|
1
|
Roca B: Mycoplasma infections. Rev Clin
Esp. 206:239–242. 2006.(In Spanish). View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ubukata K: Mycoplasma pneumoniae. Nihon
Yakurigaku Zasshi. 141:287–289. 2013.(In Japanese). View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Özel C, Dafotakis M, Nikoubashman O,
Litmathe J, Matz O and Schöne U: Mycoplasma pneumoniae-induced
meningoencephalitis. Fortschr Neurol Psychiatr. 83:392–396.
2015.(In German). View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Atkinson TP and Waites KB: Mycoplasma
pneumoniae infections in childhood. Pediatr Infect Dis J. 33:92–94.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Fan Q, Meng J, Li P, Liu Z, Sun Y and Yan
P: Pathogenesis and association of Mycoplasma pneumoniae infection
with cardiac and hepatic damage. Microbiol Immunol. 59:375–380.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Shimizu T, Kimura Y, Kida Y, Kuwano K,
Tachibana M, Hashino M and Watarai M: Cytadherence of Mycoplasma
pneumoniae induces inflammatory responses through autophagy and
toll-like receptor 4. Infect Immun. 82:3076–3086. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Prince OA, Krunkosky TM and Krause DC: In
vitro spatial and temporal analysis of Mycoplasma pneumoniae
colonization of human airway epithelium. Infect Immun. 82:579–586.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Balish MF: Mycoplasma pneumoniae, an
underutilized model for bacterial cell biology. J Bacteriol.
196:3675–3682. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Chourasia BK, Chaudhry R and Malhotra P:
Delineation of immunodominant and cytadherence segment(s) of
Mycoplasma pneumoniae P1 gene. BMC Microbiol. 14:1082014.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Waldo RH III and Krause DC: Synthesis,
stability, and function of cytadhesin P1 and accessory protein B/C
complex of Mycoplasma pneumoniae. J Bacteriol. 188:569–575. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Seto S, Kenri T, Tomiyama T and Miyata M:
Involvement of P1 adhesin in gliding motility of Mycoplasma
pneumoniae as revealed by the inhibitory effects of antibody under
optimized gliding conditions. J Bacteriol. 187:1875–1877. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Willby MJ, Balish MF, Ross SM, Lee KK,
Jordan JL and Krause DC: HMW1 is required for stability and
localization of HMW2 to the attachment organelle of Mycoplasma
pneumoniae. J Bacteriol. 186:8221–8228. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Page CA and Krause DC: Protein
kinase/phosphatase function correlates with gliding motility in
Mycoplasma pneumoniae. J Bacteriol. 195:1750–1757. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Chaudhry R, Varshney AK and Malhotra P:
Adhesion proteins of Mycoplasma pneumoniae. Front Biosci.
12:690–699. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
15
|
Chang HY, Prince OA, Sheppard ES and
Krause DC: Processing is required for a fully functional protein
P30 in Mycoplasma pneumoniae gliding and cytadherence. J Bacteriol.
193:5841–5846. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Chang HY, Jordan JL and Krause DC: Domain
analysis of protein P30 in Mycoplasma pneumoniae cytadherence and
gliding motility. J Bacteriol. 193:1726–1733. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Cloward JM and Krause DC: Loss of
co-chaperone TopJ impacts adhesin P1 presentation and terminal
organelle maturation in Mycoplasma pneumoniae. Mol Microbiol.
81:528–539. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kannan TR, Musatovova O, Balasubramanian
S, Cagle M, Jordan JL, Krunkosky TM, Davis A, Hardy RD and Baseman
JB: Mycoplasma pneumoniae community acquired respiratory distress
syndrome toxin expression reveals growth phase and
infection-dependent regulation. Mol Microbiol. 76:1127–1141. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ledford JG, Goto H, Potts EN, Degan S, Chu
HW, Voelker DR, Sunday ME, Cianciolo GJ, Foster WM, Kraft M and
Wright JR: SP-A preserves airway homeostasis during Mycoplasma
pneumoniae infection in mice. J Immunol. 182:7818–7827. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Balish MF, Santurri RT, Ricci AM, Lee KK
and Krause DC: Localization of Mycoplasma pneumoniae
cytadherence-associated protein HMW2 by fusion with green
fluorescent protein: Implications for attachment organelle
structure. Mol Microbiol. 47:49–60. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Bao S, Yu S, Guo X, Zhang F, Sun Y, Tan L,
Duan Y, Lu F, Qiu X and Ding C: Construction of a cell-surface
display system based on the N-terminal domain of ice nucleation
protein and its application in identification of Mycoplasma
adhesion proteins. J Appl Microbiol. 119:236–244. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Großhennig S, Schmidl SR, Schmeisky G,
Busse J and Stülke J: Implication of glycerol and phospholipid
transporters in Mycoplasma pneumoniae growth and virulence. Infect
Immun. 81:896–904. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Schomburg J and Vogel M: A 12-year-old boy
with severe mucositis: Extrapulmonary manifestation of Mycoplasma
pneumoniae infection. Klin Padiatr. 224:94–95. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Li S, Li X, Wang Y, Yang J, Chen Z and
Shan S: Global secretome characterization of A549 human alveolar
epithelial carcinoma cells during Mycoplasma pneumoniae infection.
BMC Microbiol. 14:272014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Meseguer MA, Alvarez A, Rejas MT, Sánchez
C, Pérez-Diaz JC and Baquero F: Mycoplasma pneumoniae: A
reduced-genome intracellular bacterial pathogen. Infect Genet Evol.
3:47–55. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Sauteur PM Meyer, Huber BM and Goetschel
P: Neuroinvasive Mycoplasma pneumoniae infection without
intrathecal antibody response. Pediatr Infect Dis J. 31:1199–1200.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Rhodes RH, Monastersky BT, Tyagi R and
Coyne T: Mycoplasmal cerebral vasculopathy in a lymphoma patient:
Presumptive evidence of Mycoplasma pneumoniae microvascular
endothelial cell invasion in a brain biopsy. J Neurol Sci.
309:18–25. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
McDermott AJ, Taylor BM and Bernstein KM:
Toxic epidermal necrolysis from suspected Mycoplasma pneumoniae
infection. Mil Med. 178:e1048–e1050. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Calvano RA, Scacchi MF, Sojo MM, Diaz SM,
Volonteri VI and Giachetti AC: Toxic epidermal necrolysis
associated with acute infection by Mycoplasma pneumoniae. Arch
Argent Pediatr. 111:e24–e27. 2013.(In Spanish). View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Elkhal CK, Kean KM, Parsonage D, Maenpuen
S, Chaiyen P, Claiborne A and Karplus PA: Structure and proposed
mechanism of L-α-glycerophosphate oxidase from Mycoplasma
pneumoniae. FEBS J. 282:3030–3042. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Maenpuen S, Watthaisong P, Supon P,
Sucharitakul J, Parsonage D, Karplus PA, Claiborne A and Chaiyen P:
Kinetic mechanism of L-α-glycerophosphate oxidase from Mycoplasma
pneumoniae. FEBS J. 282:3043–3059. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ledford JG, Mukherjee S, Kislan MM, Nugent
JL, Hollingsworth JW and Wright JR: Surfactant protein-A suppresses
eosinophil-mediated killing of Mycoplasma pneumoniae in allergic
lungs. PLoS One. 7:e324362012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sun G, Xu X, Wang Y, Shen X, Chen Z and
Yang J: Mycoplasma pneumoniae infection induces reactive oxygen
species and DNA damage in A549 human lung carcinoma cells. Infect
Immun. 76:4405–4413. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kariya C, Chu HW, Huang J, Leitner H,
Martin RJ and Day BJ: Mycoplasma pneumoniae infection and
environmental tobacco smoke inhibit lung glutathione adaptive
responses and increase oxidative stress. Infect Immun.
76:4455–4462. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Inaba H, Geiger TL, Lasater OE and Wang
WC: A case of hemoglobin SC disease with cold agglutinin-induced
hemolysis. Am J Hematol. 78:37–40. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Hardy RD, Coalson JJ, Peters J, Chaparro
A, Techasaensiri C, Cantwell AM, Kannan TR, Baseman JB and Dube PH:
Analysis of pulmonary inflammation and function in the mouse and
baboon after exposure to Mycoplasma pneumoniae CARDS toxin. PLoS
One. 4:e75622009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Techasaensiri C, Tagliabue C, Cagle M,
Iranpour P, Katz K, Kannan TR, Coalson JJ, Baseman JB and Hardy RD:
Variation in colonization, ADP-ribosylating and vacuolating
cytotoxin, and pulmonary disease severity among Mycoplasma
pneumoniaestrains. Am J Respir Crit Care Med. 182:797–804. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Somarajan SR, Al-Asadi F, Ramasamy K,
Pandranki L, Baseman JB and Kannan TR: Annexin A2 mediates
Mycoplasma pneumoniae community-acquired respiratory distress
syndrome toxin binding to eukaryotic cells. MBio. 5(pii):
e01497-142014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Medina JL, Coalson JJ, Brooks EG, Le Saux
CJ, Winter VT, Chaparro A, Principe MF, Solis L, Kannan TR, Baseman
JB and Dube PH: Mycoplasma pneumoniae CARDS toxin exacerbates
ovalbumin-induced asthma-like inflammation in BALB/c mice. PLoS
One. 9:e1026132014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Johnson C, Kannan TR and Baseman JB:
Cellular vacuoles induced by Mycoplasma pneumoniae CARDS toxin
originate from Rab9-associated compartments. PLoS One.
6:e228772011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kim EK, Youn YS, Rhim JW, Shin MS, Kang JH
and Lee KY: Epidemiological comparison of three Mycoplasma
pneumoniaepneumonia epidemics in a single hospital over 10 years.
Korean J Pediatr. 58:172–177. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Lynch M, Taylor TK, Duignan PJ, Swingler
J, Marenda M, Arnould JP and Kirkwood R: Mycoplasmas in Australian
fur seals (Arctocephalus pusillus doriferus): Identification and
association with abortion. J Vet Diagn Invest. 23:1123–1130. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Lai JF, Zindl CL, Duffy LB, Atkinson TP,
Jung YW, van Rooijen N, Waites KB, Krause DC and Chaplin DD:
Critical role of macrophages and their activation via MyD88-NFκB
signaling in lung innate immunity to Mycoplasma pneumoniae. PLoS
One. 5:e144172010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Halbedel S, Hames C and Stülke J: In vivo
activity of enzymatic and regulatory components of the
phosphoenolpyruvate: Sugar phosphotransferase system in Mycoplasma
pneumoniae. J Bacteriol. 186:7936–7943. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Beersma MF, Dirven K, van Dam AP,
Templeton KE, Claas EC and Goossens H: Evaluation of 12 commercial
tests and the complement fixation test for Mycoplasma
pneumoniae-specific immunoglobulin G (IgG) and IgM antibodies, with
PCR used as the ‘gold standard’. J Clin Microbiol. 43:2277–2285.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Loos M and Brunner H: Complement
components (C1, C2, C3, C4) in bronchial secretions after
intranasal infection of guinea pigs with Mycoplasma pneumoniae:
Dissociation of unspecific and specific defense mechanisms. Infect
Immun. 25:583–585. 1979.PubMed/NCBI
|
|
47
|
Thacker WL and Talkington DF: Analysis of
complement fixation and commercial enzyme immunoassays for
detection of antibodies to Mycoplasma pneumoniae in human serum.
Clin Diagn Lab Immunol. 7:778–780. 2000.PubMed/NCBI
|
|
48
|
Tuuminen T and Vainionpää R: Development
of enzyme immunoassays to detect salivary sIgA to Chlamydia
pneumoniae and Mycoplasma pneumoniae. Scand J Clin Lab Invest.
61:357–362. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Daxböck F, Brunner G, Popper H, Krause R,
Schmid K, Krejs GJ and Wenisch C: A case of lung transplantation
following Mycoplasma pneumoniae infection. Eur J Clin Microbiol
Infect Dis. 21:318–322. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Csángó PA, Pedersen JE and Hess RD:
Comparison of four Mycoplasma pneumoniae IgM-, IgG- and
IgA-specific enzyme immunoassays in blood donors and patients. Clin
Microbiol Infect. 10:1094–1098. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Venancio P, Brito MJ, Pereira G and Vieira
JP: Anti-N-methyl-D-aspartate receptor encephalitis with positive
serum antithyroid antibodies, IgM antibodies against Mycoplasma
pneumoniae and human herpesvirus 7 PCR in the CSF. Pediatr Infect
Dis J. 33:882–883. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Smith-Norowitz TA, Silverberg JI,
Kusonruksa M, Weaver D, Ginsburg D, Norowitz KB, Durkin HG,
Hammerschlag MR, Bluth MH and Kohlhoff SA: Asthmatic children have
increased specific anti-Mycoplasma pneumoniae IgM but not IgG or
IgE-values independent of history of respiratory tract infection.
Pediatr Infect Dis J. 32:599–603. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ye Q, Xu XJ, Shao WX, Pan YX and Chen XJ:
Mycoplasma pneumoniae infection in children is a risk factor for
developing allergic diseases. ScientificWorldJournal.
2014:9865272014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Xin LH, Wang J, Wang Z, Cheng W and Zhang
W: Effect of Mycoplasma pneumoniae infection on function of T
lymphocytes in bronchoalveolar lavage fluid of asthmatic children.
Zhongguo Dang Dai Er Ke Za Zhi. 16:277–280. 2014.(In Chinese).
PubMed/NCBI
|
|
55
|
Kang YM, Ding MJ, Han YL, Wang SF, Ma X
and Li H: Th1/Th2 immune response in bronchoalveolar lavage fluid
in children with severe Mycoplasma pneumoniae pneumonia. Zhongguo
Dang Dai Er Ke Za Zhi. 13:188–190. 2011.(In Chinese). PubMed/NCBI
|
|
56
|
Pang HX, Qiao HM, Cheng HJ, Zhang YF, Liu
XJ and Li JZ: Levels of TNF-alpha, IL-6 and IL-10 in
bronchoalveolar lavage fluid in children with Mycoplasma pneumoniae
pneumonia. Zhongguo Dang Dai Er Ke Za Zhi. 13:808–810. 2011.(In
Chinese). PubMed/NCBI
|
|
57
|
Yang J, Hooper WC, Phillips DJ and
Talkington DF: Regulation of proinflammatory cytokines in human
lung epithelial cells infected with Mycoplasma pneumoniae. Infect
Immun. 70:3649–3655. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lee KE, Kim KW, Hong JY, Kim KE and Sohn
MH: Modulation of IL-8 boosted by Mycoplasma pneumoniae lysate in
human airway epithelial cells. J Clin Immunol. 33:1117–1125. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
He JE, Gao CY and Li HR: Effect of
low-dose methylprednisolone on serum TNF-α level in children with
Mycoplasma pneumoniae pneumonia. Zhongguo Dang Dai Er Ke Za Zhi.
15:850–853. 2013.(In Chinese). PubMed/NCBI
|
|
60
|
Tanaka H, Narita M, Teramoto S, Saikai T,
Oashi K, Igarashi T and Abe S: Role of interleukin-18 and T-helper
type 1 cytokines in the development of Mycoplasma pneumoniae
pneumonia in adults. Chest. 121:1493–1497. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Krunkosky TM, Jordan JL, Chambers E and
Krause DC: Mycoplasma pneumoniae host-pathogen studies in an
air-liquid culture of differentiated human airway epithelial cells.
Microb Pathog. 42:98–103. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Kurata S, Osaki T, Yonezawa H, Arae K,
Taguchi H and Kamiya S: Role of IL-17A and IL-10 in the antigen
induced inflammation model by Mycoplasma pneumoniae. BMC Microbiol.
14:1562014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Teig N, Anders A, Schmidt C, Rieger C and
Gatermann S: Chlamydophila pneumoniae and Mycoplasma pneumoniae in
respiratory specimens of children with chronic lung diseases.
Thorax. 60:962–966. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Fink FM, Dengg K, Kilga-Nogler S,
Schönitzer D and Berger H: Cold haemagglutinin disease complicating
Mycoplasma pneumoniae infection in a child under cytotoxic cancer
treatment. Eur J Pediatr. 151:435–437. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Busolo F, Tonellato L, Scremin L, Tonin E,
Bertoloni G and Franceschi C: Phagocytosis of Mycoplasma pneumoniae
and Acholeplasma laidlawii measured as inhibition of [3H] uridine
uptake by macrophages. J Immunol Methods. 90:235–240. 1986.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kornspan JD, Tarshis M and Rottem S:
Adhesion and biofilm formation of Mycoplasma pneumoniae on an
abiotic surface. Arch Microbiol. 193:833–836. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hon KL, Ip M, Chu WC and Wong W:
Megapneumonia coinfection: Pneumococcus, Mycoplasma pneumoniae, and
Metapneumovirus. Case Rep Med. 2012:3101042012.PubMed/NCBI
|
|
68
|
Hausner M, Schamberger A, Naumann W,
Jacobs E and Dumke R: Development of protective anti-Mycoplasma
pneumoniae antibodies after immunization of guinea pigs with the
combination of a P1-P30 chimeric recombinant protein and chitosan.
Microb Pathog. 64:23–32. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Shimizu T, Kida Y and Kuwano K: A
dipalmitoylated lipoprotein from Mycoplasma pneumoniae activates
NF-kappa B through TLR1, TLR2, and TLR6. J Immunol. 175:4641–4646.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Into T, Dohkan J, Inomata M, Nakashima M,
Shibata K and Matsushita K: Synthesis and characterization of a
dipalmitoylated lipopeptide derived from paralogous lipoproteins of
Mycoplasma pneumoniae. Infect Immun. 75:2253–2259. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Shimizu T, Kida Y and Kuwano K:
Triacylated lipoproteins derived from Mycoplasma pneumoniae
activate nuclear factor-kappaB through toll-like receptors 1 and 2.
Immunology. 121:473–483. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Okoli K, Gupta A, Irani F and Kasmani R:
Immune thrombocytopenia associated with Mycoplasma pneumoniae
infection: A case report and review of literature. Blood Coagul
Fibrinolysis. 20:595–598. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Rastawicki W, Rokosz N and Jagielski M:
Subclass distribution of human IgG antibodies to Mycoplasma
pneumoniae in the course of mycoplasmosis. Med Dosw Mikrobiol.
61:375–379. 2009.(In Polish). PubMed/NCBI
|