You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
|
Lama S, Dolati P and Sutherland GR: Controversy in the management of lenticulostriate artery dissecting aneurysm: A case report and review of the literature. World Neurosurg. 81:441.e1–e7. 2014. View Article : Google Scholar | |
|
Dezmalj-Grbelja L, Bosnjak J, Lovrencić-Huzjan A, Ivica M and Demarin V: Moyamoya disease in a patient with brain tumor: Case report. Acta Clin Croat. 49:459–463. 2010. | |
|
Sharfstein SR, Ahmed S, Islam MQ, Najjar MI and Ratushny V: Case of moyamoya disease in a patient with advanced acquired immunodeficiency syndrome. J Stroke Cerebrovasc Dis. 16:268–272. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Squizzato A, Gerdes VE, Brandjes DP, Büller HR and Stam J: Thyroid diseases and cerebrovascular disease. Stroke. 36:2302–2310. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Vetrano DL, Landi F, De Buyser SL, Carfi A, Zuccalà G, Petrovic M, Volpato S, Cherubini A, Corsonello A, Bernabei R and Onder G: Predictors of length of hospital stay among older adults admitted to acute care wards: A multicentre observational study. Eur J Intern Med. 25:56–62. 2014. View Article : Google Scholar | |
|
Cicconetti P, Riolo N, Priami C, Tafaro L and Ettore E: Risk factors for cognitive impairment. Recenti Prog Med. 95:535–545. 2004.In Italian. PubMed/NCBI | |
|
Elkind MS: Epidemiology and risk factors. Continuum (Minneap Minn). 17:1213–1232. 2011. | |
|
Jia Q, Liu LP and Wang YJ: Stroke in China. Clin Exp Pharmacol Physiol. 37:259–264. 2010. View Article : Google Scholar | |
|
Bhoopathi P, Chetty C, Dontula R, Gujrati M, Dinh DH, Rao JS and Lakka SS: SPARC stimulates neuronal differentiation of medulloblastoma cells via the Notch1/STAT3 pathway. Cancer Res. 71:4908–4919. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan TM and Yu HM: Notch signaling: Key role in intrauterine infection/inflammation, embryonic development, and white matter damage? J Neurosci Res. 88:461–468. 2010. | |
|
Veenendaal LM, Kranenburg O, Smakman N, Klomp A, Borel Rinkes IH and van Diest PJ: Differential Notch and TGFbeta signaling in primary colorectal tumors and their corresponding metastases. Cell Oncol. 30:1–11. 2008.PubMed/NCBI | |
|
Givogri MI, de Planell M, Galbiati F, Superchi D, Gritti A, Vescovi A, de Vellis J and Bongarzone ER: Notch signaling in astrocytes and neuroblasts of the adult subventricular zone in health and after cortical injury. Dev Neurosci. 28:81–91. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Quillard T and Charreau B: Impact of notch signaling on inflammatory responses in cardiovascular disorders. Int J Mol Sci. 14:6863–6888. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Li F, Lan Y, Wang Y, Wang J, Yang G, Meng F, Han H, Meng A and Yang X: Endothelial Smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with Notch. Dev Cell. 20:291–302. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Dichgans M: Genetics of ischaemic stroke. Lancet Neurol. 6:149–161. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan Y, Rangarajan P, Kan EM, Wu Y, Wu C and Ling EA: Scutellarin regulates the Notch pathway and affects the migration and morphological transformation of activated microglia in experimentally induced cerebral ischemia in rats and in activated BV-2 microglia. J Neuroinflammation. 12:112015. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng YL, Choi Y, Sobey CG, Arumugam TV and Jo DG: Emerging roles of the γ-secretase-notch axis in inflammation. Pharmacol Ther. 147:80–90. 2015. View Article : Google Scholar | |
|
Wang Z, Huang W and Zuo Z: Perioperative aspirin improves neurological outcome after focal brain ischemia possibly via inhibition of Notch 1 in rat. J Neuroinflammation. 11:562014. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Zyang X, Wang Y, Ji H, Du Y and Liu H: DAPT protects brain against cerebral ischemia by down-regulating the expression of Notch 1 and nuclear factor κB in rats. Neurol Sci. 33:1257–1264. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng YL, Park JS, Manzanero S, Choi Y, Baik SH, Okun E, Gelderblom M, Fann DY, Magnus T, Launikonis BS, et al: Evidence that collaboration between HIF-1α and Notch-1 promotes neuronal cell death in ischemic stroke. Neurobiol Dis. 62:286–295. 2014. View Article : Google Scholar | |
|
Wang L, Chopp M, Zhang RL, Zhang L, Letourneau Y, Feng YF, Jiang A, Morris DC and Zhang ZG: The Notch pathway mediates expansion of a progenitor pool and neuronal differentiation in adult neural progenitor cells after stroke. Neuroscience. 158:1356–1363. 2009. View Article : Google Scholar : | |
|
Wei Z, Chigurupati S, Arumugam TV, Jo DG, Li H and Chan SL: Notch activation enhances the microglia-mediated inflammatory response associated with focal cerebral ischemia. Stroke. 42:2589–2594. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Morgan TH: The theory of the gene. Am Naturalist. 51:513–544. 1917. View Article : Google Scholar | |
|
Becker S, Oelschlaeger TA, Wullaert A, Vlantis K, Pasparakis M, Wehkamp J, Stange EF and Gersemann M: Bacteria regulate intestinal epithelial cell differentiation factors both in vitro and in vivo. PLoS One. 8:e556202013. View Article : Google Scholar : PubMed/NCBI | |
|
Maier D, Kurth P, Schulz A, Russell A, Yuan Z, Gruber K, Kovall RA and Preiss A: Structural and functional analysis of the repressor complex in the Notch signaling pathway of Drosophila melanogaster. Mol Biol Cell. 22:3242–3252. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Braune EB and Lendahl U: Notch-a goldilocks signaling pathway in disease and cancer therapy. Discov Med. 21:189–196. 2016.PubMed/NCBI | |
|
Del Bianco C, Vedenko A, Choi SH, Berger MF, Shokri L, Bulyk ML and Blacklow SC: Notch and MAML-1 complexation do not detectably alter the DNA binding specificity of the transcription factor CSL. PLoS One. 5:e150342010. View Article : Google Scholar : PubMed/NCBI | |
|
Faux CH, Turnley AM, Epa R, Cappai R and Bartlett PF: Interactions between fbroblast growth factors and Notch regulate neuronal differentiation. J Neurosci. 21:5587–5596. 2001.PubMed/NCBI | |
|
Shimizu K, Chiba S, Kumano K, Hosoya N, Takahashi T, Kanda Y, Hamada Y, Yazaki Y and Hirai H: Mouse jagged1 physically interacts with notch2 and other notch receptors. Assessment by quantitative methods. J Biol Chem. 274:32961–32969. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Chung WC, Wu G, Egan SE and Xu K: Tumor-suppressive activity of Lunatic Fringe in prostate through differential modulation of Notch receptor activation. Neoplasia. 16:158–167. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Bresnick EH, Chu J, Christensen HM, Lin B and Norton J: Linking Notch signaling, chromatin remodeling, and T-cell leukemogenesis. J Cell Biochem Suppl. 35(Suppl): S46–S53. 2000. View Article : Google Scholar | |
|
Nam Y, Weng AP, Aster JC and Blacklow SC: Structural requirements for assembly of the CSL. Intracellular Notch1. Mastermind-like 1 transcriptional activation complex. J Biol Chem. 278:21232–21239. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Portin P: General outlines of the molecular genetics of the Notch signalling pathway in Drosophila melanogaster. A review Hereditas. 136:89–96. 2002. View Article : Google Scholar | |
|
Li Y and Baker NE: Proneural enhancement by Notch overcomes Suppressor-of-Hairless repressor function in the developing Drosophila eye. Curr Biol. 11:330–338. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Ye Z, Zheng S, Chen L, Wan Y, Deng Y and Yang R: Lingo-1 shRNA and Notch signaling inhibitor DAPT promote differentiation of neural stem/progenitor cells into. neurons Brain Res. 1634:34–44. 2016. View Article : Google Scholar | |
|
Cardano M, Diaferia GR, Cattaneo M, Dessí SS, Long Q, Conti L, Deblasio P, Cattaneo E and Biunno I: mSEL-1L (Suppressor/enhancer Lin12-like) protein levels influence murine neural stem cell self-renewal and lineage commitment. J Biol Chem. 286:18708–18719. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Berezovska O, Xia MQ and Hyman BT: Notch is expressed in adult brain, is coexpressed with presenilin-1, and is altered in Alzheimer disease. J Neuropathol Exp Neurol. 57:738–745. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Nagarsheth MH, Viehman A, Lippa SM and Lippa CF: Notch-1 immunoexpression is increased in Alzheimer's and Pick's disease. J Neurol Sci. 244:111–116. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Cairney CJ, Sanguinetti G, Ranghini E, Chantry AD, Nostro MC, Bhattacharyya A, Svendsen CN, Keith WN and Bellantuono I: A systems biology approach to Down syndrome: Identification of Notch/Wnt dysregulation in a model of stem cells aging. Biochim Biophys Acta. 1792:353–363. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Fernandez-Martinez J, Vela EM, Tora-Ponsioen M, Ocaña OH, Nieto MA and Galceran J: Attenuation of Notch signalling by the Down-syndrome-associated kinase DYRK1A. J Cell Sci. 122:1574–1583. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
García-Estévez DA, Barros-Angueira F and Navarro C: CADASIL: Brief report on a family with a new p.G296C mutation in exon 6 of the Notch-3 gene. Rev Neurol. 51:729–732. 2010.In Spanish. | |
|
Tang SC, Jeng JS, Lee MJ and Yip PK: Notch signaling and CADASIL. Acta Neurol Taiwan. 18:81–90. 2009.PubMed/NCBI | |
|
Louvi A, Arboleda-Velasquez JF and Artavanis-Tsakonas S: CADASIL: A critical look at a Notch disease. Dev Neurosci. 28:5–12. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Tan ZX, Li FF, Qu YY, Liu J, Liu GR, Zhou J, Zhu YL and Liu SL: Identification of a known mutation in Notch 3 in familiar CADASIL in China. PLoS One. 7:e365902012. View Article : Google Scholar : PubMed/NCBI | |
|
Posada-Duque RA, Barreto GE and Cardona-Gomez GP: Protection after stroke: Cellular effectors of neurovascular unit integrity. Front Cell Neurosci. 8:2312014. View Article : Google Scholar : PubMed/NCBI | |
|
Cotena S, Piazza O and Tufano R: The use of erythtropoietin in cerebral diseases. Panminerva Med. 50:185–192. 2008.PubMed/NCBI | |
|
Lou YL, Guo F, Liu F, Gao FL, Zhang PQ, Niu X, Guo SC, Yin JH, Wang Y and Deng ZF: miR-210 activates notch signaling pathway in angiogenesis induced by cerebral ischemia. Mol Cell Biochem. 370:45–51. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Corada M, Morini MF and Dejana E: Signaling pathways in the specifcation of arteries and veins. Arterioscler Thromb Vasc Biol. 34:2372–2377. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Grieskamp T, Rudat C, Lüdtke TH, Norden J and Kispert A: Notch signaling regulates smooth muscle differentiation of epicardium-derived cells. Circ Res. 108:813–823. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
del Monte G, Casanova JC, Guadix JA, MacGrogan D, Burch JB, Pérez-Pomares JM and de la Pompa JL: Differential Notch signaling in the epicardium is required for cardiac inflow development and coronary vessel morphogenesis. Circ Res. 108:824–836. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Proweller A, Wright AC, Horng D, Cheng L, Lu MM, Lepore JJ, Pear WS and Parmacek MS: Notch signaling in vascular smooth muscle cells is required to pattern the cerebral vasculature. Proc Natl Acad Sci USA. 104:16275–16280. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Koga J, Nakano T, Dahlman JE, Figueiredo JL, Zhang H, Decano J, Khan OF, Niida T, Iwata H, Aster JC, et al: Macrophage Notch Ligand Delta-Like 4 Promotes Vein Graft Lesion Development: Implications for the Treatment of Vein Graft Failure. Arterioscler Thromb Vasc Biol. 35:2343–2353. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Quillien A, Moore JC, Shin M, Siekmann AF, Smith T, Pan L, Moens CB, Parsons MJ and Lawson ND: Distinct Notch signaling outputs pattern the developing arterial system. Development. 141:1544–1552. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zacharek A, Chen J, Cui X, Yang Y and Chopp M: Simvastatin increases notch signaling activity and promotes arteriogenesis after stroke. Stroke. 40:254–260. 2009. View Article : Google Scholar | |
|
Chen J, Cui X, Zacharek A, Ding GL, Shehadah A, Jiang Q, Lu M and Chopp M: Niaspan treatment increases tumor necrosis factor-alpha-converting enzyme and promotes arteriogenesis after stroke. J Cereb Blood Flow Metab. 29:911–920. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Di Napoli M and Shah IM: Neuroinflammation and cerebrovascular disease in old age: A translational medicine perspective. J Aging Res. 2011:8574842011. View Article : Google Scholar : PubMed/NCBI | |
|
Felsky D, De Jager PL, Schneider JA, Arfanakis K, Fleischman DA, Arvanitakis Z, Honer WG, Pouget JG, Mizrahi R, Pollock BG, et al: Cerebrovascular and microglial states are not altered by functional neuroinflammatory gene variant. J Cereb Blood Flow Metab. 36:819–830. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Cacabelos R, Torrellas C, Fernández-Novoa L and Aliev G: Neuroimmune Crosstalk in CNS Disorders: The Histamine Connection. Curr Pharm Des. 22:819–848. 2016. View Article : Google Scholar | |
|
Silva J, Polesskaya O, Knight W, Zheng JT, Granger M, Lopez T, Ontiveros F, Feng C, Yan C, Kasischke KA and Dewhurst S: Transient hypercapnia reveals an underlying cerebrovascular pathology in a murine model for HIV-1 associated neuroinflammation: Role of NO-cGMP signaling and normalization by inhibition of cyclic nucleotide phosphodiesterase-5. J Neuroinflammation. 9:2532012. View Article : Google Scholar : PubMed/NCBI | |
|
Meschia JF and Worrall BB: New advances in identifying genetic anomalies in stroke-prone probands. Curr Atheroscler Rep. 5:317–323. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Heo R, Park JS, Jang HJ, Kim SH, Shin JM, Suh YD, Jeong JH, Jo DG and Park JH: Hyaluronan nanoparticles bearing γ-secretase inhibitor: In vivo therapeutic effects on rheumatoid arthritis. J Control Release. 192:295–300. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lucitti JL, Mackey JK, Morrison JC, Haigh JJ, Adams RH and Faber JE: Formation of the collateral circulation is regulated by vascular endothelial growth factor-A and a disintegrin and metal-loprotease family members 10 and 17. Circ Res. 111:1539–1550. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Brifault C, Gras M, Liot D, May V, Vaudry D and Wurtz O: Delayed pituitary adenylate cyclase-activating polypeptide delivery after brain stroke improves functional recovery by inducing m2 microglia/macrophage polarization. Stroke. 46:520–528. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Holden JA, Attard TJ, Laughton KM, Mansell A, O'Brien-Simpson NM and Reynolds EC: Porphyromonas gingivalis lipopolysaccharide weakly activates M1 and M2 polarized mouse macrophages but induces inflammatory cytokines. Infect Immun. 82:4190–4203. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, He K, Wang F, Li X and Liu D: Notch-1 signaling regulates astrocytic proliferation and activation after hypoxia exposure. Neurosci Lett. 603:12–18. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Meschia JF and Worrall BB: New advances in identifying genetic anomalies in stroke-prone probands. Curr Neurol Neurosci Rep. 4:420–426. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Xu J, Chi F, Guo T, Punj V, Lee WN, French SW and Tsukamoto H: NOTCH reprograms mitochondrial metabolism for proinflammatory macrophage activation. J Clin Invest. 125:1579–1590. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Pei H, Song X, Peng C, Tan Y, Li Y, Li X, Ma S, Wang Q, Huang R, Yang D, et al: TNF-α inhibitor protects against myocardial ischemia/reperfusion injury via Notch1-mediated suppression of oxidative/nitrative stress. Free Radic Biol Med. 82:114–121. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Qin WD, Zhang F, Qin XJ, Wang J, Meng X, Wang H, Guo HP, Wu QZ, Wu DW and Zhang MX: Notch1 inhibition reduces low shear stress-induced plaque formation. Int J Biochem Cell Biol. 72:63–72. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Palaga T, Buranaruk C, Rengpipat S, Fauq AH, Golde TE, Kaufmann SH and Osborne BA: Notch signaling is activated by TLR stimulation and regulates macrophage functions. Eur J Immunol. 38:174–183. 2008. View Article : Google Scholar | |
|
Cao Q, Kaur C, Wu CY, Lu J and Ling EA: Nuclear factor-kappa β regulates Notch signaling in production of proinflammatory cytokines and nitric oxide in murine BV-2 microglial cells. Neuroscience. 192:140–154. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Fang M, Yuan Y, Rangarajan P, Lu J, Wu Y, Wang H, Wu C and Ling EA: Scutellarin regulates microglia-mediated TNC1 astrocytic reaction and astrogliosis in cerebral ischemia in the adult rats. BMC Neurosci. 16:842015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou D, Huang C, Lin Z, Zhan S, Kong L, Fang C and Li J: Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal. 26:192–197. 2014. View Article : Google Scholar | |
|
Qiu Y, Du B, Xie F, Cai W, Liu Y, Li Y, Feng L and Qiu L: Vaccarin attenuates high glucose-induced human EA•hy926 endothelial cell injury through inhibition of Notch signaling. Mol Med Rep. 13:2143–2150. 2016.PubMed/NCBI | |
|
Henshall TL, Keller A, He L, Johansson BR, Wallgard E, Raschperger E, Mäe MA, Jin S, Betsholtz C and Lendahl U: Notch3 is necessary for blood vessel integrity in the central nervous system. Arterioscler Thromb Vasc Biol. 35:409–420. 2015. View Article : Google Scholar | |
|
Yu LM, Chen DX, Zhou QX, Fang N and Liu ZL: Effects of histamine on immunophenotype and notch signaling in human HL-60 leukemia cells. Exp Biol Med (Maywood). 231:1633–1637. 2006. | |
|
Boulos N, Helle F, Dussaule JC, Placier S, Milliez P, Djudjaj S, Guerrot D, Joutel A, Ronco P, Boffa JJ and Chatziantoniou C: Notch3 is essential for regulation of the renal vascular tone. Hypertension. 57:1176–1182. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Fischer AJ, Zelinka C, Gallina D, Scott MA and Todd L: Reactive microglia and macrophage facilitate the formation of Müller glia-derived retinal progenitors. Glia. 62:1608–1628. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Shipp LE, Hill RZ, Moy GW, Gokirmak T and Hamdoun A: ABCC5 is required for cAMP-mediated hindgut invagination in sea urchin embryos. Development. 142:3537–3548. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Bartosh TJ, Ylostalo JH, Bazhanov N, Kuhlman J and Prockop DJ: Dynamic compaction of human mesenchymal stem/precursor cells into spheres self-activates caspase-dependent IL1 signaling to enhance secretion of modulators of inflammation and immunity (PGE2, TSG6, and STC1). Stem Cells. 31:2443–2456. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Clement N, Gueguen M, Glorian M, Blaise R, Andréani M, Brou C, Bausero P and Limon I: Notch3 and IL-1beta exert opposing effects on a vascular smooth muscle cell inflammatory pathway in which NF-kappaB drives crosstalk. J Cell Sci. 120:3352–3361. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Ali M, Heyob K and Rogers LK: DHA suppresses primary macrophage inflammatory responses via Notch 1/Jagged 1 signaling. Sci Rep. 6:222762016. View Article : Google Scholar | |
|
Yin J, Li H, Feng C and Zuo Z: Inhibition of brain ischemia-caused notch activation in microglia may contribute to isoflurane postconditioning-induced neuroprotection in male rats. CNS Neurol Disord Drug Targets. 13:718–732. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Q, Fan X, Zhu J, Xu G, Li Y and Liu X: Co-culturing improves the OGD-injured neuron repairing and NSCs differentiation via Notch pathway activation. Neurosci Lett. 559:1–6. 2014. View Article : Google Scholar | |
|
Albéri L, Chi Z, Kadam SD, Mulholland JD, Dawson VL, Gaiano N and Comi AM: Neonatal stroke in mice causes long-term changes in neuronal Notch-2 expression that may contribute to prolonged injury. Stroke. 41(Suppl 10): S64–S71. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Lipsey CC, Harbuzariu A, Daley-Brown D and Gonzalez-Perez RR: Oncogenic role of leptin and Notch interleukin-1 leptin crosstalk outcome in cancer. World J Methodol. 6:43–55. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Grill M, Syme TE, Nocon AL, Lu AZ, Hancock D, Rose-John S and Campbell IL: Strawberry notch homolog 2 is a novel inflammatory response factor predominantly but not exclusively expressed by astrocytes in the central nervous system. Glia. 63:1738–1752. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Tian Y, Wang J, Phillips KL, Binch AL, Dunn S, Cross A, Chiverton N, Zheng Z, Shapiro IM, et al: Inflammatory cytokines induce NOTCH signaling in nucleus pulposus cells: Implications in intervertebral disc degeneration. J Biol Chem. 288:16761–16774. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Keuylian Z, de Baaij JH, Gueguen M, Glorian M, Rouxel C, Merlet E, Lipskaia L, Blaise R, Mateo V and Limon I: The Notch pathway attenuates interleukin 1β (IL1β)-mediated induction of adenylyl cyclase 8 (AC8) expression during vascular smooth muscle cell (VSMC) trans-differentiation. J Biol Chem. 287:24978–24989. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Mirandola L, Apicella L, Colombo M, Yu Y, Berta DG, Platonova N, Lazzari E, Lancellotti M, Bulfamante G, Cobos E, et al: Anti-Notch treatment prevents multiple myeloma cells localization to the bone marrow via the chemokine system CXCR4/SDF-1. Leukemia. 27:1558–1566. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Fukuda D, Aikawa E, Swirski FK, Novobrantseva TI, Kotelianski V, Gorgun CZ, Chudnovskiy A, Yamazaki H, Croce K, Weissleder R, et al: Notch ligand delta-like 4 blockade attenuates atherosclerosis and metabolic disorders. Proc Natl Acad Sci USA. 109:E1868–E1877. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Al Haj Zen A, Oikawa A, Bazan-Peregrino M, Meloni M, Emanueli C and Madeddu P: Inhibition of delta-like-4-mediated signaling impairs reparative angiogenesis after ischemia. Circ Res. 107:283–293. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Kumari B, Jain P, Das S, Ghosal S, Hazra B, Trivedi AC, Basu A, Chakrabarti J, Vrati S and Banerjee A: Dynamic changes in global microRNAome and transcriptome reveal complex miRNA-mRNA regulated host response to Japanese Encephalitis Virus in microglial cells. Sci Rep. 6:202632016. View Article : Google Scholar : PubMed/NCBI | |
|
Yao L, Cao Q, Wu C, Kaur C, Hao A and Ling EA: Notch signaling in the central nervous system with special reference to its expression in microglia. CNS Neurol Disord Drug Targets. 12:807–814. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Salta E, Lau P, Sala Frigerio C, Coolen M, Bally-Cuif L and De Strooper B: A self-organizing miR-132/Ctbp2 circuit regulates bimodal notch signals and glial progenitor fate choice during spinal cord maturation. Dev Cell. 30:423–436. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Grandbarbe L, Michelucci A, Heurtaux T, Hemmer K, Morga E and Heuschling P: Notch signaling modulates the activation of microglial cells. Glia. 55:1519–1530. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Morgan SC, Taylor DL and Pocock JM: Microglia release activators of neuronal proliferation mediated by activation of mitogen-activated protein kinase, phosphatidylinositol-3-kinase/Akt and delta-Notch signalling cascades. J Neurochem. 90:89–101. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Arumugam TV, Chan SL, Jo DG, Yilmaz G, Tang SC, Cheng A, Gleichmann M, Okun E, Dixit VD, Chigurupati S, et al: Gamma secretase-mediated Notch signaling worsens brain damage and functional outcome in ischemic stroke. Nat Med. 12:621–623. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Liu HC, Zheng MH, Du YL, Wang L, Kuang F, Qin HY, Zhang BF and Han H: N9 microglial cells polarized by LPS and IL4 show differential responses to secondary environmental stimuli. Cell Immunol. 278:84–90. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Yao L, Kan EM, Kaur C, Dheen ST, Hao A, Lu J and Ling EA: Notch-1 signaling regulates microglia activation via NF-κB pathway after hypoxic exposure in vivo and in vitro. PLoS One. 8:e784392013. View Article : Google Scholar | |
|
Cao Q, Lu J, Kaur C, Sivakumar V, Li F, Cheah PS, Dheen ST and Ling EA: Expression of Notch-1 receptor and its ligands Jagged-1 and Delta-1 in amoeboid microglia in postnatal rat brain and murine BV-2 cells. Glia. 56:1224–1237. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Morga E, Mouad-Amazzal L, Felten P, Heurtaux T, Moro M, Michelucci A, Gabel S, Grandbarbe L and Heuschling P: Jagged1 regulates the activation of astrocytes via modulation of NFkappaB and JAK/STAT/SOCS pathways. Glia. 57:1741–1753. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Nardai S, Dobolyi A, Pál G, Skopál J, Pintér N, Lakatos K, Merkely B and Nagy Z: Selegiline promotes NOTCH-JAGGED signaling in astrocytes of the peri-infarct region and improves the functional integrity of the neurovascular unit in a rat model of focal ischemia. Restor Neurol Neurosci. 33:1–14. 2015. | |
|
Monsalve E, Ruiz-García A, Baladrón V, Ruiz-Hidalgo MJ, Sánchez-Solana B, Rivero S, García-Ramírez JJ, Rubio A, Laborda J and Díaz-Guerra MJ: Notch1 upregulates LPS-induced macrophage activation by increasing NF-kappaB activity. Eur J Immunol. 39:2556–2570. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Jones DP: Extracellular redox state: Refining the definition of oxidative stress in aging. Rejuvenation Res. 9:169–181. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Darley-Usmar V and Halliwell B: Blood radicals: Reactive nitrogen species, reactive oxygen species, transition metal ions, and the vascular system. Pharm Res. 13:649–662. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Wu JQ, Kosten TR and Zhang XY: Free radicals, antioxidant defense systems, and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 46:200–206. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Catarino MD, Alves-Silva JM, Pereira OR and Cardoso SM: Antioxidant capacities of favones and benefts in oxidative-stress related diseases. Curr Top Med Chem. 15:105–119. 2015. View Article : Google Scholar | |
|
Lee JC and Won MH: Neuroprotection of antioxidant enzymes against transient global cerebral ischemia in gerbils. Anat Cell Biol. 47:149–156. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Valko M, Morris H and Cronin MT: Metals, toxicity and oxidative stress. Curr Med Chem. 12:1161–1208. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Wu D and Yotnda P: Production and detection of reactive oxygen species (ROS) in cancers. J Vis Exp. pii: 3357. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Reiter RJ, Tan DX, Manchester LC and Qi W: Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: A review of the evidence. Cell Biochem Biophys. 34:237–256. 2001. View Article : Google Scholar | |
|
Reiter RJ, Acuña-Castroviejo D, Tan DX and Burkhardt S: Free radical-mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system. Ann N Y Acad Sci. 939:200–215. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Hemnani T and Parihar MS: Reactive oxygen species and oxidative DNA damage. Indian J Physiol Pharmacol. 42:440–452. 1998. | |
|
Rodrigo R, Fernández-Gajardo R, Gutiérrez R, Matamala JM, Carrasco R, Miranda-Merchak A and Feuerhake W: Oxidative stress and pathophysiology of ischemic stroke: Novel therapeutic opportunities. CNS Neurol Disord Drug Targets. 12:698–714. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Oprea E, Berteanu M, Cintezã D and Manolescu BN: The effect of the ALAnerv nutritional supplement on some oxidative stress markers in postacute stroke patients undergoing rehabilitation. Appl Physiol Nutr Metab. 38:613–620. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Liang H, Zhang Y, Shi X, Wei T and Lou J: Role of Notch-1 signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25–35). Neural Regen Res. 9:1297–1302. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Braidy N, Jayasena T, Poljak A and Sachdev PS: Sirtuins in cognitive ageing and Alzheimer's disease. Curr Opin Psychiatry. 25:226–230. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Nakane H, Kamouchi M, Hata J, Ibayashi S, Kusuda K, Omae T, Nagao T, Ago T and Kitazono T; EMINENT Study Investigators: Effects of hydrochlorothiazide on oxidative stress and pulse pressure in hypertensive patients with chronic stroke: The EMINENT study. Intern Med. 54:573–577. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Nakagawa T, Hasegawa Y, Uekawa K, Ma M, Katayama T, Sueta D, Toyama K, Kataoka K, Koibuchi N, Maeda M, et al: Renal denervation prevents stroke and brain injury via attenuation of oxidative stress in hypertensive rats. J Am Heart Assoc. 2:e0003752013. View Article : Google Scholar : PubMed/NCBI | |
|
Das UN: Can free radicals induce coronary vasospasm and acute myocardial infarction? Med Hypotheses. 39:90–94. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Manzanero S, Santro T and Arumugam TV: Neuronal oxidative stress in acute ischemic stroke: Sources and contribution to cell injury. Neurochem Int. 62:712–718. 2013. View Article : Google Scholar | |
|
Cojocaru IM, Cojocaru M, Sapira V and Ionescu A: Evaluation of oxidative stress in patients with acute ischemic stroke. Rom J Intern Med. 51:97–106. 2013.PubMed/NCBI | |
|
Icme F, Erel Ö, Avci A, Satar S, Gülen M and Acehan S: The relation between oxidative stress parameters, ischemic stroke, and hemorrhagic stroke. Turk J Med Sci. 45:947–953. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Simão AN, Lehmann MF, Alferi DF, Meloni MZ, Flauzino T, Scavuzzi BM, de Oliveira SR, Lozovoy MA, Dichi I and Reiche EM: Metabolic syndrome increases oxidative stress but does not influence disability and short-time outcome in acute ischemic stroke patients. Metab Brain Dis. 30:1409–1416. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Tsai NW, Chang YT, Huang CR, Lin YJ, Lin WC, Cheng BC, Su CM, Chiang YF, Chen SF, Huang CC, et al: Association between oxidative stress and outcome in different subtypes of acute ischemic stroke. Biomed Res Int. 2014:2568792014. View Article : Google Scholar : PubMed/NCBI | |
|
Pantcheva P, Elias M, Duncan K, Borlongan CV, Tajiri N and Kaneko Y: The role of DJ-1 in the oxidative stress cell death cascade after stroke. Neural Regen Res. 9:1430–1433. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Nabavi SF, Dean OM, Turner A, Sureda A, Daglia M and Nabavi SM: Oxidative stress and post-stroke depression: Possible therapeutic role of polyphenols? Curr Med Chem. 22:343–351. 2015. View Article : Google Scholar | |
|
Gonullu H, Aslan M, Karadas S, Kati C, Duran L, Milanlioglu A, Aydin MN and Demir H: Serum prolidase enzyme activity and oxidative stress levels in patients with acute hemorrhagic stroke. Scand J Clin Lab Invest. 74:199–205. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
El Kossi MM and Zakhary MM: Oxidative stress in the context of acute cerebrovascular stroke. Stroke. 31:1889–1892. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Milanlioglu A, Aslan M, Ozkol H, Çilingir V, Nuri Aydin M and Karadas S: Serum antioxidant enzymes activities and oxidative stress levels in patients with acute ischemic stroke: Influence on neurological status and outcome. Wien Klin Wochenschr. 128:169–174. 2016. View Article : Google Scholar | |
|
Newton DF, Naiberg MR and Goldstein BI: Oxidative stress and cognition amongst adults without dementia or stroke: Implications for mechanistic and therapeutic research in psychiatric disorders. Psychiatry Res. 227:127–134. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Nakajima H, Kubo T, Ihara H, Hikida T, Danjo T, Nakatsuji M, Shahani N, Itakura M, Ono Y, Azuma YT, et al: Nuclear-translocated Glyceraldehyde-3-phosphate dehydrogenase promotes poly(ADP-ribose) polymerase-1 activation during Oxidative/Nitrosative stress in stroke. J Biol Chem. 290:14493–14503. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kotur-Stevuljevic J, Bogavac-Stanojevic N, Jelic-Ivanovic Z, Stefanovic A, Gojkovic T, Joksic J, Sopic M, Gulan B, Janac J and Milosevic S: Oxidative stress and paraoxonase 1 status in acute ischemic stroke patients. Atherosclerosis. 241:192–198. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Han Z, Shen F, He Y, Degos V, Camus M, Maze M, Young WL and Su H: Activation of α-7 nicotinic acetylcholine receptor reduces ischemic stroke injury through reduction of pro-inflammatory macrophages and oxidative stress. PLoS One. 9:e1057112014. View Article : Google Scholar | |
|
Lagowska-Lenard M, Bielewicz J, Raszewski G, Stelmasiak Z and Bartosik-Psujek H: Oxidative stress in cerebral stroke. Pol Merkur Lekarski. 25:205–208. 2008.In Polish. | |
|
Takemori K, Murakami T, Kometani T and Ito H: Possible involvement of oxidative stress as a causative factor in blood-brain barrier dysfunction in stroke-prone spontaneously hypertensive rats. Microvasc Res. 90:169–172. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Hung LM, Huang JP, Liao JM, Yang MH, Li DE, Day YJ and Huang SS: Insulin renders diabetic rats resistant to acute ischemic stroke by arresting nitric oxide reaction with superoxide to form peroxynitrite. J Biomed Sci. 21:922014. View Article : Google Scholar : PubMed/NCBI | |
|
Fabian RH and Kent TA: Hyperglycemia accentuates persistent 'functional uncoupling' of cerebral microvascular nitric oxide and superoxide following focal ischemia/reperfusion in rats. Transl Stroke Res. 3:482–490. 2012. View Article : Google Scholar | |
|
Fabian RH, Perez-Polo JR and Kent TA: Perivascular nitric oxide and superoxide in neonatal cerebral hypoxia-ischemia. Am J Physiol Heart Circ Physiol. 295:H1809–H1814. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Gümüştaş K, Meta Güzeyli FM, Atükeren P, Sanus GZ, Kemerdere R, Tanriverdi T and Kaynar MY: The effects of vitamin E on lipid peroxidation, nitric oxide production and superoxide dismutase expression in hyperglycemic rats with cerebral ischemia-reperfusion injury. Turk Neurosurg. 17:78–82. 2007. | |
|
Forman LJ, Liu P, Nagele RG, Yin K and Wong PY: Augmentation of nitric oxide, superoxide, and peroxynitrite production during cerebral ischemia and reperfusion in the rat. Neurochem Res. 23:141–148. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Brosnan MJ, Hamilton CA, Graham D, Lygate CA, Jardine E and Dominiczak AF: Irbesartan lowers superoxide levels and increases nitric oxide bioavailability in blood vessels from spontaneously hypertensive stroke-prone rats. J Hypertens. 20:281–286. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Baumeister P, Huebner T, Reiter M, Schwenk-Zieger S and Harréus U: Reduction of oxidative DNA fragmentation by ascorbic acid, zinc and N-acetylcysteine in nasal mucosa tissue cultures. Anticancer Res. 29:4571–4574. 2009.PubMed/NCBI | |
|
Mikhaĭlov VF, Mazurik VK and Burlakova EB: Signal function of the reactive oxygen species in regulatory networks of the cell reaction to damaging effects: Contribution of radiosensitivity and genome instability. Radiats Biol Radioecol. 43:5–18. 2003.In Russian. | |
|
Fischer-Nielsen A, Corcoran GB, Poulsen HE, Kamendulis LM and Loft S: Menadione-induced DNA fragmentation without 8-oxo-2′-deoxyguanosine formation in isolated rat hepatocytes. Biochem Pharmacol. 49:1469–1474. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou T, He Q, Tong Y, Zhan R, Xu F, Fan D, Guo X, Han H, Qin S and Chui D: Phospholipid transfer protein (PLTP) deficiency impaired blood-brain barrier integrity by increasing cerebrovascular oxidative stress. Biochem Biophys Res Commun. 445:352–356. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Tóth AE, Walter FR, Bocsik A, Sántha P, Veszelka S, Nagy L, Puskás LG, Couraud PO, Takata F, Dohgu S, et al: Edaravone protects against methylglyoxal-induced barrier damage in human brain endothelial cells. PLoS One. 9:e1001522014. View Article : Google Scholar : PubMed/NCBI | |
|
Elmorsy E, Elzalabany LM, Elsheikha HM and Smith PA: Adverse effects of antipsychotics on micro-vascular endothelial cells of the human blood-brain barrier. Brain Res. 1583:255–268. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Sathanoori R, Swärd K, Olde B and Erlinge D: The ATP Receptors P2X7 and P2X4 modulate high glucose and Palmitate-Induced inflammatory responses in endothelial cells. PLoS One. 10:e01251112015. View Article : Google Scholar : PubMed/NCBI | |
|
Okada R, Wu Z, Zhu A, Ni J, Zhang J, Yoshimine Y, Peters C, Saftig P and Nakanishi H: Cathepsin D deficiency induces oxidative damage in brain pericytes and impairs the blood-brain barrier. Mol Cell Neurosci. 64:51–60. 2015. View Article : Google Scholar | |
|
Abdul-Muneer PM, Chandra N and Haorah J: Interactions of oxidative stress and neurovascular infammation in the pathogenesis of traumatic brain injury. Mol Neurobiol. 51:966–979. 2015. View Article : Google Scholar | |
|
Ste-Marie L, Hazell AS, Bémeur C, Butterworth R and Montgomery J: Immunohistochemical detection of inducible nitric oxide synthase, nitrotyrosine and manganese superoxide dismutase following hyperglycemic focal cerebral ischemia. Brain Res. 918:10–19. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Kumura E, Yoshimine T, Kubo S, Tanaka S, Hayakawa T, Shiga T and Kosaka H: Effects of superoxide dismutase on nitric oxide production during reperfusion after focal cerebral ischemia is rats. Neurosci Lett. 200:137–140. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Al-Maghrebi M and Renno WM: Genistein alleviates testicular ischemia and reperfusion injury-induced sper-matogenic damage and oxidative stress by suppressing abnormal testicular matrix metalloproteinase system via the Notch 2/Jagged 1/Hes-1 and caspase-8 pathways. J Physiol Pharmacol. 67:129–137. 2016.PubMed/NCBI | |
|
Xie H, Sun J, Chen Y, Zong M, Li S and Wang Y: EGCG attenuates uric Acid-Induced inflammatory and oxidative stress responses by medicating the NOTCH pathway. Oxid Med Cell Longev. 2015:2148362015. View Article : Google Scholar : PubMed/NCBI | |
|
Xie F, Cai W, Liu Y, Li Y, Du B, Feng L and Qiu L: Vaccarin attenuates the human EA.hy926 endothelial cell oxidative stress injury through inhibition of Notch signaling. Int J Mol Med. 35:135–142. 2015. | |
|
Yang Y, Duan W, Liang Z, Yi W, Yan J, Wang N, Li Y, Chen W, Yu S, Jin Z and Yi D: Curcumin attenuates endothelial cell oxidative stress injury through Notch signaling inhibition. Cell Signal. 25:615–629. 2013. View Article : Google Scholar | |
|
Li M, Chen F, Clifton N, Sullivan DM, Dalton WS, Gabrilovich DI and Nefedova Y: Combined inhibition of Notch signaling and Bcl-2/Bcl-xL results in synergistic antimyeloma effect. Mol Cancer Ther. 9:3200–3209. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Chen C, Cui H, Li Z, Wang R and Zhou C: Normobaric oxygen for cerebral ischemic injury. Neural Regen Res. 8:2885–2894. 2013. | |
|
Zhu B, Yang P, Mammat N, Ding H, He J, Qian Y, Fei J and Abdukerim K: Aiweixin, a traditional Uyghur medicinal formula, protects against chromium toxicity in Caenorhabditis elegans. BMC Complement Altern Med. 15:2852015. View Article : Google Scholar : PubMed/NCBI | |
|
Finsterer J: Neuromuscular implications in CADASIL. Cerebrovasc Dis. 24:401–404. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Santoni M, Pantano F, Amantini C, Nabissi M, Conti A, Burattini L, Zoccoli A, Berardi R, Santoni G, Tonini G, et al: Emerging strategies to overcome the resistance to current mTOR inhibitors in renal cell carcinoma. Biochim Biophys Acta. 1845:221–231. 2014.PubMed/NCBI | |
|
Pei H, Yu Q, Xue Q, Guo Y, Sun L, Hong Z, Han H, Gao E, Qu Y and Tao L: Notch1 cardioprotection in myocardial ischemia/reperfusion involves reduction of oxidative/nitrative stress. Basic Res Cardiol. 108:3732013. View Article : Google Scholar : PubMed/NCBI | |
|
Simón R, Aparicio R, Housden BE, Bray S and Busturia A: Drosophila p53 controls Notch expression and balances apoptosis and proliferation. Apoptosis. 19:1430–1443. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng WX, Cao XL, Wang F, Wang J, Ying TZ, Xiao W, Zhang Y, Xing H, Dong W, Xu SQ, et al: Baicalin inhibiting cerebral ischemia/hypoxia-induced neuronal apoptosis via MRTF-A-mediated transactivity. Eur J Pharmacol. 767:201–210. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Baroja-Mazo A, Martín-Sánchez F, Gomez AI, Martínez CM, Amores-Iniesta J, Compan V, Barberà-Cremades M, Yagüe J, Ruiz-Ortiz E, Antón J, et al: The NLRP3 inflammasome is released as a particulate danger signal that amplifes the inflammatory response. Nat Immunol. 15:738–748. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yang RY and Liu FT: Galectins in cell growth and apoptosis. Cell Mol Life Sci. 60:267–276. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Bao JX, Su YT, Cheng YP, Zhang HJ, Xie XP and Chang YM: Vascular sphingolipids in physiological and pathological adaptation. Front Biosci (Landmark Ed). 21:1168–1186. 2016. View Article : Google Scholar | |
|
Kagiya G, Ogawa R, Tabuchi Y, Feril LB Jr, Nozaki T, Fukuda S, Yamamoto K and Kondo T: Expression of heme oxygenase-1 due to intracellular reactive oxygen species induced by ultrasound. Ultrason Sonochem. 13:388–396. 2006. View Article : Google Scholar | |
|
Santiago B, Galindo M, Palao G and Pablos JL: Intracellular regulation of Fas-induced apoptosis in human fibroblasts by extracellular factors and cycloheximide. J Immunol. 172:560–566. 2004. View Article : Google Scholar | |
|
Wang L, Song G, Liu M, Chen B, Chen Y, Shen Y, Zhu J and Zhou X: MicroRNA-375 overexpression influences P19 cell proliferation, apoptosis and differentiation through the Notch signaling pathway. Int J Mol Med. 37:47–55. 2016. | |
|
Aboutaleb N, Shamsaei N, Khaksari M, Erfani S, Rajabi H and Nikbakht F: Pre-ischemic exercise reduces apoptosis in hippocampal CA3 cells after cerebral ischemia by modulation of the Bax/Bcl-2 proteins ratio and prevention of caspase-3 activation. J Physiol Sci. 65:435–443. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang JF, Shi LL, Zhang L, Zhao ZH, Liang F, Xu X, Zhao LY, Yang PB, Zhang JS and Tian YF: MicroRNA-25 negatively regulates cerebral Ischemia/Reperfusion Injury-Induced cell apoptosis through Fas/FasL pathway. J Mol Neurosci. 58:507–516. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Xue R, Wu G, Wei X, Lv J, Fu R, Lei X, Zhang Z, Li W, He J, Zhao H, et al: Tea polyphenols may attenuate the neurocognitive impairment caused by global cerebral ischemia/reperfusion injury via anti-apoptosis. Nutr Neurosci. 19:63–69. 2016. View Article : Google Scholar | |
|
Yang Y, Gao K, Hu Z, Li W, Davies H, Ling S, Rudd JA and Fang M: Autophagy upregulation and apoptosis downregulation in DAHP and triptolide treated cerebral ischemia. Mediators Inflamm. 2015:1201982015. View Article : Google Scholar : PubMed/NCBI | |
|
Wu L, Zhao QS, Li TW, Li HY, Wang QB, Bi XY, Cai XK and Tang N: Yifei Xuanfei Jiangzhuo formula, a Chinese herbal decoction, improves memory impairment through inhibiting apoptosis and enhancing PKA/CREB signal transduction in rats with cerebral ischemia/reperfusion. Mol Med Rep. 12:4273–4283. 2015.PubMed/NCBI | |
|
Saad MA, Abdelsalam RM, Kenawy SA and Attia AS: Ischemic preconditioning and postconditioning alleviates hippocampal tissue damage through abrogation of apoptosis modulated by oxidative stress and inflammation during transient global cerebral ischemia-reperfusion in rats. Chem Biol Interact. 232:21–29. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Fan M, Jin W, Zhao H, Xiao Y, Jia Y, Yin Y, Jiang X, Xu J, Meng N and Lv P: Lithium chloride administration prevents spatial learning and memory impairment in repeated cerebral ischemia-reperfusion mice by depressing apoptosis and increasing BDNF expression in hippocampus. Behav Brain Res. 291:399–406. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Garrigue P, Giacomino L, Bucci C, Muzio V, Filannino MA, Sabatier F, Dignat-George F, Pisano P and Guillet B: Single photon emission computed tomography imaging of cerebral blood flow, blood-brain barrier disruption, and apoptosis time course after focal cerebral ischemia in rats. Int J Stroke. 11:117–126. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Cao G, Zhou H, Jiang N, Han Y, Hu Y, Zhang Y, Qi J, Kou J and Yu B: YiQiFuMai powder injection ameliorates cerebral ischemia by inhibiting endoplasmic reticulum Stress-Mediated neuronal apoptosis. Oxid Med Cell Longev. 2016:54932792016. View Article : Google Scholar : PubMed/NCBI | |
|
Yan XG, Cheng BH, Wang X, Ding LC, Liu HQ, Chen J and Bai B: Lateral intracerebroventricular injection of Apelin-13 inhibits apoptosis after cerebral ischemia/reperfusion injury. Neural Regen Res. 10:766–771. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Saad MA, Abdel Salam RM, Kenawy SA and Attia AS: Pinocembrin attenuates hippocampal inflammation, oxidative perturbations and apoptosis in a rat model of global cerebral ischemia reperfusion. Pharmacol Rep. 67:115–122. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang Y, Li L, Tan X, Liu B, Zhang Y and Li C: miR-210 mediates vagus nerve stimulation-induced antioxidant stress and anti-apoptosis reactions following cerebral ischemia/reperfusion injury in rats. J Neurochem. 134:173–181. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Chopp M and Li Y: Apoptosis in focal cerebral ischemia. Acta Neurochir Suppl. 66:21–26. 1996.PubMed/NCBI | |
|
Wu X, Li L, Zhang L, Wu J, Zhou Y, Zhou Y, Zhao Y and Zhao J: Inhibition of thioredoxin-1 with siRNA exacerbates apoptosis by activating the ASK1-JNK/p38 pathway in brain of a stroke model rats. Brain Res. 1599:20–31. 2015. View Article : Google Scholar | |
|
Baregamian N, Song J, Bailey CE, Papaconstantinou J, Evers BM and Chung DH: Tumor necrosis factor-alpha and apoptosis signal-regulating kinase 1 control reactive oxygen species release, mitochondrial autophagy, and c-Jun N-terminal kinase/p38 phosphorylation during necrotizing enterocolitis. Oxid Med Cell Longev. 2:297–306. 2009. View Article : Google Scholar | |
|
Bedogni B, Warneke JA, Nickoloff BJ, Giaccia AJ and Powell MB: Notch1 is an effector of Akt and hypoxia in melanoma development. J Clin Invest. 118:3660–3670. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Petit A, Bihel F, Alvès da Costa C, Pourquié O, Checler F and Kraus JL: New protease inhibitors prevent gamma-secretase-mediated production of Abeta40/42 without affecting Notch cleavage. Nat Cell Biol. 3:507–511. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Okochi M, Steiner H, Fukumori A, Tanii H, Tomita T, Tanaka T, Iwatsubo T, Kudo T, Takeda M and Haass C: Presenilins mediate a dual intramembranous gamma-secretase cleavage of Notch-1. EMBO J. 21:5408–5416. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Ikeuchi T and Sisodia SS: The Notch ligands, Delta1 and Jagged2, are substrates for presenilin-dependent 'gamma-secretase' cleavage. J Biol Chem. 278:7751–7754. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Yang G, Gong Y, Wang Q, Wang Y and Zhang X: The role of miR-100-mediated Notch pathway in apoptosis of gastric tumor cells. Cell Signal. 27:1087–1101. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Liu XD, Zhang LY, Zhu TC, Zhang RF, Wang SL and Bao Y: Overexpression of miR-34c inhibits high glucose-induced apoptosis in podocytes by targeting Notch signaling pathways. Int J Clin Exp Pathol. 8:4525–4534. 2015.PubMed/NCBI | |
|
Wang XM, Yao M, Liu SX, Hao J, Liu QJ and Gao F: Interplay between the Notch and PI3K/Akt pathways in high glucose-induced podocyte apoptosis. Am J Physiol Renal Physiol. 306:F205–F213. 2014. View Article : Google Scholar | |
|
Gao F, Yao M, Shi Y, Hao J, Ren Y, Liu Q, Wang X and Duan H: Notch pathway is involved in high glucose-induced apoptosis in podocytes via Bcl-2 and p53 pathways. J Cell Biochem. 114:1029–1038. 2013. View Article : Google Scholar | |
|
Yang Y, Li X, Zhang L, Liu L, Jing G and Cai H: Ginsenoside Rg1 suppressed infammation and neuron apoptosis by activating PPAR γ/HO-1 in hippocampus in rat model of cerebral ischemia-reperfusion injury. Int J Clin Exp Pathol. 8:2484–2494. 2015. | |
|
Zhao Y, Deng B, Li Y, Zhou L, Yang L, Gou X, Wang Q, Chen G, Xu H and Xu L: Electroacupuncture pretreatment attenuates cerebral ischemic injury via Notch Pathway-Mediated Up-Regulation of hypoxia inducible Factor-1α in Rats. Cell Mol Neurobiol. 35:1093–1103. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng YL, Choi Y, Seow WL, Manzanero S, Sobey CG, Jo DG and Arumugam TV: Evidence that neuronal Notch-1 promotes JNK/c-Jun activation and cell death following ischemic stress. Brain Res. 1586:193–202. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Meng S, Su Z, Liu Z, Wang N and Wang Z: Rac1 contributes to cerebral ischemia reperfusion-induced injury in mice by regulation of Notch2. Neuroscience. 306:100–114. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ma M, Wang X, Ding X, Teng J, Shao F and Zhang J: Numb/Notch signaling plays an important role in cerebral ischemia-induced apoptosis. Neurochem Res. 38:254–261. 2013. View Article : Google Scholar | |
|
Sun J, Ling Z, Wang F, Chen W, Li H, Jin J, Zhang H, Pang M, Yu J and Liu J: Clostridium butyricum pretreatment attenuates cerebral ischemia/reperfusion injury in mice via anti-oxidation and anti-apoptosis. Neurosci Lett. 613:30–35. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Arumugam TV, Cheng YL, Choi Y, Choi YH, Yang S, Yun YK, Park JS, Yang DK, Thundyil J, Gelderblom M, et al: Evidence that gamma-secretase-mediated Notch signaling induces neuronal cell death via the nuclear factor-kappaB-Bcl-2-interacting mediator of cell death pathway in ischemic stroke. Mol Pharmacol. 80:23–31. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Park JS, Manzanero S, Chang JW, Choi Y, Baik SH, Cheng YL, Li YI, Gwon AR, Woo HN, Jang J, et al: Calsenilin contributes to neuronal cell death in ischemic stroke. Brain Pathol. 23:402–412. 2013. View Article : Google Scholar | |
|
Baik SH, Fane M, Park JH, Cheng YL, Yang-Wei Fann D, Yun UJ, Choi Y, Park JS, Chai BH, Back SH, et al: Pin1 promotes neuronal death in stroke by stabilizing Notch intracellular domain. Ann Neurol. 77:504–516. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Viswanathan A, Gray F, Bousser MG, Baudrimont M and Chabriat H: Cortical neuronal apoptosis in CADASIL. Stroke. 37:2690–2695. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Kalimo H, Ruchoux MM, Viitanen M and Kalaria RN: CADASIL: A common form of hereditary arteriopathy causing brain infarcts and dementia. Brain Pathol. 12:371–384. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Liu XY, Gonzalez-Toledo ME, Fagan A, Duan WM, Liu Y, Zhang S, Li B, Piao CS, Nelson L and Zhao LR: Stem cell factor and granulocyte colony-stimulating factor exhibit therapeutic effects in a mouse model of CADASIL. Neurobiol Dis. 73:189–203. 2015. View Article : Google Scholar | |
|
Wang S, Yuan Y, Xia W, Li F, Huang Y, Zhou Y and Guo Y: Neuronal apoptosis and synaptic density in the dentate gyrus of ischemic rats' response to chronic mild stress and the effects of Notch signaling. PLoS One. 7:e428282012. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang HP, Sun YY, Chen XM, Yuan LB, Su BX, Ma R, Zhao RN, Dong HL and Xiong L: The neuroprotective effects of isofurane preconditioning in a murine transient global cerebral ischemia-reperfusion model: The role of the Notch signaling pathway. Neuromolecular Med. 16:191–204. 2014. View Article : Google Scholar | |
|
Yang Q, Yan W, Li X, Hou L, Dong H, Wang Q, Wang S, Zhang X and Xiong L: Activation of canonical notch signaling pathway is involved in the ischemic tolerance induced by sevo-flurane preconditioning in mice. Anesthesiology. 117:996–1005. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Yao J and Qian C: Over-activated Notch-1 protects gastric carcinoma BGC-823 cells from TNFalpha-induced apoptosis. Dig Liver Dis. 41:867–874. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Yang X, Klein R, Tian X, Cheng HT, Kopan R and Shen J: Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway. Dev Biol. 269:81–94. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
de Antonellis P, Medaglia C, Cusanelli E, Andolfo I, Liguori L, De Vita G, Carotenuto M, Bello A, Formiggini F, Galeone A, et al: MiR-34a targeting of Notch ligand delta-like 1 impairs CD15+/CD133+ tumor-propagating cells and supports neural differentiation in medulloblastoma. PLoS One. 6:e245842011. View Article : Google Scholar : PubMed/NCBI | |
|
Sionov RV, Kfr-Erenfeld S, Spokoini R and Yefenof E: A role for bcl-2 in notch1-dependent transcription in thymic lymphoma cells. Adv Hematol. 2012:4352412012. View Article : Google Scholar : PubMed/NCBI | |
|
Ye QF, Zhang YC, Peng XQ, Long Z, Ming YZ and He LY: Silencing Notch-1 induces apoptosis and increases the chemo-sensitivity of prostate cancer cells to docetaxel through Bcl-2 and Bax. Oncol Lett. 3:879–884. 2012.PubMed/NCBI | |
|
Cao H, Hu Y, Wang P, Zhou J, Deng Z and Wen J: Down-regulation of Notch receptor signaling pathway induces caspase-dependent and caspase-independent apoptosis in lung squamous cell carcinoma cells. APMIS. 120:441–450. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Brockhaus M, Grünberg J, Röhrig S, Loetscher H, Wittenburg N, Baumeister R, Jacobsen H and Haass C: Caspase-mediated cleavage is not required for the activity of presenilins in amyloidogenesis and NOTCH signaling. Neuroreport. 9:1481–1486. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Wu K, Hu L and Hou J: Selective suppression of Notch1 inhibits proliferation of renal cell carcinoma cells through JNK/p38 pathway. Oncol Rep. 35:2795–2800. 2016.PubMed/NCBI | |
|
Smith KA, Voiriot G, Tang H, Fraidenburg DR, Song S, Yamamura H, Yamamura A, Guo Q, Wan J, Pohl NM, et al: Notch activation of Ca(2+) signaling in the development of hypoxic pulmonary vasoconstriction and pulmonary hypertension. Am J Respir Cell Mol Biol. 53:355–367. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Rothschild SC, Lahvic J, Francescatto L, McLeod JJ, Burgess SM and Tombes RM: CaMK-II activation is essential for zebrafsh inner ear development and acts through Delta-Notch signaling. Dev Biol. 381:179–188. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kim SK, Park HJ, Hong HS, Baik EJ, Jung MW and Mook-Jung I: ERK1/2 is an endogenous negative regulator of the gamma-secretase activity. FASEB J. 20:157–159. 2006. | |
|
Servín-González LS, Granados-López AJ and López JA: Families of microRNAs expressed in clusters regulate cell signaling in cervical cancer. Int J Mol Sci. 16:12773–12790. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Aguirre A, Rubio ME and Gallo V: Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature. 467:323–327. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Nagaraj R and Banerjee U: Regulation of Notch and Wingless signalling by phyllopod, a transcriptional target of the EGFR pathway. EMBO J. 28:337–346. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Elmadhun NY, Sabe AA, Lassaletta AD, Chu LM, Kondra K, Sturek M and Sellke FW: Metabolic syndrome impairs notch signaling and promotes apoptosis in chronically ischemic myocardium. J Thorac Cardiovasc Surg. 148:1048–1055. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Guo D, Ye J, Dai J, Li L, Chen F, Ma D and Ji C: Notch-1 regulates Akt signaling pathway and the expression of cell cycle regulatory proteins cyclin D1, CDK2 and p21 in T-ALL cell lines. Leuk Res. 33:678–685. 2009. View Article : Google Scholar | |
|
Sweetwyne MT, Gruenwald A, Niranjan T, Nishinakamura R, Strobl LJ and Susztak K: Notch1 and Notch2 in podocytes play differential roles during diabetic nephropathy development. Diabetes. 64:4099–4111. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Bheeshmachar G, Purushotaman D, Sade H, Gunasekharan V, Rangarajan A and Sarin A: Evidence for a role for notch signaling in the cytokine-dependent survival of activated T cells. J Immunol. 177:5041–5050. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Sholler GS, Currier EA, Dutta A, Slavik MA, Illenye SA, Mendonca MC, Dragon J, Roberts SS and Bond JP: PCI-24781 (abexinostat), a novel histone deacetylase inhibitor, induces reactive oxygen species-dependent apoptosis and is synergistic with bortezomib in neuroblastoma. J Cancer Ther Res. 2:212013. View Article : Google Scholar | |
|
Yu HC, Bai L, Yue SQ, Wang DS, Wang L, Han H and Dou KF: Notch signal protects non-parenchymal cells from ischemia/reperfusion injury in vitro by repressing ROS. Ann Hepatol. 12:815–821. 2013.PubMed/NCBI | |
|
Naik S, MacFarlane M and Sarin A: Notch4 signaling confers susceptibility to TRAIL-induced apoptosis in breast cancer cells. J Cell Biochem. 116:1371–1380. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wang C, Qi R, Li N, Wang Z, An H, Zhang Q, Yu Y and Cao X: Notch1 signaling sensitizes tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human hepatocellular carcinoma cells by inhibiting Akt/Hdm2-mediated p53 degradation and up-regulating p53-dependent DR5 expression. J Biol Chem. 284:16183–16190. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Chung AS, Lee J and Ferrara N: Targeting the tumour vascu-lature: Insights from physiological angiogenesis. Nat Rev Cancer. 10:505–514. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Carmeliet P, Moons L, Dewerchin M, Mackman N, Luther T, Breier G, Ploplis V, Müller M, Nagy A, Plow E, et al: Insights in vessel development and vascular disorders using targeted inactivation and transfer of vascular endothelial growth factor, the tissue factor receptor and the plasminogen system. Ann N Y Acad Sci. 811:191–206. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Lymboussaki A, Olofsson B, Eriksson U and Alitalo K: Vascular endothelial growth factor (VEGF) and VEGF-C show overlapping binding sites in embryonic endothelia and distinct sites in differentiated adult endothelia. Circ Res. 85:992–999. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
McColl BK, Stacker SA and Achen MG: Molecular regulation of the VEGF family-inducers of angiogenesis and lymphangiogenesis. APMIS. 112:463–480. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Przybylski M: A review of the current research on the role of bFGF and VEGF in angiogenesis. J Wound Care. 18:516–519. 2009. View Article : Google Scholar | |
|
Li JL and Harris AL: Crosstalk of VEGF and Notch pathways in tumour angiogenesis: Therapeutic implications. Front Biosci (Landmark Ed). 14:3094–3110. 2009. View Article : Google Scholar | |
|
Dimova I, Popivanov G and Djonov V: Angiogenesis in cancer-general pathways and their therapeutic implications. J BUON. 19:15–21. 2014.PubMed/NCBI | |
|
Phng LK and Gerhardt H: Angiogenesis: A team effort coordinated by notch. Dev Cell. 16:196–208. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Benedito R, Roca C, Sörensen I, Adams S, Gossler A, Fruttiger M and Adams RH: The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell. 137:1124–1135. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Boas SE and Merks RM: Tip cell overtaking occurs as a side effect of sprouting in computational models of angiogenesis. BMC Syst Biol. 9:862015. View Article : Google Scholar : PubMed/NCBI | |
|
Garcia-Pascual CM, Zimmermann RC, Ferrero H, Shawber CJ, Kitajewski J, Simón C, Pellicer A and Gomez R: Delta-like ligand 4 regulates vascular endothelial growth factor receptor 2-driven luteal angiogenesis through induction of a tip/stalk phenotype in proliferating endothelial cells. Fertil Steril. 100:1768–1776.e1. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Brzozowa M, Wojnicz R, Kowalczyk-Ziomek G and Helewski K: The Notch ligand Delta-like 4 (DLL4) as a target in angiogenesis-based cancer therapy? Contemp Oncol (Pozn). 17:234–237. 2013. | |
|
Fukuhara S, Sako K, Noda K, Zhang J, Minami M and Mochizuki N: Angiopoietin-1/Tie2 receptor signaling in vascular quiescence and angiogenesis. Histol Histopathol. 25:387–396. 2010.PubMed/NCBI | |
|
Cao Y, Cao R and Hedlund EM: R Regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling pathways. J Mol Med (Berl). 86:785–789. 2008. View Article : Google Scholar | |
|
van Meeteren LA, Goumans MJ and ten Dijke P: TGF-β receptor signaling pathways in angiogenesis; emerging targets for anti-angiogenesis therapy. Curr Pharm Biotechnol. 12:2108–2120. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Orlova VV, Liu Z, Goumans MJ and ten Dijke P: Controlling angiogenesis by two unique TGF-β type I receptor signaling pathways. Histol Histopathol. 26:1219–1230. 2011.PubMed/NCBI | |
|
Taniyama Y, Morishita R, Aoki M, Nakagami H, Yamamoto K, Yamazaki K, Matsumoto K, Nakamura T, Kaneda Y and Ogihara T: Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat and rabbit hindlimb ischemia models: Preclinical study for treatment of peripheral arterial disease. Gene Ther. 8:181–189. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Wu L, Fu Z, Zhou S, Gong J, Liu CA, Qiao Z and Li S: HIF-12α and HIF-22α: Siblings in promoting angiogenesis of residual hepatocellular carcinoma after high-intensity focused ultrasound ablation. PLoS One. 9:e889132014. View Article : Google Scholar | |
|
Hayashi H and Kume T: Foxc transcription factors directly regulate Dll4 and Hey2 expression by interacting with the VEGF-Notch signaling pathways in endothelial cells. PLoS One. 3:e24012008. View Article : Google Scholar : PubMed/NCBI | |
|
Mitsuhashi N, Shimizu H, Ohtsuka M, Wakabayashi Y, Ito H, Kimura F, Yoshidome H, Kato A, Nukui Y and Miyazaki M: Angiopoietins and Tie-2 expression in angiogenesis and proliferation of human hepatocellular carcinoma. Hepatology. 37:1105–1113. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Wulff C, Wilson H, Largue P, Duncan WC, Armstrong DG and Fraser HM: Angiogenesis in the human corpus luteum: Localization and changes in angiopoietins, tie-2 and vascular endothelial growth factor messenger ribonucleic acid. J Clin Endocrinol Metab. 85:4302–4309. 2000.PubMed/NCBI | |
|
Weinmaster G: Notch signaling: Direct or what? Curr Opin Genet Dev. 8:436–442. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Reizis B and Leder P: Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway. Genes Dev. 16:295–300. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Nakano N, Nishiyama C, Yagita H, Hara M, Motomura Y, Kubo M, Okumura K and Ogawa H: Notch signaling enhances FcεRI-mediated cytokine production by mast cells through direct and indirect mechanisms. J Immunol. 194:4535–4544. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wüstehube J, Bartol A, Liebler SS, Brütsch R, Zhu Y, Felbor U, Sure U, Augustin HG and Fischer A: Cerebral cavernous malformation protein CCM1 inhibits sprouting angiogenesis by activating DELTA-NOTCH signaling. Proc Natl Acad Sci USA. 107:12640–12645. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
You C, Sandalcioglu IE, Dammann P, Felbor U, Sure U and Zhu Y: Loss of CCM3 impairs DLL4-Notch signalling: Implication in endothelial angiogenesis and in inherited cerebral cavernous malformations. J Cell Mol Med. 17:407–418. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Patel NS, Li JL, Generali D, Poulsom R, Cranston DW and Harris AL: Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res. 65:8690–8697. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Rath S, Liebl J, Furst R, Vollmar AM and Zahler S: Regulation of endothelial signaling and migration by v-ATPase. Angiogenesis. 17:587–601. 2014. View Article : Google Scholar | |
|
Hernandez SL, Banerjee D, Garcia A, Kangsamaksin T, Cheng WY, Anastassiou D, Funahashi Y, Kadenhe-Chiweshe A, Shawber CJ, Kitajewski JK, et al: Notch and VEGF pathways play distinct but complementary roles in tumor angiogenesis. Vasc Cell. 5:172013. View Article : Google Scholar : PubMed/NCBI | |
|
Jin Y, Kaluza D and Jakobsson L: VEGF, Notch and TGFβ/BM Ps in regulation of sprouting angiogenesis and vascular patterning. Biochem Soc Trans. 42:1576–1583. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Chintala H, Krupska I, Yan L, Lau L, Grant M and Chaqour B: The matricellular protein CCN1 controls retinal angiogenesis by targeting VEGF, Src homology 2 domain phosphatase-1 and Notch signaling. Development. 142:2364–2374. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kiec-Wilk B, Grzybowska-Galuszka J, Polus A, Pryjma J, Knapp A and Kristiansen K: The MAPK-dependent regulation of the Jagged/Notch gene expression by VEGF, bFGF or PPAR gamma mediated angiogenesis in HUVEC. J Physiol Pharmacol. 61:217–225. 2010.PubMed/NCBI | |
|
Cao L, Arany PR, Wang YS and Mooney DJ: Promoting angio-genesis via manipulation of VEGF responsiveness with notch signaling. Biomaterials. 30:4085–4093. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Thurston G and Kitajewski J: VEGF and Delta-Notch: Interacting signalling pathways in tumour angiogenesis. Br J Cancer. 99:1204–1209. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Zechariah A, ElAli A, Doeppner TR, Jin F, Hasan MR, Helfrich I, Mies G and Hermann DM: Vascular endothelial growth factor promotes pericyte coverage of brain capillaries, improves cerebral blood flow during subsequent focal cerebral ischemia, and preserves the metabolic penumbra. Stroke. 44:1690–1697. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Yang JP, Liu HJ and Liu XF: VEGF promotes angiogenesis and functional recovery in stroke rats. J Invest Surg. 23:149–155. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Dzietko M, Derugin N, Wendland MF, Vexler ZS and Ferriero DM: Delayed VEGF treatment enhances angiogenesis and recovery after neonatal focal rodent stroke. Transl Stroke Res. 4:189–200. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lee HJ, Kim KS, Park IH and Kim SU: Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model. PLoS One. 2:e1562007. View Article : Google Scholar : PubMed/NCBI | |
|
Esposito E, Hayakawa K, Maki T, Arai K and Lo EH: Effects of postconditioning on neurogenesis and angiogenesis during the recovery phase after focal cerebral ischemia. Stroke. 46:2691–2694. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Oh TW, Park KH, Jung HW and Park YK: Neuroprotective effect of the hairy root extract of Angelica gigas NAKAI on transient focal cerebral ischemia in rats through the regulation of angiogenesis. BMC Complement Altern Med. 15:1012015. View Article : Google Scholar : PubMed/NCBI | |
|
Duan S, Shao G, Yu L and Ren C: Angiogenesis contributes to the neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats. Int J Neurosci. 125:625–634. 2015. View Article : Google Scholar | |
|
Hayward NM, Yanev P, Haapasalo A, Miettinen R, Hiltunen M, Grohn O and Jolkkonen J: Chronic hyperperfusion and angiogenesis follow subacute hypoperfusion in the thalamus of rats with focal cerebral ischemia. J Cereb Blood Flow Metab. 31:1119–1132. 2011. View Article : Google Scholar : | |
|
Guo F, Lv S, Lou Y, Tu W, Liao W, Wang Y and Deng Z: Bone marrow stromal cells enhance the angiogenesis in ischaemic cortex after stroke: Involvement of notch signalling. Cell Biol Int. 36:997–1004. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Dao M, Tate CC, McGrogan M and Case CC: Comparing the angiogenic potency of naïve marrow stromal cells and Notch-transfected marrow stromal cells. J Transl Med. 11:812013. View Article : Google Scholar | |
|
Lähteenvuo JE, Lähteenvuo MT, Kivelä A, Rosenlew C, Falkevall A, Klar J, Heikura T, Rissanen TT, Vähakängas E, Korpisalo P, et al: Vascular endothelial growth factor-B induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1- and neuropilin receptor-1-dependent mechanisms. Circulation. 119:845–856. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Semenza GL: Vasculogenesis, angiogenesis, and arteriogenesis: Mechanisms of blood vessel formation and remodeling. J Cell Biochem. 102:840–847. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Carmeliet P: Mechanisms of angiogenesis and arteriogenesis. Nat Med. 6:389–395. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Buschmann I and Schaper W: Arteriogenesis Versus Angiogenesis: Two Mechanisms of Vessel Growth. News Physiol Sci. 14:121–125. 1999. | |
|
Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C, Oh H, Aster JC, Krishna S, Metzger D, Chambon P, et al: Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J. 20:3427–3436. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Gunaratne A, Chan E, El-Chabib TH, Carter D and Di Guglielmo GM: aPKC alters the TGFβ response in NSCLC cells through both Smad-dependent and Smad-independent pathways. J Cell Sci. 128:487–498. 2015. View Article : Google Scholar | |
|
Wang Y, Pan L, Moens CB and Appel B: Notch3 establishes brain vascular integrity by regulating pericyte number. Development. 141:307–317. 2014. View Article : Google Scholar : | |
|
Blasi F, Wei Y, Balkaya M, Tikka S, Mandeville JB, Waeber C, Ayata C and Moskowitz MA: Recognition memory impairments after subcortical white matter stroke in mice. Stroke. 45:1468–1473. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yao H, Duan M, Hu G and Buch S: Platelet-derived growth factor B chain is a novel target gene of cocaine-mediated Notch1 signaling: Implications for HIV-associated neurological disorders. J Neurosci. 31:12449–12454. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Manda VK, Mittapalli RK, Geldenhuys WJ and Lockman PR: Chronic exposure to nicotine and saquinavir decreases endothelial Notch-4 expression and disrupts blood-brain barrier integrity. J Neurochem. 115:515–525. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Nakatsu MN, Sainson RC, Aoto JN, Taylor KL, Aitkenhead M, Pérez-del-Pulgar S, Carpenter PM and Hughes CC: Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: The role of fibroblasts and Angiopoietin-1. Microvasc Res. 66:102–112. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Wang J, Zhao C, Ren K, Xia Z, Yu H and Jiang K: Acute Blockage of Notch signaling by DAPT induces neuroprotection and Neurogenesis in the Neonatal rat brain after stroke. Transl Stroke Res. 7:132–140. 2016. View Article : Google Scholar | |
|
Marumo T, Takagi Y, Muraki K, Hashimoto N, Miyamoto S and Tanigaki K: Notch signaling regulates nucleocytoplasmic Olig2 translocation in reactive astrocytes differentiation after ischemic stroke. Neurosci Res. 75:204–209. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Shimada IS, Borders A, Aronshtam A and Spees JL: Proliferating reactive astrocytes are regulated by Notch-1 in the peri-infarct area after stroke. Stroke. 42:3231–3237. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Uyttendaele H, Closson V, Wu G, Roux F, Weinmaster G and Kitajewski J: Notch4 and Jagged-1 induce microvessel differentiation of rat brain endothelial cells. Microvasc Res. 60:91–103. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao MJ, Han Z, Shao B and Jin K: Notch signaling and neuro-genesis in normal and stroke brain. Int J Physiol Pathophysiol Pharmacol. 1:192–202. 2009. | |
|
Carlén M, Meletis K, Göritz C, Darsalia V, Evergren E, Tanigaki K, Amendola M, Barnabe-Heider F, Yeung MS, Naldini L, et al: Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nat Neurosci. 12:259–267. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Yang T, Liu LY, Ma YY and Zhang W: Notch signaling-mediated neural lineage selection facilitates intrastriatal transplantation therapy for ischemic stroke by promoting endogenous regeneration in the hippocampus. Cell Transplant. 23:221–238. 2014. View Article : Google Scholar | |
|
Yasuhara T, Matsukawa N, Hara K, Maki M, Ali MM, Yu SJ, Bae E, Yu G, Xu L, McGrogan M, et al: Notch-induced rat and human bone marrow stromal cell grafts reduce ischemic cell loss and ameliorate behavioral deficits in chronic stroke animals. Stem Cells Dev. 18:1501–1514. 2009. View Article : Google Scholar : PubMed/NCBI |