Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
October-2016 Volume 14 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2016 Volume 14 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Notch signaling in cerebrovascular diseases (Review)

  • Authors:
    • Zhiyou Cai
    • Bin Zhao
    • Yanqing Deng
    • Shouqin Shangguan
    • Faming Zhou
    • Wenqing Zhou
    • Xiaoli Li
    • Yanfeng Li
    • Guanghui Chen
  • View Affiliations / Copyright

    Affiliations: Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China, Department of Neurology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
    Copyright: © Cai et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 2883-2898
    |
    Published online on: August 19, 2016
       https://doi.org/10.3892/mmr.2016.5641
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The Notch signaling pathway is a crucial regulator of numerous fundamental cellular processes. Increasing evidence suggests that Notch signaling is involved in inflammation and oxidative stress, and thus in the progress of cerebrovascular diseases. In addition, Notch signaling in cerebrovascular diseases is associated with apoptosis, angiogenesis and the function of blood‑brain barrier. Despite the contradictory results obtained to date as to whether Notch signaling is harmful or beneficial, the regulation of Notch signaling may provide a novel strategy for the treatment of cerebrovascular diseases.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Lama S, Dolati P and Sutherland GR: Controversy in the management of lenticulostriate artery dissecting aneurysm: A case report and review of the literature. World Neurosurg. 81:441.e1–e7. 2014. View Article : Google Scholar

2 

Dezmalj-Grbelja L, Bosnjak J, Lovrencić-Huzjan A, Ivica M and Demarin V: Moyamoya disease in a patient with brain tumor: Case report. Acta Clin Croat. 49:459–463. 2010.

3 

Sharfstein SR, Ahmed S, Islam MQ, Najjar MI and Ratushny V: Case of moyamoya disease in a patient with advanced acquired immunodeficiency syndrome. J Stroke Cerebrovasc Dis. 16:268–272. 2007. View Article : Google Scholar : PubMed/NCBI

4 

Squizzato A, Gerdes VE, Brandjes DP, Büller HR and Stam J: Thyroid diseases and cerebrovascular disease. Stroke. 36:2302–2310. 2005. View Article : Google Scholar : PubMed/NCBI

5 

Vetrano DL, Landi F, De Buyser SL, Carfi A, Zuccalà G, Petrovic M, Volpato S, Cherubini A, Corsonello A, Bernabei R and Onder G: Predictors of length of hospital stay among older adults admitted to acute care wards: A multicentre observational study. Eur J Intern Med. 25:56–62. 2014. View Article : Google Scholar

6 

Cicconetti P, Riolo N, Priami C, Tafaro L and Ettore E: Risk factors for cognitive impairment. Recenti Prog Med. 95:535–545. 2004.In Italian. PubMed/NCBI

7 

Elkind MS: Epidemiology and risk factors. Continuum (Minneap Minn). 17:1213–1232. 2011.

8 

Jia Q, Liu LP and Wang YJ: Stroke in China. Clin Exp Pharmacol Physiol. 37:259–264. 2010. View Article : Google Scholar

9 

Bhoopathi P, Chetty C, Dontula R, Gujrati M, Dinh DH, Rao JS and Lakka SS: SPARC stimulates neuronal differentiation of medulloblastoma cells via the Notch1/STAT3 pathway. Cancer Res. 71:4908–4919. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Yuan TM and Yu HM: Notch signaling: Key role in intrauterine infection/inflammation, embryonic development, and white matter damage? J Neurosci Res. 88:461–468. 2010.

11 

Veenendaal LM, Kranenburg O, Smakman N, Klomp A, Borel Rinkes IH and van Diest PJ: Differential Notch and TGFbeta signaling in primary colorectal tumors and their corresponding metastases. Cell Oncol. 30:1–11. 2008.PubMed/NCBI

12 

Givogri MI, de Planell M, Galbiati F, Superchi D, Gritti A, Vescovi A, de Vellis J and Bongarzone ER: Notch signaling in astrocytes and neuroblasts of the adult subventricular zone in health and after cortical injury. Dev Neurosci. 28:81–91. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Quillard T and Charreau B: Impact of notch signaling on inflammatory responses in cardiovascular disorders. Int J Mol Sci. 14:6863–6888. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Li F, Lan Y, Wang Y, Wang J, Yang G, Meng F, Han H, Meng A and Yang X: Endothelial Smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with Notch. Dev Cell. 20:291–302. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Dichgans M: Genetics of ischaemic stroke. Lancet Neurol. 6:149–161. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Yuan Y, Rangarajan P, Kan EM, Wu Y, Wu C and Ling EA: Scutellarin regulates the Notch pathway and affects the migration and morphological transformation of activated microglia in experimentally induced cerebral ischemia in rats and in activated BV-2 microglia. J Neuroinflammation. 12:112015. View Article : Google Scholar : PubMed/NCBI

17 

Cheng YL, Choi Y, Sobey CG, Arumugam TV and Jo DG: Emerging roles of the γ-secretase-notch axis in inflammation. Pharmacol Ther. 147:80–90. 2015. View Article : Google Scholar

18 

Wang Z, Huang W and Zuo Z: Perioperative aspirin improves neurological outcome after focal brain ischemia possibly via inhibition of Notch 1 in rat. J Neuroinflammation. 11:562014. View Article : Google Scholar : PubMed/NCBI

19 

Li S, Zyang X, Wang Y, Ji H, Du Y and Liu H: DAPT protects brain against cerebral ischemia by down-regulating the expression of Notch 1 and nuclear factor κB in rats. Neurol Sci. 33:1257–1264. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Cheng YL, Park JS, Manzanero S, Choi Y, Baik SH, Okun E, Gelderblom M, Fann DY, Magnus T, Launikonis BS, et al: Evidence that collaboration between HIF-1α and Notch-1 promotes neuronal cell death in ischemic stroke. Neurobiol Dis. 62:286–295. 2014. View Article : Google Scholar

21 

Wang L, Chopp M, Zhang RL, Zhang L, Letourneau Y, Feng YF, Jiang A, Morris DC and Zhang ZG: The Notch pathway mediates expansion of a progenitor pool and neuronal differentiation in adult neural progenitor cells after stroke. Neuroscience. 158:1356–1363. 2009. View Article : Google Scholar :

22 

Wei Z, Chigurupati S, Arumugam TV, Jo DG, Li H and Chan SL: Notch activation enhances the microglia-mediated inflammatory response associated with focal cerebral ischemia. Stroke. 42:2589–2594. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Morgan TH: The theory of the gene. Am Naturalist. 51:513–544. 1917. View Article : Google Scholar

24 

Becker S, Oelschlaeger TA, Wullaert A, Vlantis K, Pasparakis M, Wehkamp J, Stange EF and Gersemann M: Bacteria regulate intestinal epithelial cell differentiation factors both in vitro and in vivo. PLoS One. 8:e556202013. View Article : Google Scholar : PubMed/NCBI

25 

Maier D, Kurth P, Schulz A, Russell A, Yuan Z, Gruber K, Kovall RA and Preiss A: Structural and functional analysis of the repressor complex in the Notch signaling pathway of Drosophila melanogaster. Mol Biol Cell. 22:3242–3252. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Braune EB and Lendahl U: Notch-a goldilocks signaling pathway in disease and cancer therapy. Discov Med. 21:189–196. 2016.PubMed/NCBI

27 

Del Bianco C, Vedenko A, Choi SH, Berger MF, Shokri L, Bulyk ML and Blacklow SC: Notch and MAML-1 complexation do not detectably alter the DNA binding specificity of the transcription factor CSL. PLoS One. 5:e150342010. View Article : Google Scholar : PubMed/NCBI

28 

Faux CH, Turnley AM, Epa R, Cappai R and Bartlett PF: Interactions between fbroblast growth factors and Notch regulate neuronal differentiation. J Neurosci. 21:5587–5596. 2001.PubMed/NCBI

29 

Shimizu K, Chiba S, Kumano K, Hosoya N, Takahashi T, Kanda Y, Hamada Y, Yazaki Y and Hirai H: Mouse jagged1 physically interacts with notch2 and other notch receptors. Assessment by quantitative methods. J Biol Chem. 274:32961–32969. 1999. View Article : Google Scholar : PubMed/NCBI

30 

Zhang S, Chung WC, Wu G, Egan SE and Xu K: Tumor-suppressive activity of Lunatic Fringe in prostate through differential modulation of Notch receptor activation. Neoplasia. 16:158–167. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Bresnick EH, Chu J, Christensen HM, Lin B and Norton J: Linking Notch signaling, chromatin remodeling, and T-cell leukemogenesis. J Cell Biochem Suppl. 35(Suppl): S46–S53. 2000. View Article : Google Scholar

32 

Nam Y, Weng AP, Aster JC and Blacklow SC: Structural requirements for assembly of the CSL. Intracellular Notch1. Mastermind-like 1 transcriptional activation complex. J Biol Chem. 278:21232–21239. 2003. View Article : Google Scholar : PubMed/NCBI

33 

Portin P: General outlines of the molecular genetics of the Notch signalling pathway in Drosophila melanogaster. A review Hereditas. 136:89–96. 2002. View Article : Google Scholar

34 

Li Y and Baker NE: Proneural enhancement by Notch overcomes Suppressor-of-Hairless repressor function in the developing Drosophila eye. Curr Biol. 11:330–338. 2001. View Article : Google Scholar : PubMed/NCBI

35 

Wang J, Ye Z, Zheng S, Chen L, Wan Y, Deng Y and Yang R: Lingo-1 shRNA and Notch signaling inhibitor DAPT promote differentiation of neural stem/progenitor cells into. neurons Brain Res. 1634:34–44. 2016. View Article : Google Scholar

36 

Cardano M, Diaferia GR, Cattaneo M, Dessí SS, Long Q, Conti L, Deblasio P, Cattaneo E and Biunno I: mSEL-1L (Suppressor/enhancer Lin12-like) protein levels influence murine neural stem cell self-renewal and lineage commitment. J Biol Chem. 286:18708–18719. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Berezovska O, Xia MQ and Hyman BT: Notch is expressed in adult brain, is coexpressed with presenilin-1, and is altered in Alzheimer disease. J Neuropathol Exp Neurol. 57:738–745. 1998. View Article : Google Scholar : PubMed/NCBI

38 

Nagarsheth MH, Viehman A, Lippa SM and Lippa CF: Notch-1 immunoexpression is increased in Alzheimer's and Pick's disease. J Neurol Sci. 244:111–116. 2006. View Article : Google Scholar : PubMed/NCBI

39 

Cairney CJ, Sanguinetti G, Ranghini E, Chantry AD, Nostro MC, Bhattacharyya A, Svendsen CN, Keith WN and Bellantuono I: A systems biology approach to Down syndrome: Identification of Notch/Wnt dysregulation in a model of stem cells aging. Biochim Biophys Acta. 1792:353–363. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Fernandez-Martinez J, Vela EM, Tora-Ponsioen M, Ocaña OH, Nieto MA and Galceran J: Attenuation of Notch signalling by the Down-syndrome-associated kinase DYRK1A. J Cell Sci. 122:1574–1583. 2009. View Article : Google Scholar : PubMed/NCBI

41 

García-Estévez DA, Barros-Angueira F and Navarro C: CADASIL: Brief report on a family with a new p.G296C mutation in exon 6 of the Notch-3 gene. Rev Neurol. 51:729–732. 2010.In Spanish.

42 

Tang SC, Jeng JS, Lee MJ and Yip PK: Notch signaling and CADASIL. Acta Neurol Taiwan. 18:81–90. 2009.PubMed/NCBI

43 

Louvi A, Arboleda-Velasquez JF and Artavanis-Tsakonas S: CADASIL: A critical look at a Notch disease. Dev Neurosci. 28:5–12. 2006. View Article : Google Scholar : PubMed/NCBI

44 

Tan ZX, Li FF, Qu YY, Liu J, Liu GR, Zhou J, Zhu YL and Liu SL: Identification of a known mutation in Notch 3 in familiar CADASIL in China. PLoS One. 7:e365902012. View Article : Google Scholar : PubMed/NCBI

45 

Posada-Duque RA, Barreto GE and Cardona-Gomez GP: Protection after stroke: Cellular effectors of neurovascular unit integrity. Front Cell Neurosci. 8:2312014. View Article : Google Scholar : PubMed/NCBI

46 

Cotena S, Piazza O and Tufano R: The use of erythtropoietin in cerebral diseases. Panminerva Med. 50:185–192. 2008.PubMed/NCBI

47 

Lou YL, Guo F, Liu F, Gao FL, Zhang PQ, Niu X, Guo SC, Yin JH, Wang Y and Deng ZF: miR-210 activates notch signaling pathway in angiogenesis induced by cerebral ischemia. Mol Cell Biochem. 370:45–51. 2012. View Article : Google Scholar : PubMed/NCBI

48 

Corada M, Morini MF and Dejana E: Signaling pathways in the specifcation of arteries and veins. Arterioscler Thromb Vasc Biol. 34:2372–2377. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Grieskamp T, Rudat C, Lüdtke TH, Norden J and Kispert A: Notch signaling regulates smooth muscle differentiation of epicardium-derived cells. Circ Res. 108:813–823. 2011. View Article : Google Scholar : PubMed/NCBI

50 

del Monte G, Casanova JC, Guadix JA, MacGrogan D, Burch JB, Pérez-Pomares JM and de la Pompa JL: Differential Notch signaling in the epicardium is required for cardiac inflow development and coronary vessel morphogenesis. Circ Res. 108:824–836. 2011. View Article : Google Scholar : PubMed/NCBI

51 

Proweller A, Wright AC, Horng D, Cheng L, Lu MM, Lepore JJ, Pear WS and Parmacek MS: Notch signaling in vascular smooth muscle cells is required to pattern the cerebral vasculature. Proc Natl Acad Sci USA. 104:16275–16280. 2007. View Article : Google Scholar : PubMed/NCBI

52 

Koga J, Nakano T, Dahlman JE, Figueiredo JL, Zhang H, Decano J, Khan OF, Niida T, Iwata H, Aster JC, et al: Macrophage Notch Ligand Delta-Like 4 Promotes Vein Graft Lesion Development: Implications for the Treatment of Vein Graft Failure. Arterioscler Thromb Vasc Biol. 35:2343–2353. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Quillien A, Moore JC, Shin M, Siekmann AF, Smith T, Pan L, Moens CB, Parsons MJ and Lawson ND: Distinct Notch signaling outputs pattern the developing arterial system. Development. 141:1544–1552. 2014. View Article : Google Scholar : PubMed/NCBI

54 

Zacharek A, Chen J, Cui X, Yang Y and Chopp M: Simvastatin increases notch signaling activity and promotes arteriogenesis after stroke. Stroke. 40:254–260. 2009. View Article : Google Scholar

55 

Chen J, Cui X, Zacharek A, Ding GL, Shehadah A, Jiang Q, Lu M and Chopp M: Niaspan treatment increases tumor necrosis factor-alpha-converting enzyme and promotes arteriogenesis after stroke. J Cereb Blood Flow Metab. 29:911–920. 2009. View Article : Google Scholar : PubMed/NCBI

56 

Di Napoli M and Shah IM: Neuroinflammation and cerebrovascular disease in old age: A translational medicine perspective. J Aging Res. 2011:8574842011. View Article : Google Scholar : PubMed/NCBI

57 

Felsky D, De Jager PL, Schneider JA, Arfanakis K, Fleischman DA, Arvanitakis Z, Honer WG, Pouget JG, Mizrahi R, Pollock BG, et al: Cerebrovascular and microglial states are not altered by functional neuroinflammatory gene variant. J Cereb Blood Flow Metab. 36:819–830. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Cacabelos R, Torrellas C, Fernández-Novoa L and Aliev G: Neuroimmune Crosstalk in CNS Disorders: The Histamine Connection. Curr Pharm Des. 22:819–848. 2016. View Article : Google Scholar

59 

Silva J, Polesskaya O, Knight W, Zheng JT, Granger M, Lopez T, Ontiveros F, Feng C, Yan C, Kasischke KA and Dewhurst S: Transient hypercapnia reveals an underlying cerebrovascular pathology in a murine model for HIV-1 associated neuroinflammation: Role of NO-cGMP signaling and normalization by inhibition of cyclic nucleotide phosphodiesterase-5. J Neuroinflammation. 9:2532012. View Article : Google Scholar : PubMed/NCBI

60 

Meschia JF and Worrall BB: New advances in identifying genetic anomalies in stroke-prone probands. Curr Atheroscler Rep. 5:317–323. 2003. View Article : Google Scholar : PubMed/NCBI

61 

Heo R, Park JS, Jang HJ, Kim SH, Shin JM, Suh YD, Jeong JH, Jo DG and Park JH: Hyaluronan nanoparticles bearing γ-secretase inhibitor: In vivo therapeutic effects on rheumatoid arthritis. J Control Release. 192:295–300. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Lucitti JL, Mackey JK, Morrison JC, Haigh JJ, Adams RH and Faber JE: Formation of the collateral circulation is regulated by vascular endothelial growth factor-A and a disintegrin and metal-loprotease family members 10 and 17. Circ Res. 111:1539–1550. 2012. View Article : Google Scholar : PubMed/NCBI

63 

Brifault C, Gras M, Liot D, May V, Vaudry D and Wurtz O: Delayed pituitary adenylate cyclase-activating polypeptide delivery after brain stroke improves functional recovery by inducing m2 microglia/macrophage polarization. Stroke. 46:520–528. 2015. View Article : Google Scholar : PubMed/NCBI

64 

Holden JA, Attard TJ, Laughton KM, Mansell A, O'Brien-Simpson NM and Reynolds EC: Porphyromonas gingivalis lipopolysaccharide weakly activates M1 and M2 polarized mouse macrophages but induces inflammatory cytokines. Infect Immun. 82:4190–4203. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Zhang Y, He K, Wang F, Li X and Liu D: Notch-1 signaling regulates astrocytic proliferation and activation after hypoxia exposure. Neurosci Lett. 603:12–18. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Meschia JF and Worrall BB: New advances in identifying genetic anomalies in stroke-prone probands. Curr Neurol Neurosci Rep. 4:420–426. 2004. View Article : Google Scholar : PubMed/NCBI

67 

Xu J, Chi F, Guo T, Punj V, Lee WN, French SW and Tsukamoto H: NOTCH reprograms mitochondrial metabolism for proinflammatory macrophage activation. J Clin Invest. 125:1579–1590. 2015. View Article : Google Scholar : PubMed/NCBI

68 

Pei H, Song X, Peng C, Tan Y, Li Y, Li X, Ma S, Wang Q, Huang R, Yang D, et al: TNF-α inhibitor protects against myocardial ischemia/reperfusion injury via Notch1-mediated suppression of oxidative/nitrative stress. Free Radic Biol Med. 82:114–121. 2015. View Article : Google Scholar : PubMed/NCBI

69 

Qin WD, Zhang F, Qin XJ, Wang J, Meng X, Wang H, Guo HP, Wu QZ, Wu DW and Zhang MX: Notch1 inhibition reduces low shear stress-induced plaque formation. Int J Biochem Cell Biol. 72:63–72. 2016. View Article : Google Scholar : PubMed/NCBI

70 

Palaga T, Buranaruk C, Rengpipat S, Fauq AH, Golde TE, Kaufmann SH and Osborne BA: Notch signaling is activated by TLR stimulation and regulates macrophage functions. Eur J Immunol. 38:174–183. 2008. View Article : Google Scholar

71 

Cao Q, Kaur C, Wu CY, Lu J and Ling EA: Nuclear factor-kappa β regulates Notch signaling in production of proinflammatory cytokines and nitric oxide in murine BV-2 microglial cells. Neuroscience. 192:140–154. 2011. View Article : Google Scholar : PubMed/NCBI

72 

Fang M, Yuan Y, Rangarajan P, Lu J, Wu Y, Wang H, Wu C and Ling EA: Scutellarin regulates microglia-mediated TNC1 astrocytic reaction and astrogliosis in cerebral ischemia in the adult rats. BMC Neurosci. 16:842015. View Article : Google Scholar : PubMed/NCBI

73 

Zhou D, Huang C, Lin Z, Zhan S, Kong L, Fang C and Li J: Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal. 26:192–197. 2014. View Article : Google Scholar

74 

Qiu Y, Du B, Xie F, Cai W, Liu Y, Li Y, Feng L and Qiu L: Vaccarin attenuates high glucose-induced human EA•hy926 endothelial cell injury through inhibition of Notch signaling. Mol Med Rep. 13:2143–2150. 2016.PubMed/NCBI

75 

Henshall TL, Keller A, He L, Johansson BR, Wallgard E, Raschperger E, Mäe MA, Jin S, Betsholtz C and Lendahl U: Notch3 is necessary for blood vessel integrity in the central nervous system. Arterioscler Thromb Vasc Biol. 35:409–420. 2015. View Article : Google Scholar

76 

Yu LM, Chen DX, Zhou QX, Fang N and Liu ZL: Effects of histamine on immunophenotype and notch signaling in human HL-60 leukemia cells. Exp Biol Med (Maywood). 231:1633–1637. 2006.

77 

Boulos N, Helle F, Dussaule JC, Placier S, Milliez P, Djudjaj S, Guerrot D, Joutel A, Ronco P, Boffa JJ and Chatziantoniou C: Notch3 is essential for regulation of the renal vascular tone. Hypertension. 57:1176–1182. 2011. View Article : Google Scholar : PubMed/NCBI

78 

Fischer AJ, Zelinka C, Gallina D, Scott MA and Todd L: Reactive microglia and macrophage facilitate the formation of Müller glia-derived retinal progenitors. Glia. 62:1608–1628. 2014. View Article : Google Scholar : PubMed/NCBI

79 

Shipp LE, Hill RZ, Moy GW, Gokirmak T and Hamdoun A: ABCC5 is required for cAMP-mediated hindgut invagination in sea urchin embryos. Development. 142:3537–3548. 2015. View Article : Google Scholar : PubMed/NCBI

80 

Bartosh TJ, Ylostalo JH, Bazhanov N, Kuhlman J and Prockop DJ: Dynamic compaction of human mesenchymal stem/precursor cells into spheres self-activates caspase-dependent IL1 signaling to enhance secretion of modulators of inflammation and immunity (PGE2, TSG6, and STC1). Stem Cells. 31:2443–2456. 2013. View Article : Google Scholar : PubMed/NCBI

81 

Clement N, Gueguen M, Glorian M, Blaise R, Andréani M, Brou C, Bausero P and Limon I: Notch3 and IL-1beta exert opposing effects on a vascular smooth muscle cell inflammatory pathway in which NF-kappaB drives crosstalk. J Cell Sci. 120:3352–3361. 2007. View Article : Google Scholar : PubMed/NCBI

82 

Ali M, Heyob K and Rogers LK: DHA suppresses primary macrophage inflammatory responses via Notch 1/Jagged 1 signaling. Sci Rep. 6:222762016. View Article : Google Scholar

83 

Yin J, Li H, Feng C and Zuo Z: Inhibition of brain ischemia-caused notch activation in microglia may contribute to isoflurane postconditioning-induced neuroprotection in male rats. CNS Neurol Disord Drug Targets. 13:718–732. 2014. View Article : Google Scholar : PubMed/NCBI

84 

Liu Q, Fan X, Zhu J, Xu G, Li Y and Liu X: Co-culturing improves the OGD-injured neuron repairing and NSCs differentiation via Notch pathway activation. Neurosci Lett. 559:1–6. 2014. View Article : Google Scholar

85 

Albéri L, Chi Z, Kadam SD, Mulholland JD, Dawson VL, Gaiano N and Comi AM: Neonatal stroke in mice causes long-term changes in neuronal Notch-2 expression that may contribute to prolonged injury. Stroke. 41(Suppl 10): S64–S71. 2010. View Article : Google Scholar : PubMed/NCBI

86 

Lipsey CC, Harbuzariu A, Daley-Brown D and Gonzalez-Perez RR: Oncogenic role of leptin and Notch interleukin-1 leptin crosstalk outcome in cancer. World J Methodol. 6:43–55. 2016. View Article : Google Scholar : PubMed/NCBI

87 

Grill M, Syme TE, Nocon AL, Lu AZ, Hancock D, Rose-John S and Campbell IL: Strawberry notch homolog 2 is a novel inflammatory response factor predominantly but not exclusively expressed by astrocytes in the central nervous system. Glia. 63:1738–1752. 2015. View Article : Google Scholar : PubMed/NCBI

88 

Wang H, Tian Y, Wang J, Phillips KL, Binch AL, Dunn S, Cross A, Chiverton N, Zheng Z, Shapiro IM, et al: Inflammatory cytokines induce NOTCH signaling in nucleus pulposus cells: Implications in intervertebral disc degeneration. J Biol Chem. 288:16761–16774. 2013. View Article : Google Scholar : PubMed/NCBI

89 

Keuylian Z, de Baaij JH, Gueguen M, Glorian M, Rouxel C, Merlet E, Lipskaia L, Blaise R, Mateo V and Limon I: The Notch pathway attenuates interleukin 1β (IL1β)-mediated induction of adenylyl cyclase 8 (AC8) expression during vascular smooth muscle cell (VSMC) trans-differentiation. J Biol Chem. 287:24978–24989. 2012. View Article : Google Scholar : PubMed/NCBI

90 

Mirandola L, Apicella L, Colombo M, Yu Y, Berta DG, Platonova N, Lazzari E, Lancellotti M, Bulfamante G, Cobos E, et al: Anti-Notch treatment prevents multiple myeloma cells localization to the bone marrow via the chemokine system CXCR4/SDF-1. Leukemia. 27:1558–1566. 2013. View Article : Google Scholar : PubMed/NCBI

91 

Fukuda D, Aikawa E, Swirski FK, Novobrantseva TI, Kotelianski V, Gorgun CZ, Chudnovskiy A, Yamazaki H, Croce K, Weissleder R, et al: Notch ligand delta-like 4 blockade attenuates atherosclerosis and metabolic disorders. Proc Natl Acad Sci USA. 109:E1868–E1877. 2012. View Article : Google Scholar : PubMed/NCBI

92 

Al Haj Zen A, Oikawa A, Bazan-Peregrino M, Meloni M, Emanueli C and Madeddu P: Inhibition of delta-like-4-mediated signaling impairs reparative angiogenesis after ischemia. Circ Res. 107:283–293. 2010. View Article : Google Scholar : PubMed/NCBI

93 

Kumari B, Jain P, Das S, Ghosal S, Hazra B, Trivedi AC, Basu A, Chakrabarti J, Vrati S and Banerjee A: Dynamic changes in global microRNAome and transcriptome reveal complex miRNA-mRNA regulated host response to Japanese Encephalitis Virus in microglial cells. Sci Rep. 6:202632016. View Article : Google Scholar : PubMed/NCBI

94 

Yao L, Cao Q, Wu C, Kaur C, Hao A and Ling EA: Notch signaling in the central nervous system with special reference to its expression in microglia. CNS Neurol Disord Drug Targets. 12:807–814. 2013. View Article : Google Scholar : PubMed/NCBI

95 

Salta E, Lau P, Sala Frigerio C, Coolen M, Bally-Cuif L and De Strooper B: A self-organizing miR-132/Ctbp2 circuit regulates bimodal notch signals and glial progenitor fate choice during spinal cord maturation. Dev Cell. 30:423–436. 2014. View Article : Google Scholar : PubMed/NCBI

96 

Grandbarbe L, Michelucci A, Heurtaux T, Hemmer K, Morga E and Heuschling P: Notch signaling modulates the activation of microglial cells. Glia. 55:1519–1530. 2007. View Article : Google Scholar : PubMed/NCBI

97 

Morgan SC, Taylor DL and Pocock JM: Microglia release activators of neuronal proliferation mediated by activation of mitogen-activated protein kinase, phosphatidylinositol-3-kinase/Akt and delta-Notch signalling cascades. J Neurochem. 90:89–101. 2004. View Article : Google Scholar : PubMed/NCBI

98 

Arumugam TV, Chan SL, Jo DG, Yilmaz G, Tang SC, Cheng A, Gleichmann M, Okun E, Dixit VD, Chigurupati S, et al: Gamma secretase-mediated Notch signaling worsens brain damage and functional outcome in ischemic stroke. Nat Med. 12:621–623. 2006. View Article : Google Scholar : PubMed/NCBI

99 

Liu HC, Zheng MH, Du YL, Wang L, Kuang F, Qin HY, Zhang BF and Han H: N9 microglial cells polarized by LPS and IL4 show differential responses to secondary environmental stimuli. Cell Immunol. 278:84–90. 2012. View Article : Google Scholar : PubMed/NCBI

100 

Yao L, Kan EM, Kaur C, Dheen ST, Hao A, Lu J and Ling EA: Notch-1 signaling regulates microglia activation via NF-κB pathway after hypoxic exposure in vivo and in vitro. PLoS One. 8:e784392013. View Article : Google Scholar

101 

Cao Q, Lu J, Kaur C, Sivakumar V, Li F, Cheah PS, Dheen ST and Ling EA: Expression of Notch-1 receptor and its ligands Jagged-1 and Delta-1 in amoeboid microglia in postnatal rat brain and murine BV-2 cells. Glia. 56:1224–1237. 2008. View Article : Google Scholar : PubMed/NCBI

102 

Morga E, Mouad-Amazzal L, Felten P, Heurtaux T, Moro M, Michelucci A, Gabel S, Grandbarbe L and Heuschling P: Jagged1 regulates the activation of astrocytes via modulation of NFkappaB and JAK/STAT/SOCS pathways. Glia. 57:1741–1753. 2009. View Article : Google Scholar : PubMed/NCBI

103 

Nardai S, Dobolyi A, Pál G, Skopál J, Pintér N, Lakatos K, Merkely B and Nagy Z: Selegiline promotes NOTCH-JAGGED signaling in astrocytes of the peri-infarct region and improves the functional integrity of the neurovascular unit in a rat model of focal ischemia. Restor Neurol Neurosci. 33:1–14. 2015.

104 

Monsalve E, Ruiz-García A, Baladrón V, Ruiz-Hidalgo MJ, Sánchez-Solana B, Rivero S, García-Ramírez JJ, Rubio A, Laborda J and Díaz-Guerra MJ: Notch1 upregulates LPS-induced macrophage activation by increasing NF-kappaB activity. Eur J Immunol. 39:2556–2570. 2009. View Article : Google Scholar : PubMed/NCBI

105 

Jones DP: Extracellular redox state: Refining the definition of oxidative stress in aging. Rejuvenation Res. 9:169–181. 2006. View Article : Google Scholar : PubMed/NCBI

106 

Darley-Usmar V and Halliwell B: Blood radicals: Reactive nitrogen species, reactive oxygen species, transition metal ions, and the vascular system. Pharm Res. 13:649–662. 1996. View Article : Google Scholar : PubMed/NCBI

107 

Wu JQ, Kosten TR and Zhang XY: Free radicals, antioxidant defense systems, and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 46:200–206. 2013. View Article : Google Scholar : PubMed/NCBI

108 

Catarino MD, Alves-Silva JM, Pereira OR and Cardoso SM: Antioxidant capacities of favones and benefts in oxidative-stress related diseases. Curr Top Med Chem. 15:105–119. 2015. View Article : Google Scholar

109 

Lee JC and Won MH: Neuroprotection of antioxidant enzymes against transient global cerebral ischemia in gerbils. Anat Cell Biol. 47:149–156. 2014. View Article : Google Scholar : PubMed/NCBI

110 

Valko M, Morris H and Cronin MT: Metals, toxicity and oxidative stress. Curr Med Chem. 12:1161–1208. 2005. View Article : Google Scholar : PubMed/NCBI

111 

Wu D and Yotnda P: Production and detection of reactive oxygen species (ROS) in cancers. J Vis Exp. pii: 3357. 2011. View Article : Google Scholar : PubMed/NCBI

112 

Reiter RJ, Tan DX, Manchester LC and Qi W: Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: A review of the evidence. Cell Biochem Biophys. 34:237–256. 2001. View Article : Google Scholar

113 

Reiter RJ, Acuña-Castroviejo D, Tan DX and Burkhardt S: Free radical-mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system. Ann N Y Acad Sci. 939:200–215. 2001. View Article : Google Scholar : PubMed/NCBI

114 

Hemnani T and Parihar MS: Reactive oxygen species and oxidative DNA damage. Indian J Physiol Pharmacol. 42:440–452. 1998.

115 

Rodrigo R, Fernández-Gajardo R, Gutiérrez R, Matamala JM, Carrasco R, Miranda-Merchak A and Feuerhake W: Oxidative stress and pathophysiology of ischemic stroke: Novel therapeutic opportunities. CNS Neurol Disord Drug Targets. 12:698–714. 2013. View Article : Google Scholar : PubMed/NCBI

116 

Oprea E, Berteanu M, Cintezã D and Manolescu BN: The effect of the ALAnerv nutritional supplement on some oxidative stress markers in postacute stroke patients undergoing rehabilitation. Appl Physiol Nutr Metab. 38:613–620. 2013. View Article : Google Scholar : PubMed/NCBI

117 

Liang H, Zhang Y, Shi X, Wei T and Lou J: Role of Notch-1 signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25–35). Neural Regen Res. 9:1297–1302. 2014. View Article : Google Scholar : PubMed/NCBI

118 

Braidy N, Jayasena T, Poljak A and Sachdev PS: Sirtuins in cognitive ageing and Alzheimer's disease. Curr Opin Psychiatry. 25:226–230. 2012. View Article : Google Scholar : PubMed/NCBI

119 

Nakane H, Kamouchi M, Hata J, Ibayashi S, Kusuda K, Omae T, Nagao T, Ago T and Kitazono T; EMINENT Study Investigators: Effects of hydrochlorothiazide on oxidative stress and pulse pressure in hypertensive patients with chronic stroke: The EMINENT study. Intern Med. 54:573–577. 2015. View Article : Google Scholar : PubMed/NCBI

120 

Nakagawa T, Hasegawa Y, Uekawa K, Ma M, Katayama T, Sueta D, Toyama K, Kataoka K, Koibuchi N, Maeda M, et al: Renal denervation prevents stroke and brain injury via attenuation of oxidative stress in hypertensive rats. J Am Heart Assoc. 2:e0003752013. View Article : Google Scholar : PubMed/NCBI

121 

Das UN: Can free radicals induce coronary vasospasm and acute myocardial infarction? Med Hypotheses. 39:90–94. 1992. View Article : Google Scholar : PubMed/NCBI

122 

Manzanero S, Santro T and Arumugam TV: Neuronal oxidative stress in acute ischemic stroke: Sources and contribution to cell injury. Neurochem Int. 62:712–718. 2013. View Article : Google Scholar

123 

Cojocaru IM, Cojocaru M, Sapira V and Ionescu A: Evaluation of oxidative stress in patients with acute ischemic stroke. Rom J Intern Med. 51:97–106. 2013.PubMed/NCBI

124 

Icme F, Erel Ö, Avci A, Satar S, Gülen M and Acehan S: The relation between oxidative stress parameters, ischemic stroke, and hemorrhagic stroke. Turk J Med Sci. 45:947–953. 2015. View Article : Google Scholar : PubMed/NCBI

125 

Simão AN, Lehmann MF, Alferi DF, Meloni MZ, Flauzino T, Scavuzzi BM, de Oliveira SR, Lozovoy MA, Dichi I and Reiche EM: Metabolic syndrome increases oxidative stress but does not influence disability and short-time outcome in acute ischemic stroke patients. Metab Brain Dis. 30:1409–1416. 2015. View Article : Google Scholar : PubMed/NCBI

126 

Tsai NW, Chang YT, Huang CR, Lin YJ, Lin WC, Cheng BC, Su CM, Chiang YF, Chen SF, Huang CC, et al: Association between oxidative stress and outcome in different subtypes of acute ischemic stroke. Biomed Res Int. 2014:2568792014. View Article : Google Scholar : PubMed/NCBI

127 

Pantcheva P, Elias M, Duncan K, Borlongan CV, Tajiri N and Kaneko Y: The role of DJ-1 in the oxidative stress cell death cascade after stroke. Neural Regen Res. 9:1430–1433. 2014. View Article : Google Scholar : PubMed/NCBI

128 

Nabavi SF, Dean OM, Turner A, Sureda A, Daglia M and Nabavi SM: Oxidative stress and post-stroke depression: Possible therapeutic role of polyphenols? Curr Med Chem. 22:343–351. 2015. View Article : Google Scholar

129 

Gonullu H, Aslan M, Karadas S, Kati C, Duran L, Milanlioglu A, Aydin MN and Demir H: Serum prolidase enzyme activity and oxidative stress levels in patients with acute hemorrhagic stroke. Scand J Clin Lab Invest. 74:199–205. 2014. View Article : Google Scholar : PubMed/NCBI

130 

El Kossi MM and Zakhary MM: Oxidative stress in the context of acute cerebrovascular stroke. Stroke. 31:1889–1892. 2000. View Article : Google Scholar : PubMed/NCBI

131 

Milanlioglu A, Aslan M, Ozkol H, Çilingir V, Nuri Aydin M and Karadas S: Serum antioxidant enzymes activities and oxidative stress levels in patients with acute ischemic stroke: Influence on neurological status and outcome. Wien Klin Wochenschr. 128:169–174. 2016. View Article : Google Scholar

132 

Newton DF, Naiberg MR and Goldstein BI: Oxidative stress and cognition amongst adults without dementia or stroke: Implications for mechanistic and therapeutic research in psychiatric disorders. Psychiatry Res. 227:127–134. 2015. View Article : Google Scholar : PubMed/NCBI

133 

Nakajima H, Kubo T, Ihara H, Hikida T, Danjo T, Nakatsuji M, Shahani N, Itakura M, Ono Y, Azuma YT, et al: Nuclear-translocated Glyceraldehyde-3-phosphate dehydrogenase promotes poly(ADP-ribose) polymerase-1 activation during Oxidative/Nitrosative stress in stroke. J Biol Chem. 290:14493–14503. 2015. View Article : Google Scholar : PubMed/NCBI

134 

Kotur-Stevuljevic J, Bogavac-Stanojevic N, Jelic-Ivanovic Z, Stefanovic A, Gojkovic T, Joksic J, Sopic M, Gulan B, Janac J and Milosevic S: Oxidative stress and paraoxonase 1 status in acute ischemic stroke patients. Atherosclerosis. 241:192–198. 2015. View Article : Google Scholar : PubMed/NCBI

135 

Han Z, Shen F, He Y, Degos V, Camus M, Maze M, Young WL and Su H: Activation of α-7 nicotinic acetylcholine receptor reduces ischemic stroke injury through reduction of pro-inflammatory macrophages and oxidative stress. PLoS One. 9:e1057112014. View Article : Google Scholar

136 

Lagowska-Lenard M, Bielewicz J, Raszewski G, Stelmasiak Z and Bartosik-Psujek H: Oxidative stress in cerebral stroke. Pol Merkur Lekarski. 25:205–208. 2008.In Polish.

137 

Takemori K, Murakami T, Kometani T and Ito H: Possible involvement of oxidative stress as a causative factor in blood-brain barrier dysfunction in stroke-prone spontaneously hypertensive rats. Microvasc Res. 90:169–172. 2013. View Article : Google Scholar : PubMed/NCBI

138 

Hung LM, Huang JP, Liao JM, Yang MH, Li DE, Day YJ and Huang SS: Insulin renders diabetic rats resistant to acute ischemic stroke by arresting nitric oxide reaction with superoxide to form peroxynitrite. J Biomed Sci. 21:922014. View Article : Google Scholar : PubMed/NCBI

139 

Fabian RH and Kent TA: Hyperglycemia accentuates persistent 'functional uncoupling' of cerebral microvascular nitric oxide and superoxide following focal ischemia/reperfusion in rats. Transl Stroke Res. 3:482–490. 2012. View Article : Google Scholar

140 

Fabian RH, Perez-Polo JR and Kent TA: Perivascular nitric oxide and superoxide in neonatal cerebral hypoxia-ischemia. Am J Physiol Heart Circ Physiol. 295:H1809–H1814. 2008. View Article : Google Scholar : PubMed/NCBI

141 

Gümüştaş K, Meta Güzeyli FM, Atükeren P, Sanus GZ, Kemerdere R, Tanriverdi T and Kaynar MY: The effects of vitamin E on lipid peroxidation, nitric oxide production and superoxide dismutase expression in hyperglycemic rats with cerebral ischemia-reperfusion injury. Turk Neurosurg. 17:78–82. 2007.

142 

Forman LJ, Liu P, Nagele RG, Yin K and Wong PY: Augmentation of nitric oxide, superoxide, and peroxynitrite production during cerebral ischemia and reperfusion in the rat. Neurochem Res. 23:141–148. 1998. View Article : Google Scholar : PubMed/NCBI

143 

Brosnan MJ, Hamilton CA, Graham D, Lygate CA, Jardine E and Dominiczak AF: Irbesartan lowers superoxide levels and increases nitric oxide bioavailability in blood vessels from spontaneously hypertensive stroke-prone rats. J Hypertens. 20:281–286. 2002. View Article : Google Scholar : PubMed/NCBI

144 

Baumeister P, Huebner T, Reiter M, Schwenk-Zieger S and Harréus U: Reduction of oxidative DNA fragmentation by ascorbic acid, zinc and N-acetylcysteine in nasal mucosa tissue cultures. Anticancer Res. 29:4571–4574. 2009.PubMed/NCBI

145 

Mikhaĭlov VF, Mazurik VK and Burlakova EB: Signal function of the reactive oxygen species in regulatory networks of the cell reaction to damaging effects: Contribution of radiosensitivity and genome instability. Radiats Biol Radioecol. 43:5–18. 2003.In Russian.

146 

Fischer-Nielsen A, Corcoran GB, Poulsen HE, Kamendulis LM and Loft S: Menadione-induced DNA fragmentation without 8-oxo-2′-deoxyguanosine formation in isolated rat hepatocytes. Biochem Pharmacol. 49:1469–1474. 1995. View Article : Google Scholar : PubMed/NCBI

147 

Zhou T, He Q, Tong Y, Zhan R, Xu F, Fan D, Guo X, Han H, Qin S and Chui D: Phospholipid transfer protein (PLTP) deficiency impaired blood-brain barrier integrity by increasing cerebrovascular oxidative stress. Biochem Biophys Res Commun. 445:352–356. 2014. View Article : Google Scholar : PubMed/NCBI

148 

Tóth AE, Walter FR, Bocsik A, Sántha P, Veszelka S, Nagy L, Puskás LG, Couraud PO, Takata F, Dohgu S, et al: Edaravone protects against methylglyoxal-induced barrier damage in human brain endothelial cells. PLoS One. 9:e1001522014. View Article : Google Scholar : PubMed/NCBI

149 

Elmorsy E, Elzalabany LM, Elsheikha HM and Smith PA: Adverse effects of antipsychotics on micro-vascular endothelial cells of the human blood-brain barrier. Brain Res. 1583:255–268. 2014. View Article : Google Scholar : PubMed/NCBI

150 

Sathanoori R, Swärd K, Olde B and Erlinge D: The ATP Receptors P2X7 and P2X4 modulate high glucose and Palmitate-Induced inflammatory responses in endothelial cells. PLoS One. 10:e01251112015. View Article : Google Scholar : PubMed/NCBI

151 

Okada R, Wu Z, Zhu A, Ni J, Zhang J, Yoshimine Y, Peters C, Saftig P and Nakanishi H: Cathepsin D deficiency induces oxidative damage in brain pericytes and impairs the blood-brain barrier. Mol Cell Neurosci. 64:51–60. 2015. View Article : Google Scholar

152 

Abdul-Muneer PM, Chandra N and Haorah J: Interactions of oxidative stress and neurovascular infammation in the pathogenesis of traumatic brain injury. Mol Neurobiol. 51:966–979. 2015. View Article : Google Scholar

153 

Ste-Marie L, Hazell AS, Bémeur C, Butterworth R and Montgomery J: Immunohistochemical detection of inducible nitric oxide synthase, nitrotyrosine and manganese superoxide dismutase following hyperglycemic focal cerebral ischemia. Brain Res. 918:10–19. 2001. View Article : Google Scholar : PubMed/NCBI

154 

Kumura E, Yoshimine T, Kubo S, Tanaka S, Hayakawa T, Shiga T and Kosaka H: Effects of superoxide dismutase on nitric oxide production during reperfusion after focal cerebral ischemia is rats. Neurosci Lett. 200:137–140. 1995. View Article : Google Scholar : PubMed/NCBI

155 

Al-Maghrebi M and Renno WM: Genistein alleviates testicular ischemia and reperfusion injury-induced sper-matogenic damage and oxidative stress by suppressing abnormal testicular matrix metalloproteinase system via the Notch 2/Jagged 1/Hes-1 and caspase-8 pathways. J Physiol Pharmacol. 67:129–137. 2016.PubMed/NCBI

156 

Xie H, Sun J, Chen Y, Zong M, Li S and Wang Y: EGCG attenuates uric Acid-Induced inflammatory and oxidative stress responses by medicating the NOTCH pathway. Oxid Med Cell Longev. 2015:2148362015. View Article : Google Scholar : PubMed/NCBI

157 

Xie F, Cai W, Liu Y, Li Y, Du B, Feng L and Qiu L: Vaccarin attenuates the human EA.hy926 endothelial cell oxidative stress injury through inhibition of Notch signaling. Int J Mol Med. 35:135–142. 2015.

158 

Yang Y, Duan W, Liang Z, Yi W, Yan J, Wang N, Li Y, Chen W, Yu S, Jin Z and Yi D: Curcumin attenuates endothelial cell oxidative stress injury through Notch signaling inhibition. Cell Signal. 25:615–629. 2013. View Article : Google Scholar

159 

Li M, Chen F, Clifton N, Sullivan DM, Dalton WS, Gabrilovich DI and Nefedova Y: Combined inhibition of Notch signaling and Bcl-2/Bcl-xL results in synergistic antimyeloma effect. Mol Cancer Ther. 9:3200–3209. 2010. View Article : Google Scholar : PubMed/NCBI

160 

Chen C, Cui H, Li Z, Wang R and Zhou C: Normobaric oxygen for cerebral ischemic injury. Neural Regen Res. 8:2885–2894. 2013.

161 

Zhu B, Yang P, Mammat N, Ding H, He J, Qian Y, Fei J and Abdukerim K: Aiweixin, a traditional Uyghur medicinal formula, protects against chromium toxicity in Caenorhabditis elegans. BMC Complement Altern Med. 15:2852015. View Article : Google Scholar : PubMed/NCBI

162 

Finsterer J: Neuromuscular implications in CADASIL. Cerebrovasc Dis. 24:401–404. 2007. View Article : Google Scholar : PubMed/NCBI

163 

Santoni M, Pantano F, Amantini C, Nabissi M, Conti A, Burattini L, Zoccoli A, Berardi R, Santoni G, Tonini G, et al: Emerging strategies to overcome the resistance to current mTOR inhibitors in renal cell carcinoma. Biochim Biophys Acta. 1845:221–231. 2014.PubMed/NCBI

164 

Pei H, Yu Q, Xue Q, Guo Y, Sun L, Hong Z, Han H, Gao E, Qu Y and Tao L: Notch1 cardioprotection in myocardial ischemia/reperfusion involves reduction of oxidative/nitrative stress. Basic Res Cardiol. 108:3732013. View Article : Google Scholar : PubMed/NCBI

165 

Simón R, Aparicio R, Housden BE, Bray S and Busturia A: Drosophila p53 controls Notch expression and balances apoptosis and proliferation. Apoptosis. 19:1430–1443. 2014. View Article : Google Scholar : PubMed/NCBI

166 

Zheng WX, Cao XL, Wang F, Wang J, Ying TZ, Xiao W, Zhang Y, Xing H, Dong W, Xu SQ, et al: Baicalin inhibiting cerebral ischemia/hypoxia-induced neuronal apoptosis via MRTF-A-mediated transactivity. Eur J Pharmacol. 767:201–210. 2015. View Article : Google Scholar : PubMed/NCBI

167 

Baroja-Mazo A, Martín-Sánchez F, Gomez AI, Martínez CM, Amores-Iniesta J, Compan V, Barberà-Cremades M, Yagüe J, Ruiz-Ortiz E, Antón J, et al: The NLRP3 inflammasome is released as a particulate danger signal that amplifes the inflammatory response. Nat Immunol. 15:738–748. 2014. View Article : Google Scholar : PubMed/NCBI

168 

Yang RY and Liu FT: Galectins in cell growth and apoptosis. Cell Mol Life Sci. 60:267–276. 2003. View Article : Google Scholar : PubMed/NCBI

169 

Bao JX, Su YT, Cheng YP, Zhang HJ, Xie XP and Chang YM: Vascular sphingolipids in physiological and pathological adaptation. Front Biosci (Landmark Ed). 21:1168–1186. 2016. View Article : Google Scholar

170 

Kagiya G, Ogawa R, Tabuchi Y, Feril LB Jr, Nozaki T, Fukuda S, Yamamoto K and Kondo T: Expression of heme oxygenase-1 due to intracellular reactive oxygen species induced by ultrasound. Ultrason Sonochem. 13:388–396. 2006. View Article : Google Scholar

171 

Santiago B, Galindo M, Palao G and Pablos JL: Intracellular regulation of Fas-induced apoptosis in human fibroblasts by extracellular factors and cycloheximide. J Immunol. 172:560–566. 2004. View Article : Google Scholar

172 

Wang L, Song G, Liu M, Chen B, Chen Y, Shen Y, Zhu J and Zhou X: MicroRNA-375 overexpression influences P19 cell proliferation, apoptosis and differentiation through the Notch signaling pathway. Int J Mol Med. 37:47–55. 2016.

173 

Aboutaleb N, Shamsaei N, Khaksari M, Erfani S, Rajabi H and Nikbakht F: Pre-ischemic exercise reduces apoptosis in hippocampal CA3 cells after cerebral ischemia by modulation of the Bax/Bcl-2 proteins ratio and prevention of caspase-3 activation. J Physiol Sci. 65:435–443. 2015. View Article : Google Scholar : PubMed/NCBI

174 

Zhang JF, Shi LL, Zhang L, Zhao ZH, Liang F, Xu X, Zhao LY, Yang PB, Zhang JS and Tian YF: MicroRNA-25 negatively regulates cerebral Ischemia/Reperfusion Injury-Induced cell apoptosis through Fas/FasL pathway. J Mol Neurosci. 58:507–516. 2016. View Article : Google Scholar : PubMed/NCBI

175 

Xue R, Wu G, Wei X, Lv J, Fu R, Lei X, Zhang Z, Li W, He J, Zhao H, et al: Tea polyphenols may attenuate the neurocognitive impairment caused by global cerebral ischemia/reperfusion injury via anti-apoptosis. Nutr Neurosci. 19:63–69. 2016. View Article : Google Scholar

176 

Yang Y, Gao K, Hu Z, Li W, Davies H, Ling S, Rudd JA and Fang M: Autophagy upregulation and apoptosis downregulation in DAHP and triptolide treated cerebral ischemia. Mediators Inflamm. 2015:1201982015. View Article : Google Scholar : PubMed/NCBI

177 

Wu L, Zhao QS, Li TW, Li HY, Wang QB, Bi XY, Cai XK and Tang N: Yifei Xuanfei Jiangzhuo formula, a Chinese herbal decoction, improves memory impairment through inhibiting apoptosis and enhancing PKA/CREB signal transduction in rats with cerebral ischemia/reperfusion. Mol Med Rep. 12:4273–4283. 2015.PubMed/NCBI

178 

Saad MA, Abdelsalam RM, Kenawy SA and Attia AS: Ischemic preconditioning and postconditioning alleviates hippocampal tissue damage through abrogation of apoptosis modulated by oxidative stress and inflammation during transient global cerebral ischemia-reperfusion in rats. Chem Biol Interact. 232:21–29. 2015. View Article : Google Scholar : PubMed/NCBI

179 

Fan M, Jin W, Zhao H, Xiao Y, Jia Y, Yin Y, Jiang X, Xu J, Meng N and Lv P: Lithium chloride administration prevents spatial learning and memory impairment in repeated cerebral ischemia-reperfusion mice by depressing apoptosis and increasing BDNF expression in hippocampus. Behav Brain Res. 291:399–406. 2015. View Article : Google Scholar : PubMed/NCBI

180 

Garrigue P, Giacomino L, Bucci C, Muzio V, Filannino MA, Sabatier F, Dignat-George F, Pisano P and Guillet B: Single photon emission computed tomography imaging of cerebral blood flow, blood-brain barrier disruption, and apoptosis time course after focal cerebral ischemia in rats. Int J Stroke. 11:117–126. 2016. View Article : Google Scholar : PubMed/NCBI

181 

Cao G, Zhou H, Jiang N, Han Y, Hu Y, Zhang Y, Qi J, Kou J and Yu B: YiQiFuMai powder injection ameliorates cerebral ischemia by inhibiting endoplasmic reticulum Stress-Mediated neuronal apoptosis. Oxid Med Cell Longev. 2016:54932792016. View Article : Google Scholar : PubMed/NCBI

182 

Yan XG, Cheng BH, Wang X, Ding LC, Liu HQ, Chen J and Bai B: Lateral intracerebroventricular injection of Apelin-13 inhibits apoptosis after cerebral ischemia/reperfusion injury. Neural Regen Res. 10:766–771. 2015. View Article : Google Scholar : PubMed/NCBI

183 

Saad MA, Abdel Salam RM, Kenawy SA and Attia AS: Pinocembrin attenuates hippocampal inflammation, oxidative perturbations and apoptosis in a rat model of global cerebral ischemia reperfusion. Pharmacol Rep. 67:115–122. 2015. View Article : Google Scholar : PubMed/NCBI

184 

Jiang Y, Li L, Tan X, Liu B, Zhang Y and Li C: miR-210 mediates vagus nerve stimulation-induced antioxidant stress and anti-apoptosis reactions following cerebral ischemia/reperfusion injury in rats. J Neurochem. 134:173–181. 2015. View Article : Google Scholar : PubMed/NCBI

185 

Chopp M and Li Y: Apoptosis in focal cerebral ischemia. Acta Neurochir Suppl. 66:21–26. 1996.PubMed/NCBI

186 

Wu X, Li L, Zhang L, Wu J, Zhou Y, Zhou Y, Zhao Y and Zhao J: Inhibition of thioredoxin-1 with siRNA exacerbates apoptosis by activating the ASK1-JNK/p38 pathway in brain of a stroke model rats. Brain Res. 1599:20–31. 2015. View Article : Google Scholar

187 

Baregamian N, Song J, Bailey CE, Papaconstantinou J, Evers BM and Chung DH: Tumor necrosis factor-alpha and apoptosis signal-regulating kinase 1 control reactive oxygen species release, mitochondrial autophagy, and c-Jun N-terminal kinase/p38 phosphorylation during necrotizing enterocolitis. Oxid Med Cell Longev. 2:297–306. 2009. View Article : Google Scholar

188 

Bedogni B, Warneke JA, Nickoloff BJ, Giaccia AJ and Powell MB: Notch1 is an effector of Akt and hypoxia in melanoma development. J Clin Invest. 118:3660–3670. 2008. View Article : Google Scholar : PubMed/NCBI

189 

Petit A, Bihel F, Alvès da Costa C, Pourquié O, Checler F and Kraus JL: New protease inhibitors prevent gamma-secretase-mediated production of Abeta40/42 without affecting Notch cleavage. Nat Cell Biol. 3:507–511. 2001. View Article : Google Scholar : PubMed/NCBI

190 

Okochi M, Steiner H, Fukumori A, Tanii H, Tomita T, Tanaka T, Iwatsubo T, Kudo T, Takeda M and Haass C: Presenilins mediate a dual intramembranous gamma-secretase cleavage of Notch-1. EMBO J. 21:5408–5416. 2002. View Article : Google Scholar : PubMed/NCBI

191 

Ikeuchi T and Sisodia SS: The Notch ligands, Delta1 and Jagged2, are substrates for presenilin-dependent 'gamma-secretase' cleavage. J Biol Chem. 278:7751–7754. 2003. View Article : Google Scholar : PubMed/NCBI

192 

Yang G, Gong Y, Wang Q, Wang Y and Zhang X: The role of miR-100-mediated Notch pathway in apoptosis of gastric tumor cells. Cell Signal. 27:1087–1101. 2015. View Article : Google Scholar : PubMed/NCBI

193 

Liu XD, Zhang LY, Zhu TC, Zhang RF, Wang SL and Bao Y: Overexpression of miR-34c inhibits high glucose-induced apoptosis in podocytes by targeting Notch signaling pathways. Int J Clin Exp Pathol. 8:4525–4534. 2015.PubMed/NCBI

194 

Wang XM, Yao M, Liu SX, Hao J, Liu QJ and Gao F: Interplay between the Notch and PI3K/Akt pathways in high glucose-induced podocyte apoptosis. Am J Physiol Renal Physiol. 306:F205–F213. 2014. View Article : Google Scholar

195 

Gao F, Yao M, Shi Y, Hao J, Ren Y, Liu Q, Wang X and Duan H: Notch pathway is involved in high glucose-induced apoptosis in podocytes via Bcl-2 and p53 pathways. J Cell Biochem. 114:1029–1038. 2013. View Article : Google Scholar

196 

Yang Y, Li X, Zhang L, Liu L, Jing G and Cai H: Ginsenoside Rg1 suppressed infammation and neuron apoptosis by activating PPAR γ/HO-1 in hippocampus in rat model of cerebral ischemia-reperfusion injury. Int J Clin Exp Pathol. 8:2484–2494. 2015.

197 

Zhao Y, Deng B, Li Y, Zhou L, Yang L, Gou X, Wang Q, Chen G, Xu H and Xu L: Electroacupuncture pretreatment attenuates cerebral ischemic injury via Notch Pathway-Mediated Up-Regulation of hypoxia inducible Factor-1α in Rats. Cell Mol Neurobiol. 35:1093–1103. 2015. View Article : Google Scholar : PubMed/NCBI

198 

Cheng YL, Choi Y, Seow WL, Manzanero S, Sobey CG, Jo DG and Arumugam TV: Evidence that neuronal Notch-1 promotes JNK/c-Jun activation and cell death following ischemic stress. Brain Res. 1586:193–202. 2014. View Article : Google Scholar : PubMed/NCBI

199 

Meng S, Su Z, Liu Z, Wang N and Wang Z: Rac1 contributes to cerebral ischemia reperfusion-induced injury in mice by regulation of Notch2. Neuroscience. 306:100–114. 2015. View Article : Google Scholar : PubMed/NCBI

200 

Ma M, Wang X, Ding X, Teng J, Shao F and Zhang J: Numb/Notch signaling plays an important role in cerebral ischemia-induced apoptosis. Neurochem Res. 38:254–261. 2013. View Article : Google Scholar

201 

Sun J, Ling Z, Wang F, Chen W, Li H, Jin J, Zhang H, Pang M, Yu J and Liu J: Clostridium butyricum pretreatment attenuates cerebral ischemia/reperfusion injury in mice via anti-oxidation and anti-apoptosis. Neurosci Lett. 613:30–35. 2016. View Article : Google Scholar : PubMed/NCBI

202 

Arumugam TV, Cheng YL, Choi Y, Choi YH, Yang S, Yun YK, Park JS, Yang DK, Thundyil J, Gelderblom M, et al: Evidence that gamma-secretase-mediated Notch signaling induces neuronal cell death via the nuclear factor-kappaB-Bcl-2-interacting mediator of cell death pathway in ischemic stroke. Mol Pharmacol. 80:23–31. 2011. View Article : Google Scholar : PubMed/NCBI

203 

Park JS, Manzanero S, Chang JW, Choi Y, Baik SH, Cheng YL, Li YI, Gwon AR, Woo HN, Jang J, et al: Calsenilin contributes to neuronal cell death in ischemic stroke. Brain Pathol. 23:402–412. 2013. View Article : Google Scholar

204 

Baik SH, Fane M, Park JH, Cheng YL, Yang-Wei Fann D, Yun UJ, Choi Y, Park JS, Chai BH, Back SH, et al: Pin1 promotes neuronal death in stroke by stabilizing Notch intracellular domain. Ann Neurol. 77:504–516. 2015. View Article : Google Scholar : PubMed/NCBI

205 

Viswanathan A, Gray F, Bousser MG, Baudrimont M and Chabriat H: Cortical neuronal apoptosis in CADASIL. Stroke. 37:2690–2695. 2006. View Article : Google Scholar : PubMed/NCBI

206 

Kalimo H, Ruchoux MM, Viitanen M and Kalaria RN: CADASIL: A common form of hereditary arteriopathy causing brain infarcts and dementia. Brain Pathol. 12:371–384. 2002. View Article : Google Scholar : PubMed/NCBI

207 

Liu XY, Gonzalez-Toledo ME, Fagan A, Duan WM, Liu Y, Zhang S, Li B, Piao CS, Nelson L and Zhao LR: Stem cell factor and granulocyte colony-stimulating factor exhibit therapeutic effects in a mouse model of CADASIL. Neurobiol Dis. 73:189–203. 2015. View Article : Google Scholar

208 

Wang S, Yuan Y, Xia W, Li F, Huang Y, Zhou Y and Guo Y: Neuronal apoptosis and synaptic density in the dentate gyrus of ischemic rats' response to chronic mild stress and the effects of Notch signaling. PLoS One. 7:e428282012. View Article : Google Scholar : PubMed/NCBI

209 

Zhang HP, Sun YY, Chen XM, Yuan LB, Su BX, Ma R, Zhao RN, Dong HL and Xiong L: The neuroprotective effects of isofurane preconditioning in a murine transient global cerebral ischemia-reperfusion model: The role of the Notch signaling pathway. Neuromolecular Med. 16:191–204. 2014. View Article : Google Scholar

210 

Yang Q, Yan W, Li X, Hou L, Dong H, Wang Q, Wang S, Zhang X and Xiong L: Activation of canonical notch signaling pathway is involved in the ischemic tolerance induced by sevo-flurane preconditioning in mice. Anesthesiology. 117:996–1005. 2012. View Article : Google Scholar : PubMed/NCBI

211 

Yao J and Qian C: Over-activated Notch-1 protects gastric carcinoma BGC-823 cells from TNFalpha-induced apoptosis. Dig Liver Dis. 41:867–874. 2009. View Article : Google Scholar : PubMed/NCBI

212 

Yang X, Klein R, Tian X, Cheng HT, Kopan R and Shen J: Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway. Dev Biol. 269:81–94. 2004. View Article : Google Scholar : PubMed/NCBI

213 

de Antonellis P, Medaglia C, Cusanelli E, Andolfo I, Liguori L, De Vita G, Carotenuto M, Bello A, Formiggini F, Galeone A, et al: MiR-34a targeting of Notch ligand delta-like 1 impairs CD15+/CD133+ tumor-propagating cells and supports neural differentiation in medulloblastoma. PLoS One. 6:e245842011. View Article : Google Scholar : PubMed/NCBI

214 

Sionov RV, Kfr-Erenfeld S, Spokoini R and Yefenof E: A role for bcl-2 in notch1-dependent transcription in thymic lymphoma cells. Adv Hematol. 2012:4352412012. View Article : Google Scholar : PubMed/NCBI

215 

Ye QF, Zhang YC, Peng XQ, Long Z, Ming YZ and He LY: Silencing Notch-1 induces apoptosis and increases the chemo-sensitivity of prostate cancer cells to docetaxel through Bcl-2 and Bax. Oncol Lett. 3:879–884. 2012.PubMed/NCBI

216 

Cao H, Hu Y, Wang P, Zhou J, Deng Z and Wen J: Down-regulation of Notch receptor signaling pathway induces caspase-dependent and caspase-independent apoptosis in lung squamous cell carcinoma cells. APMIS. 120:441–450. 2012. View Article : Google Scholar : PubMed/NCBI

217 

Brockhaus M, Grünberg J, Röhrig S, Loetscher H, Wittenburg N, Baumeister R, Jacobsen H and Haass C: Caspase-mediated cleavage is not required for the activity of presenilins in amyloidogenesis and NOTCH signaling. Neuroreport. 9:1481–1486. 1998. View Article : Google Scholar : PubMed/NCBI

218 

Wu K, Hu L and Hou J: Selective suppression of Notch1 inhibits proliferation of renal cell carcinoma cells through JNK/p38 pathway. Oncol Rep. 35:2795–2800. 2016.PubMed/NCBI

219 

Smith KA, Voiriot G, Tang H, Fraidenburg DR, Song S, Yamamura H, Yamamura A, Guo Q, Wan J, Pohl NM, et al: Notch activation of Ca(2+) signaling in the development of hypoxic pulmonary vasoconstriction and pulmonary hypertension. Am J Respir Cell Mol Biol. 53:355–367. 2015. View Article : Google Scholar : PubMed/NCBI

220 

Rothschild SC, Lahvic J, Francescatto L, McLeod JJ, Burgess SM and Tombes RM: CaMK-II activation is essential for zebrafsh inner ear development and acts through Delta-Notch signaling. Dev Biol. 381:179–188. 2013. View Article : Google Scholar : PubMed/NCBI

221 

Kim SK, Park HJ, Hong HS, Baik EJ, Jung MW and Mook-Jung I: ERK1/2 is an endogenous negative regulator of the gamma-secretase activity. FASEB J. 20:157–159. 2006.

222 

Servín-González LS, Granados-López AJ and López JA: Families of microRNAs expressed in clusters regulate cell signaling in cervical cancer. Int J Mol Sci. 16:12773–12790. 2015. View Article : Google Scholar : PubMed/NCBI

223 

Aguirre A, Rubio ME and Gallo V: Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature. 467:323–327. 2010. View Article : Google Scholar : PubMed/NCBI

224 

Nagaraj R and Banerjee U: Regulation of Notch and Wingless signalling by phyllopod, a transcriptional target of the EGFR pathway. EMBO J. 28:337–346. 2009. View Article : Google Scholar : PubMed/NCBI

225 

Elmadhun NY, Sabe AA, Lassaletta AD, Chu LM, Kondra K, Sturek M and Sellke FW: Metabolic syndrome impairs notch signaling and promotes apoptosis in chronically ischemic myocardium. J Thorac Cardiovasc Surg. 148:1048–1055. 2014. View Article : Google Scholar : PubMed/NCBI

226 

Guo D, Ye J, Dai J, Li L, Chen F, Ma D and Ji C: Notch-1 regulates Akt signaling pathway and the expression of cell cycle regulatory proteins cyclin D1, CDK2 and p21 in T-ALL cell lines. Leuk Res. 33:678–685. 2009. View Article : Google Scholar

227 

Sweetwyne MT, Gruenwald A, Niranjan T, Nishinakamura R, Strobl LJ and Susztak K: Notch1 and Notch2 in podocytes play differential roles during diabetic nephropathy development. Diabetes. 64:4099–4111. 2015. View Article : Google Scholar : PubMed/NCBI

228 

Bheeshmachar G, Purushotaman D, Sade H, Gunasekharan V, Rangarajan A and Sarin A: Evidence for a role for notch signaling in the cytokine-dependent survival of activated T cells. J Immunol. 177:5041–5050. 2006. View Article : Google Scholar : PubMed/NCBI

229 

Sholler GS, Currier EA, Dutta A, Slavik MA, Illenye SA, Mendonca MC, Dragon J, Roberts SS and Bond JP: PCI-24781 (abexinostat), a novel histone deacetylase inhibitor, induces reactive oxygen species-dependent apoptosis and is synergistic with bortezomib in neuroblastoma. J Cancer Ther Res. 2:212013. View Article : Google Scholar

230 

Yu HC, Bai L, Yue SQ, Wang DS, Wang L, Han H and Dou KF: Notch signal protects non-parenchymal cells from ischemia/reperfusion injury in vitro by repressing ROS. Ann Hepatol. 12:815–821. 2013.PubMed/NCBI

231 

Naik S, MacFarlane M and Sarin A: Notch4 signaling confers susceptibility to TRAIL-induced apoptosis in breast cancer cells. J Cell Biochem. 116:1371–1380. 2015. View Article : Google Scholar : PubMed/NCBI

232 

Wang C, Qi R, Li N, Wang Z, An H, Zhang Q, Yu Y and Cao X: Notch1 signaling sensitizes tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human hepatocellular carcinoma cells by inhibiting Akt/Hdm2-mediated p53 degradation and up-regulating p53-dependent DR5 expression. J Biol Chem. 284:16183–16190. 2009. View Article : Google Scholar : PubMed/NCBI

233 

Chung AS, Lee J and Ferrara N: Targeting the tumour vascu-lature: Insights from physiological angiogenesis. Nat Rev Cancer. 10:505–514. 2010. View Article : Google Scholar : PubMed/NCBI

234 

Carmeliet P, Moons L, Dewerchin M, Mackman N, Luther T, Breier G, Ploplis V, Müller M, Nagy A, Plow E, et al: Insights in vessel development and vascular disorders using targeted inactivation and transfer of vascular endothelial growth factor, the tissue factor receptor and the plasminogen system. Ann N Y Acad Sci. 811:191–206. 1997. View Article : Google Scholar : PubMed/NCBI

235 

Lymboussaki A, Olofsson B, Eriksson U and Alitalo K: Vascular endothelial growth factor (VEGF) and VEGF-C show overlapping binding sites in embryonic endothelia and distinct sites in differentiated adult endothelia. Circ Res. 85:992–999. 1999. View Article : Google Scholar : PubMed/NCBI

236 

McColl BK, Stacker SA and Achen MG: Molecular regulation of the VEGF family-inducers of angiogenesis and lymphangiogenesis. APMIS. 112:463–480. 2004. View Article : Google Scholar : PubMed/NCBI

237 

Przybylski M: A review of the current research on the role of bFGF and VEGF in angiogenesis. J Wound Care. 18:516–519. 2009. View Article : Google Scholar

238 

Li JL and Harris AL: Crosstalk of VEGF and Notch pathways in tumour angiogenesis: Therapeutic implications. Front Biosci (Landmark Ed). 14:3094–3110. 2009. View Article : Google Scholar

239 

Dimova I, Popivanov G and Djonov V: Angiogenesis in cancer-general pathways and their therapeutic implications. J BUON. 19:15–21. 2014.PubMed/NCBI

240 

Phng LK and Gerhardt H: Angiogenesis: A team effort coordinated by notch. Dev Cell. 16:196–208. 2009. View Article : Google Scholar : PubMed/NCBI

241 

Benedito R, Roca C, Sörensen I, Adams S, Gossler A, Fruttiger M and Adams RH: The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell. 137:1124–1135. 2009. View Article : Google Scholar : PubMed/NCBI

242 

Boas SE and Merks RM: Tip cell overtaking occurs as a side effect of sprouting in computational models of angiogenesis. BMC Syst Biol. 9:862015. View Article : Google Scholar : PubMed/NCBI

243 

Garcia-Pascual CM, Zimmermann RC, Ferrero H, Shawber CJ, Kitajewski J, Simón C, Pellicer A and Gomez R: Delta-like ligand 4 regulates vascular endothelial growth factor receptor 2-driven luteal angiogenesis through induction of a tip/stalk phenotype in proliferating endothelial cells. Fertil Steril. 100:1768–1776.e1. 2013. View Article : Google Scholar : PubMed/NCBI

244 

Brzozowa M, Wojnicz R, Kowalczyk-Ziomek G and Helewski K: The Notch ligand Delta-like 4 (DLL4) as a target in angiogenesis-based cancer therapy? Contemp Oncol (Pozn). 17:234–237. 2013.

245 

Fukuhara S, Sako K, Noda K, Zhang J, Minami M and Mochizuki N: Angiopoietin-1/Tie2 receptor signaling in vascular quiescence and angiogenesis. Histol Histopathol. 25:387–396. 2010.PubMed/NCBI

246 

Cao Y, Cao R and Hedlund EM: R Regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling pathways. J Mol Med (Berl). 86:785–789. 2008. View Article : Google Scholar

247 

van Meeteren LA, Goumans MJ and ten Dijke P: TGF-β receptor signaling pathways in angiogenesis; emerging targets for anti-angiogenesis therapy. Curr Pharm Biotechnol. 12:2108–2120. 2011. View Article : Google Scholar : PubMed/NCBI

248 

Orlova VV, Liu Z, Goumans MJ and ten Dijke P: Controlling angiogenesis by two unique TGF-β type I receptor signaling pathways. Histol Histopathol. 26:1219–1230. 2011.PubMed/NCBI

249 

Taniyama Y, Morishita R, Aoki M, Nakagami H, Yamamoto K, Yamazaki K, Matsumoto K, Nakamura T, Kaneda Y and Ogihara T: Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat and rabbit hindlimb ischemia models: Preclinical study for treatment of peripheral arterial disease. Gene Ther. 8:181–189. 2001. View Article : Google Scholar : PubMed/NCBI

250 

Wu L, Fu Z, Zhou S, Gong J, Liu CA, Qiao Z and Li S: HIF-12α and HIF-22α: Siblings in promoting angiogenesis of residual hepatocellular carcinoma after high-intensity focused ultrasound ablation. PLoS One. 9:e889132014. View Article : Google Scholar

251 

Hayashi H and Kume T: Foxc transcription factors directly regulate Dll4 and Hey2 expression by interacting with the VEGF-Notch signaling pathways in endothelial cells. PLoS One. 3:e24012008. View Article : Google Scholar : PubMed/NCBI

252 

Mitsuhashi N, Shimizu H, Ohtsuka M, Wakabayashi Y, Ito H, Kimura F, Yoshidome H, Kato A, Nukui Y and Miyazaki M: Angiopoietins and Tie-2 expression in angiogenesis and proliferation of human hepatocellular carcinoma. Hepatology. 37:1105–1113. 2003. View Article : Google Scholar : PubMed/NCBI

253 

Wulff C, Wilson H, Largue P, Duncan WC, Armstrong DG and Fraser HM: Angiogenesis in the human corpus luteum: Localization and changes in angiopoietins, tie-2 and vascular endothelial growth factor messenger ribonucleic acid. J Clin Endocrinol Metab. 85:4302–4309. 2000.PubMed/NCBI

254 

Weinmaster G: Notch signaling: Direct or what? Curr Opin Genet Dev. 8:436–442. 1998. View Article : Google Scholar : PubMed/NCBI

255 

Reizis B and Leder P: Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway. Genes Dev. 16:295–300. 2002. View Article : Google Scholar : PubMed/NCBI

256 

Nakano N, Nishiyama C, Yagita H, Hara M, Motomura Y, Kubo M, Okumura K and Ogawa H: Notch signaling enhances FcεRI-mediated cytokine production by mast cells through direct and indirect mechanisms. J Immunol. 194:4535–4544. 2015. View Article : Google Scholar : PubMed/NCBI

257 

Wüstehube J, Bartol A, Liebler SS, Brütsch R, Zhu Y, Felbor U, Sure U, Augustin HG and Fischer A: Cerebral cavernous malformation protein CCM1 inhibits sprouting angiogenesis by activating DELTA-NOTCH signaling. Proc Natl Acad Sci USA. 107:12640–12645. 2010. View Article : Google Scholar : PubMed/NCBI

258 

You C, Sandalcioglu IE, Dammann P, Felbor U, Sure U and Zhu Y: Loss of CCM3 impairs DLL4-Notch signalling: Implication in endothelial angiogenesis and in inherited cerebral cavernous malformations. J Cell Mol Med. 17:407–418. 2013. View Article : Google Scholar : PubMed/NCBI

259 

Patel NS, Li JL, Generali D, Poulsom R, Cranston DW and Harris AL: Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res. 65:8690–8697. 2005. View Article : Google Scholar : PubMed/NCBI

260 

Rath S, Liebl J, Furst R, Vollmar AM and Zahler S: Regulation of endothelial signaling and migration by v-ATPase. Angiogenesis. 17:587–601. 2014. View Article : Google Scholar

261 

Hernandez SL, Banerjee D, Garcia A, Kangsamaksin T, Cheng WY, Anastassiou D, Funahashi Y, Kadenhe-Chiweshe A, Shawber CJ, Kitajewski JK, et al: Notch and VEGF pathways play distinct but complementary roles in tumor angiogenesis. Vasc Cell. 5:172013. View Article : Google Scholar : PubMed/NCBI

262 

Jin Y, Kaluza D and Jakobsson L: VEGF, Notch and TGFβ/BM Ps in regulation of sprouting angiogenesis and vascular patterning. Biochem Soc Trans. 42:1576–1583. 2014. View Article : Google Scholar : PubMed/NCBI

263 

Chintala H, Krupska I, Yan L, Lau L, Grant M and Chaqour B: The matricellular protein CCN1 controls retinal angiogenesis by targeting VEGF, Src homology 2 domain phosphatase-1 and Notch signaling. Development. 142:2364–2374. 2015. View Article : Google Scholar : PubMed/NCBI

264 

Kiec-Wilk B, Grzybowska-Galuszka J, Polus A, Pryjma J, Knapp A and Kristiansen K: The MAPK-dependent regulation of the Jagged/Notch gene expression by VEGF, bFGF or PPAR gamma mediated angiogenesis in HUVEC. J Physiol Pharmacol. 61:217–225. 2010.PubMed/NCBI

265 

Cao L, Arany PR, Wang YS and Mooney DJ: Promoting angio-genesis via manipulation of VEGF responsiveness with notch signaling. Biomaterials. 30:4085–4093. 2009. View Article : Google Scholar : PubMed/NCBI

266 

Thurston G and Kitajewski J: VEGF and Delta-Notch: Interacting signalling pathways in tumour angiogenesis. Br J Cancer. 99:1204–1209. 2008. View Article : Google Scholar : PubMed/NCBI

267 

Zechariah A, ElAli A, Doeppner TR, Jin F, Hasan MR, Helfrich I, Mies G and Hermann DM: Vascular endothelial growth factor promotes pericyte coverage of brain capillaries, improves cerebral blood flow during subsequent focal cerebral ischemia, and preserves the metabolic penumbra. Stroke. 44:1690–1697. 2013. View Article : Google Scholar : PubMed/NCBI

268 

Yang JP, Liu HJ and Liu XF: VEGF promotes angiogenesis and functional recovery in stroke rats. J Invest Surg. 23:149–155. 2010. View Article : Google Scholar : PubMed/NCBI

269 

Dzietko M, Derugin N, Wendland MF, Vexler ZS and Ferriero DM: Delayed VEGF treatment enhances angiogenesis and recovery after neonatal focal rodent stroke. Transl Stroke Res. 4:189–200. 2013. View Article : Google Scholar : PubMed/NCBI

270 

Lee HJ, Kim KS, Park IH and Kim SU: Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model. PLoS One. 2:e1562007. View Article : Google Scholar : PubMed/NCBI

271 

Esposito E, Hayakawa K, Maki T, Arai K and Lo EH: Effects of postconditioning on neurogenesis and angiogenesis during the recovery phase after focal cerebral ischemia. Stroke. 46:2691–2694. 2015. View Article : Google Scholar : PubMed/NCBI

272 

Oh TW, Park KH, Jung HW and Park YK: Neuroprotective effect of the hairy root extract of Angelica gigas NAKAI on transient focal cerebral ischemia in rats through the regulation of angiogenesis. BMC Complement Altern Med. 15:1012015. View Article : Google Scholar : PubMed/NCBI

273 

Duan S, Shao G, Yu L and Ren C: Angiogenesis contributes to the neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats. Int J Neurosci. 125:625–634. 2015. View Article : Google Scholar

274 

Hayward NM, Yanev P, Haapasalo A, Miettinen R, Hiltunen M, Grohn O and Jolkkonen J: Chronic hyperperfusion and angiogenesis follow subacute hypoperfusion in the thalamus of rats with focal cerebral ischemia. J Cereb Blood Flow Metab. 31:1119–1132. 2011. View Article : Google Scholar :

275 

Guo F, Lv S, Lou Y, Tu W, Liao W, Wang Y and Deng Z: Bone marrow stromal cells enhance the angiogenesis in ischaemic cortex after stroke: Involvement of notch signalling. Cell Biol Int. 36:997–1004. 2012. View Article : Google Scholar : PubMed/NCBI

276 

Dao M, Tate CC, McGrogan M and Case CC: Comparing the angiogenic potency of naïve marrow stromal cells and Notch-transfected marrow stromal cells. J Transl Med. 11:812013. View Article : Google Scholar

277 

Lähteenvuo JE, Lähteenvuo MT, Kivelä A, Rosenlew C, Falkevall A, Klar J, Heikura T, Rissanen TT, Vähakängas E, Korpisalo P, et al: Vascular endothelial growth factor-B induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1- and neuropilin receptor-1-dependent mechanisms. Circulation. 119:845–856. 2009. View Article : Google Scholar : PubMed/NCBI

278 

Semenza GL: Vasculogenesis, angiogenesis, and arteriogenesis: Mechanisms of blood vessel formation and remodeling. J Cell Biochem. 102:840–847. 2007. View Article : Google Scholar : PubMed/NCBI

279 

Carmeliet P: Mechanisms of angiogenesis and arteriogenesis. Nat Med. 6:389–395. 2000. View Article : Google Scholar : PubMed/NCBI

280 

Buschmann I and Schaper W: Arteriogenesis Versus Angiogenesis: Two Mechanisms of Vessel Growth. News Physiol Sci. 14:121–125. 1999.

281 

Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C, Oh H, Aster JC, Krishna S, Metzger D, Chambon P, et al: Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J. 20:3427–3436. 2001. View Article : Google Scholar : PubMed/NCBI

282 

Gunaratne A, Chan E, El-Chabib TH, Carter D and Di Guglielmo GM: aPKC alters the TGFβ response in NSCLC cells through both Smad-dependent and Smad-independent pathways. J Cell Sci. 128:487–498. 2015. View Article : Google Scholar

283 

Wang Y, Pan L, Moens CB and Appel B: Notch3 establishes brain vascular integrity by regulating pericyte number. Development. 141:307–317. 2014. View Article : Google Scholar :

284 

Blasi F, Wei Y, Balkaya M, Tikka S, Mandeville JB, Waeber C, Ayata C and Moskowitz MA: Recognition memory impairments after subcortical white matter stroke in mice. Stroke. 45:1468–1473. 2014. View Article : Google Scholar : PubMed/NCBI

285 

Yao H, Duan M, Hu G and Buch S: Platelet-derived growth factor B chain is a novel target gene of cocaine-mediated Notch1 signaling: Implications for HIV-associated neurological disorders. J Neurosci. 31:12449–12454. 2011. View Article : Google Scholar : PubMed/NCBI

286 

Manda VK, Mittapalli RK, Geldenhuys WJ and Lockman PR: Chronic exposure to nicotine and saquinavir decreases endothelial Notch-4 expression and disrupts blood-brain barrier integrity. J Neurochem. 115:515–525. 2010. View Article : Google Scholar : PubMed/NCBI

287 

Nakatsu MN, Sainson RC, Aoto JN, Taylor KL, Aitkenhead M, Pérez-del-Pulgar S, Carpenter PM and Hughes CC: Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: The role of fibroblasts and Angiopoietin-1. Microvasc Res. 66:102–112. 2003. View Article : Google Scholar : PubMed/NCBI

288 

Li Z, Wang J, Zhao C, Ren K, Xia Z, Yu H and Jiang K: Acute Blockage of Notch signaling by DAPT induces neuroprotection and Neurogenesis in the Neonatal rat brain after stroke. Transl Stroke Res. 7:132–140. 2016. View Article : Google Scholar

289 

Marumo T, Takagi Y, Muraki K, Hashimoto N, Miyamoto S and Tanigaki K: Notch signaling regulates nucleocytoplasmic Olig2 translocation in reactive astrocytes differentiation after ischemic stroke. Neurosci Res. 75:204–209. 2013. View Article : Google Scholar : PubMed/NCBI

290 

Shimada IS, Borders A, Aronshtam A and Spees JL: Proliferating reactive astrocytes are regulated by Notch-1 in the peri-infarct area after stroke. Stroke. 42:3231–3237. 2011. View Article : Google Scholar : PubMed/NCBI

291 

Uyttendaele H, Closson V, Wu G, Roux F, Weinmaster G and Kitajewski J: Notch4 and Jagged-1 induce microvessel differentiation of rat brain endothelial cells. Microvasc Res. 60:91–103. 2000. View Article : Google Scholar : PubMed/NCBI

292 

Xiao MJ, Han Z, Shao B and Jin K: Notch signaling and neuro-genesis in normal and stroke brain. Int J Physiol Pathophysiol Pharmacol. 1:192–202. 2009.

293 

Carlén M, Meletis K, Göritz C, Darsalia V, Evergren E, Tanigaki K, Amendola M, Barnabe-Heider F, Yeung MS, Naldini L, et al: Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nat Neurosci. 12:259–267. 2009. View Article : Google Scholar : PubMed/NCBI

294 

Yang T, Liu LY, Ma YY and Zhang W: Notch signaling-mediated neural lineage selection facilitates intrastriatal transplantation therapy for ischemic stroke by promoting endogenous regeneration in the hippocampus. Cell Transplant. 23:221–238. 2014. View Article : Google Scholar

295 

Yasuhara T, Matsukawa N, Hara K, Maki M, Ali MM, Yu SJ, Bae E, Yu G, Xu L, McGrogan M, et al: Notch-induced rat and human bone marrow stromal cell grafts reduce ischemic cell loss and ameliorate behavioral deficits in chronic stroke animals. Stem Cells Dev. 18:1501–1514. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Cai Z, Zhao B, Deng Y, Shangguan S, Zhou F, Zhou W, Li X, Li Y and Chen G: Notch signaling in cerebrovascular diseases (Review). Mol Med Rep 14: 2883-2898, 2016.
APA
Cai, Z., Zhao, B., Deng, Y., Shangguan, S., Zhou, F., Zhou, W. ... Chen, G. (2016). Notch signaling in cerebrovascular diseases (Review). Molecular Medicine Reports, 14, 2883-2898. https://doi.org/10.3892/mmr.2016.5641
MLA
Cai, Z., Zhao, B., Deng, Y., Shangguan, S., Zhou, F., Zhou, W., Li, X., Li, Y., Chen, G."Notch signaling in cerebrovascular diseases (Review)". Molecular Medicine Reports 14.4 (2016): 2883-2898.
Chicago
Cai, Z., Zhao, B., Deng, Y., Shangguan, S., Zhou, F., Zhou, W., Li, X., Li, Y., Chen, G."Notch signaling in cerebrovascular diseases (Review)". Molecular Medicine Reports 14, no. 4 (2016): 2883-2898. https://doi.org/10.3892/mmr.2016.5641
Copy and paste a formatted citation
x
Spandidos Publications style
Cai Z, Zhao B, Deng Y, Shangguan S, Zhou F, Zhou W, Li X, Li Y and Chen G: Notch signaling in cerebrovascular diseases (Review). Mol Med Rep 14: 2883-2898, 2016.
APA
Cai, Z., Zhao, B., Deng, Y., Shangguan, S., Zhou, F., Zhou, W. ... Chen, G. (2016). Notch signaling in cerebrovascular diseases (Review). Molecular Medicine Reports, 14, 2883-2898. https://doi.org/10.3892/mmr.2016.5641
MLA
Cai, Z., Zhao, B., Deng, Y., Shangguan, S., Zhou, F., Zhou, W., Li, X., Li, Y., Chen, G."Notch signaling in cerebrovascular diseases (Review)". Molecular Medicine Reports 14.4 (2016): 2883-2898.
Chicago
Cai, Z., Zhao, B., Deng, Y., Shangguan, S., Zhou, F., Zhou, W., Li, X., Li, Y., Chen, G."Notch signaling in cerebrovascular diseases (Review)". Molecular Medicine Reports 14, no. 4 (2016): 2883-2898. https://doi.org/10.3892/mmr.2016.5641
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team