fluid markers of neurodegeneration and rates of brain atrophy in
early Alzheimer disease. JAMA Neurol. 72:656–665. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Sutphen CL, Jasielec MS, Shah AR, Macy EM,
Xiong C, Vlassenko AG, Benzinger TL, Stoops EE, Vanderstichele HM,
Brix B, et al: Longitudinal cerebrospinal fluid biomarker changes
in preclinical Alzheimer disease during middle age. JAMA Neurol.
72:1029–1042. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Czech C, Berndt P, Busch K, Schmitz O,
Wiemer J, Most V, Hampel H, Kastler J and Senn H: Metabolite
profiling of Alzheimer's disease cerebrospinal fluid. PLoS One.
7:e315012012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Liguori C, Stefani A, Sancesario G,
Sancesario GM, Marciani MG and Pierantozzi M: CSF lactate levels, τ
proteins, cognitive decline: A dynamic relationship in Alzheimer's
disease. J Neurol Neurosurg Psychiatry. 86:655–659. 2015.
View Article : Google Scholar
|
|
88
|
Vafadar-Isfahani B, Ball G, Coveney C,
Lemetre C, Boocock D, Minthon L, Hansson O, Miles AK, Janciauskiene
SM, Warden D, et al: Identification of SPARC-like 1 protein as part
of a biomarker panel for Alzheimer's disease in cerebrospinal
fluid. J Alzheimers Dis. 28:625–636. 2012.
|
|
89
|
Wildsmith KR, Schauer SP, Smith AM, Arnott
D, Zhu Y, Haznedar J, Kaur S, Mathews WR and Honigberg LA:
Identification of longitudinally dynamic biomarkers in Alzheimer's
disease cerebrospinal fluid by targeted proteomics. Mol
Neurodegener. 9:222014. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Korff A, Liu C, Ginghina C, Shi M and
Zhang J; Alzheimer's Disease Neuroimaging Initiative: α-Synuclein
in cerebrospinal fluid of Alzheimer's disease and mild cognitive
impairment. J Alzheimers Dis. 36:679–688. 2013.
|
|
91
|
Olsson B, Hertze J, Ohlsson M, Nägga K,
Höglund K, Basun H, Annas P, Lannfelt L, Andreasen N, Minthon L, et
al: Cerebrospinal fluid levels of heart fatty acid binding protein
are elevated prodromally in Alzheimer's disease and vascular
dementia. J Alzheimers Dis. 34:673–679. 2013.
|
|
92
|
Yamagishi S, Inagaki Y, Takeuchi M and
Sasaki N: Is pigment epithelium-derived factor level in
cerebrospinal fluid a promising biomarker for early diagnosis of
Alzheimer's disease? Med Hypotheses. 63:115–117. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Lovell MA, Lynn BC, Xiong S, Quinn JF,
Kaye J and Markesbery WR: An aberrant protein complex in CSF as a
biomarker of Alzheimer disease. Neurology. 70:2212–2218. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Brys M, Pirraglia E, Rich K, Rolstad S,
Mosconi L, Switalski R, Glodzik-Sobanska L, De Santi S, Zinkowski
R, Mehta P, et al: Prediction and longitudinal study of CSF
biomarkers in mild cognitive impairment. Neurobiol Aging.
30:682–690. 2009. View Article : Google Scholar :
|
|
95
|
Ayton S, Faux NG and Bush AI; Alzheimer's
Disease Neuroimaging Initiative: Ferritin levels in the
cerebrospinal fluid predict Alzheimer's disease outcomes and are
regulated by APOE. Nat Commun. 6:67602015. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Ghanbari H, Ghanbari K, Beheshti I, Munzar
M, Vasauskas A and Averback P: Biochemical assay for AD7C-NTP in
urine as an Alzheimer's disease marker. J Clin Lab Anal.
12:285–288. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Goodman I, Golden G, Flitman S, Xie K,
McConville M, Levy S, Zimmerman E, Lebedeva Z, Richter R, Minagar A
and Averback P: A multi-center blinded prospective study of urine
neural thread protein measurements in patients with suspected
Alzheimer's disease. J Am Med Dir Assoc. 8:21–30. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
de la Monte SM and Wands JR: The AD7c-ntp
neuronal thread protein biomarker for detecting Alzheimer's
disease. Front Biosci. 7:d989–d996. 2002.PubMed/NCBI
|
|
99
|
Ma L, Chen J, Wang R, Han Y, Zhang J, Dong
W, Zhang X, Wu Y and Zhao Z: The level of Alzheimer-associated
neuronal thread protein in urine may be an important biomarker of
mild cognitive impairment. J Clin Neurosci. 22:649–652. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zengi O, Karakas A, Ergun U, Senes M, Inan
L and Yucel D: Urinary 8-hydroxy-2′-deoxyguanosine level and plasma
paraoxonase 1 activity withAlzheimer's disease. Clin Chem Lab Med.
50:529–534. 2011.PubMed/NCBI
|
|
101
|
Kim KM, Jung BH, Paeng KJ, Kim I and Chung
BC: Increased urinary F(2) isoprostanes levels in the patients with
Alzheimer's disease. Brain Res Bull. 64:47–51. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Yoshida M, Higashi K, Kuni K, Mizoi M,
Saiki R, Nakamura M, Waragai M, Uemura K, Toida T, Kashiwagi K and
Igarashi K: Distinguishing mild cognitive impairment from
Alzheimer's disease with acrolein metabolites and creatinine in
urine. Clin Chim Acta. 441:115–121. 2015. View Article : Google Scholar
|
|
103
|
Rabassa M, Cherubini A, Zamora-Ros R,
Urpi-Sarda M, Bandinelli S, Ferrucci L and Andres-Lacueva C: Low
levels of a urinary biomarker of dietary polyphenol are associated
with substantial cognitive decline over a 3-year period in older
adults: The invecchiare in chianti study. J Am Geriatr Soc.
63:938–946. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Cook CN, Murray ME and Petrucelli L:
Understanding biomarkers of neurodegeneration: Novel approaches to
detecting tau pathology. Nat Med. 21:219–220. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Kfoury N, Holmes BB, Jiang H, Holtzman DM
and Diamond MI: Trans-cellular propagation of Tau aggregation by
fibrillar species. J Biol Chem. 287:19440–19451. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Holmes BB, Furman JL, Mahan TE, Yamasaki
TR, Mirbaha H, Eades WC, Belaygorod L, Cairns NJ, Holtzman DM and
Diamond MI: Proteopathic tau seeding predicts tauopathy in vivo.
Proc Natl Acad Sci USA. 111:E4376–E4385. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Yanamandra K, Kfoury N, Jiang H, Mahan TE,
Ma S, Maloney SE, Wozniak DF, Diamond MI and Holtzman DM: Anti-tau
antibodies that block tau aggregate seeding in vitro markedly
decrease pathology and improve cognition in vivo. Neuron.
80:402–414. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Kong D, Giovanello KS, Wang Y, Lin W, Lee
E, Fan Y, Murali Doraiswamy P and Zhu H: Predicting Alzheimer's
disease using combined imaging-whole genome SNP data. J Alzheimers
Dis. 46:695–702. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Sun Y, Bresell A, Rantalainen M, Höglund
K, Lebouvier T and Salter H; Alzheimer Disease Neuroimaging
Initiative: An integrated bioinformatics approach for identifying
genetic markers that predict cerebrospinal fluid biomarker
p-tau181/Aβ1-42 ratio in ApoE4-negative mild cognitive impairment
patients. J Alzheimers Dis. 45:1061–1076. 2015.
|
|
110
|
Castro-Chavira SA, Fernandez T, Nicolini
H, Diaz-Cintra S and Prado-Alcala RA: Genetic markers in biological
fluids for aging-related major neurocognitive disorder. Curr
Alzheimer Res. 12:200–209. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Femminella GD, Ferrara N and Rengo G: The
emerging role of microRNAs in Alzheimer's disease. Front Physiol.
6:402015. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Namioka N, Hanyu H, Hirose D, Hatanaka H,
Sato T and Shimizu S: Oxidative stress and inflammation are
associated with physical frailty in patients with Alzheimer's
disease. Geriatr Gerontol Int. Jun 14–2016.Epub ahead of print.
View Article : Google Scholar
|
|
113
|
Panza F, Solfrizzi V, Barulli MR,
Santamato A, Seripa D, Pilotto A and Logroscino G: Cognitive
Frailty: A systematic review of epidemiological and neurobiological
evidence of an age-related clinical condition. Rejuvenation Res.
18:389–412. 2015. View Article : Google Scholar : PubMed/NCBI
|