|
1
|
Gheorgheosu D, Duicu O, Dehelean C, Soica
C and Muntean D: Betulinic acid as a potent and complex antitumor
phytochemical: A minireview. Anticancer Agents Med Chem.
14:936–945. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Dehelean CA, Soica C, Ledeti I, Aluas M,
Zupko I, Luşcan GA, Cinta-Pinzaru S and Munteanu M: Study of the
betulin enriched birch bark extracts effects on human carcinoma
cells and ear inflammation. Chem Cent J. 6:1372012. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Csuk R: Betulinic acid and its
derivatives: A patent review (2008–2013). Expert Opin Ther Pat.
24:913–923. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Jeremias I, Steiner HH, Benner A, Debatin
KM and Herold-Mende C: Cell death induction by betulinic acid,
ceramide and TRAIL in primary glioblastoma multiforme cells. Acta
Neurochir (Wien). 146:721–729. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Hsu TI, Wang MC, Chen SY, Huang ST, Yeh
YM, Su WC, Chang WC and Hung JJ: Betulinic acid decreases
specificity protein 1 (Sp1) level via increasing the sumoylation of
sp1 to inhibit lung cancer growth. Mol Pharmacol. 82:1115–1128.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Tiwari R, Puthli A, Balakrishnan S, Sapra
BK and Mishra KP: Betulinic acid-induced cytotoxicity in human
breast tumor cell lines MCF-7 and T47D and its modification by
tocopherol. Cancer Inves. 32:402–408. 2014. View Article : Google Scholar
|
|
7
|
Jung GR, Kim KJ, Choi CH, Lee TB, Han SI,
Han HK and Lim SC: Effect of betulinic acid on anticancer
drug-resistant colon cancer cells. Basic Clin Pharmacol Toxicol.
101:277–285. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Rabi T, Shukla S and Gupta S: Betulinic
acid suppresses constitutive and TNFalpha-induced NF-kappaB
activation and induces apoptosis in human prostate carcinoma PC-3
cells. Mole Carcinog. 47:964–973. 2008. View Article : Google Scholar
|
|
9
|
Gao Y, Jia Z, Kong X, Li Q, Chang DZ, Wei
D, Le X, Suyun H, Huang S, Wang L, et al: Combining betulinic acid
and mithramycin a effectively suppresses pancreatic cancer by
inhibiting proliferation, invasion and angiogenesis. Cancer Res.
71:5182–5193. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Soica C, Danciu C, Savoiu-Balint G, Borcan
F, Ambrus R, Zupko I, Bojin F, Coricovac D, Ciurlea S, Avram S, et
al: Betulinic acid in complex with a gamma-cyclodextrin derivative
decreases proliferation and in vivo tumor development of
non-metastatic and metastatic B164A5 cells. Int J Mol Sci.
15:8235–8255. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Mullauer FB, Kessler JH and Medema JP:
Betulinic acid, a natural compound with potent anticancer effects.
Anticancer Drugs. 21:215–227. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Mullauer FB, Kessler JH and Medema JP:
Betulinic acid induces cytochrome c release and apoptosis in a
Bax/Bak-independent, permeability transition pore dependent
fashion. Apoptosis. 14:191–202. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Gibellini L, Pinti M, Nasi M, De Biasi S,
Roat E, Bertoncelli L and Cossarizza A: Interfering with ROS
metabolism in cancer cells: The potential role of quercetin.
Cancers. 2:1288–1311. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Tan Y, Yu R and Pezzuto JM: Betulinic
acid-induced programmed cell death in human melanoma cells involves
mitogen-activated protein kinase activation. Clin Cancer Res.
9:2866–2875. 2003.PubMed/NCBI
|
|
15
|
Mizushima N: Methods for monitoring
autophagy using GFP-LC3 transgenic mice. Methods Enzymol.
452:13–23. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Pathi SS, Jutooru I, Chadalapaka G,
Sreevalsan S, Anand S, Thatcher GR and Safe S: GT-094, a NO-NSAID,
inhibits colon cancer cell growth by activation of a reactive
oxygen species-microRNA-27a: ZBTB10-specificity protein pathway.
Mol Cancer Res. 9:195–202. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Safe SH, Prather PL, Brents LK,
Chadalapaka G and Jutooru I: Unifying mechanisms of action of the
anticancer activities of triterpenoids and synthetic analogs.
Anticancer Agents Med Chem. 12:1211–1220. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Papineni S, Chintharlapalli S, Abdelrahim
M, Lee SO, Burghardt R, Abudayyeh A, Baker C, Herrera L and Safe S:
Tolfenamic acid inhibits esophageal cancer through repression of
specificity proteins and c-Met. Carcinogenesis. 30:1193–1201. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Chadalapaka G, Jutooru I, Burghardt R and
Safe S: Drugs that target specificity proteins downregulate
epidermal growth factor receptor in bladder cancer cells. Mol
Cancer Res. 8:739–750. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Yu Y, Zhao Q, Wang Z and Liu XY: Activated
STAT3 correlates with prognosis of non-small cell lung cancer and
indicates new anticancer strategies. Cancer Chemother Pharmacol.
75:917–922. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Yadav VR, Prasad S, Sung B, Kannappan R
and Aggarwal BB: Targeting inflammatory pathways by triterpenoids
for prevention and treatment of cancer. Toxins (Basel).
2:2428–2466. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Shin J, Lee HJ, Jung DB, Jung JH, Lee HJ,
Lee EO, Lee SG, Shim BS, Choi SH, Ko SG, et al: Suppression of
STAT3 and HIF-1 alpha mediates anti-angiogenic activity of
betulinic acid in hypoxic PC-3 prostate cancer cells. PLoS One.
6:e214922011. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wan Y, Wu YL, Lian LH, Xie WX, Li X,
Ouyang BQ, Bai T, Li Q, Yang N and Nan JX: The anti-fibrotic effect
of betulinic acid is mediated through the inhibition of NF-kappaB
nuclear protein translocation. Chem Biol Interact. 195:215–223.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Chowdhury AR, Mandal S, Mittra B, Sharma
S, Mukhopadhyay S and Majumder HK: Betulinic acid, a potent
inhibitor of eukaryotic topoisomerase I: Identification of the
inhibitory step, the major functional group responsible and
development of more potent derivatives. Med Sci Monit.
8:BR254–BR265. 2002.PubMed/NCBI
|
|
25
|
Alakurtti S, Makela T, Koskimies S and
Yli-Kauhaluoma J: Pharmacological properties of the ubiquitous
natural product betulin. Eur J Pharm Sci. 29:1–13. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Bruckner V, Kovacs J and Koczka I:
Occurrence of betulinic acid in the bark of the plane tree. J Chem
Soc. 1:948–951. 1948. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yogeeswari P and Sriram D: Betulinic acid
and its derivatives: A review on their biological properties. Curr
Med Chem. 12:657–666. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Chen QH, Liu J, Zhang HF, He GQ and Fu ML:
The betulinic acid production from betulin through
biotransformation by fungi. Enzyme Microb Tech. 45:175–180. 2009.
View Article : Google Scholar
|
|
29
|
Pisha E, Chai H, Lee IS, Chagwedera TE,
Farnsworth NR, Cordell GA, Beecher CW, Fong HH, Kinghorn AD, Brown
DM, et al: Discovery of betulinic acid as a selective inhibitor of
human melanoma that functions by induction of apoptosis. Nat Med.
1:1046–1051. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zuco V, Supino R, Righetti SC, Cleris L,
Marchesi E, Gambacorti-Passerini C and Formelli F: Selective
cytotoxicity of betulinic acid on tumor cell lines, but not on
normal cells. Cancer Lett. 175:17–25. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ferlay J, Soerjomataram I, Dikshit R, Eser
S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer
incidence and mortality worldwide: Sources, methods and major
patterns in globocan 2012. Int J Cancer. 136:E359–E386. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Gheorgheosu D, Jung M, Ören B, Schmid T,
Dehelean C, Muntean D and Brüne B: Betulinic acid suppresses
NGAL-induced epithelial-to-mesenchymal transition in melanoma. Biol
Chem. 394:773–781. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Potze L, Mullauer FB, Colak S, Kessler JH
and Medema JP: Betulinic acid-induced mitochondria-dependent cell
death is counterbalanced by an autophagic salvage response. Cell
Death Dis. 5:e11692014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Williams MM and Cook RS: Bcl-2 family
proteins in breast development and cancer: Could Mcl-1 targeting
overcome therapeutic resistance? Oncotarget. 6:3519–3530. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Cheng EH, Wei MC, Weiler S, Flavell RA,
Mak TW, Lindsten T and Korsmeyer SJ: BCL-2, BCL-X (L) sequester BH3
domain-only molecules preventing BAX- and BAK-mediated
mitochondrial apoptosis. Mol Cell. 8:705–711. 2011. View Article : Google Scholar
|
|
36
|
Willis SN, Chen L, Dewson G, Wei A, Naik
E, Fletcher JI, Adams JM and Huang DC: Proapoptotic Bak is
sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by
BH3-only proteins. Genes Dev. 19:1294–1305. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Li W, Liu M, Xu YF, Feng Y, Che JP, Wang
GC and Zheng JH: Combination of quercetin and hyperoside has
anticancer effects on renal cancer cells through inhibition of
oncogenic microRNA-27a. Oncol Rep. 31:117–124. 2014.PubMed/NCBI
|
|
38
|
Mertens-Talcott SU, Noratto GD, Li X,
Angel-Morales G, Bertoldi MC and Safe S: Betulinic acid decreases
ER-negative breast cancer cell growth in vitro and in vivo: Role of
Sp transcription factors and microRNA-27a: ZBTB10. Mol Carcinog.
52:591–602. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Liu X, Jutooru I, Lei P, Kim K, Lee SO,
Brents LK, Prather PL and Safe S: Betulinic acid targets YY1 and
ErbB2 through cannabinoid receptor-dependent disruption of
microRNA-27a: ZBTB10 in breast cancer. Mol Cancer Ther.
11:1421–1431. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Levine AJ: p53, the cellular gatekeeper
for growth and division. Cell. 88:323–331. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Shi M, Liu D, Shen B and Guo N: Helpers of
the cellular gatekeeper-miRNAs dance in P53 network. Biochim
Biophys Acta. 1805:218–225. 2010.PubMed/NCBI
|
|
42
|
Siegel RL, Miller KD and Jemal A: Cancer
Statistics, 2015 CA. Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar
|
|
43
|
GBD 2013 Mortality and Causes of Death
Collaborators, . Global, regional and national age-sex specific
all-cause and cause-specific mortality for 240 causes of death,
1990–2013: A systematic analysis for the global burden of disease
study 2013. Lancet. 385:117–171. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Mullauer FB, van Bloois L, Daalhuisen JB,
Ten Brink MS, Storm G, Medema JP, Schiffelers RM and Kessler JH:
Betulinic acid delivered in liposomes reduces growth of human lung
and colon cancers in mice without causing systemic toxicity.
Anticancer Drugs. 22:223–233. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Chintharlapalli S, Papineni S, Lei P,
Pathi S and Safe S: Betulinic acid inhibits colon cancer cell and
tumor growth and induces proteasome-dependent and-independent
downregulation of specificity proteins (Sp) transcription factors.
BMC Cancer. 11:3712011. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Lai Y, Zhang X, Zhang Z, Shu Y, Luo X,
Yang Y, Wang X, Yang G, Li L and Feng Y: The microRNA-27a:
ZBTB10-specificity protein pathway is involved in follicle
stimulating hormone-induced VEGF, Cox2 and survivin expression in
ovarian epithelial cancer cells. Int J Oncol. 42:776–784.
2013.PubMed/NCBI
|
|
47
|
Jutooru I, Chadalapaka G, Lei P and Safe
S: Inhibition of NFkappaB and pancreatic cancer cell and tumor
growth by curcumin is dependent on specificity protein
down-regulation. J Biol Chem. 285:25332–25344. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Jutooru I, Chadalapaka G, Abdelrahim M,
Basha MR, Samudio I, Konopleva M, Andreeff M and Safe S: Methyl
2-cyano-3,12-dioxooleana-1,9-dien-28-oate decreases specificity
protein transcription factors and inhibits pancreatic tumor growth:
Role of microRNA-27a. Mol Pharmacol. 78:226–236. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Yang LJ, Chen Y, Ma Q, Fang J, He J, Cheng
YQ and Wu QL: Effect of betulinic acid on the regulation of Hiwi
and cyclin B1 in human gastric adenocarcinoma AGS cells. Acta
Pharmacol Sin. 31:66–72. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Yuan P, Wang L, Wei D, Zhang J, Jia Z, Li
Q, Le X, Wang H, Yao J and Xie K: Therapeutic inhibition of Sp1
expression in growing tumors by mithramycin a correlates directly
with potent antiangiogenic effects on human pancreatic cancer.
Cancer. 110:2682–2690. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Dvorak HF: Vascular permeability
factor/vascular endothelial growth factor: A critical cytokine in
tumor angiogenesis and a potential target for diagnosis and
therapy. J Clin Oncol. 20:4368–4380. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Dittmer TA and Misteli T: The lamin
protein family. Genome Biol. 12:2222011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Broers JL, Ramaekers FC, Bonne G, Yaou RB
and Hutchison CJ: Nuclear lamins: Laminopathies and their role in
premature ageing. Physiol Rev. 86:967–1008. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Broers JL, Raymond Y, Rot MK, Kuijpers H,
Wagenaar SS and Ramaekers FC: Nuclear A-type lamins are
differentially expressed in human lung cancer subtypes. Am J
Pathol. 143:211–220. 1993.PubMed/NCBI
|
|
55
|
Moss SF, Krivosheyev V, de Souza A, Chin
K, Gaetz HP, Chaudhary N, Worman HJ and Holt PR: Decreased and
aberrant nuclear lamin expression in gastrointestinal tract
neoplasms. Gut. 45:723–729. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Coradeghini R, Barboro P, Rubagotti A,
Boccardo F, Parodi S, Carmignani G, D'Arrigo C, Patrone E and Balbi
C: Differential expression of nuclear lamins in normal and
cancerous prostate tissues. Oncol Rep. 15:609–613. 2006.PubMed/NCBI
|
|
57
|
Lim SO, Park SJ, Kim W, Park SG, Kim HJ,
Kim YI, Sohn TS, Noh JH and Jung G: Proteome analysis of
hepatocellular carcinoma. Biochem Biophys Res Commun.
291:1031–1037. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Maeno H, Sugimoto K and Nakajima N:
Genomic structure of the mouse gene (Lmnb1) encoding nuclear lamin
B1. Genomics. 30:342–346. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Lin F and Worman HJ: Expression of nuclear
lamins in human tissues and cancer cell lines and transcription
from the promoters of the lamin A/C and B1 genes. Exp Cell Res.
236:378–384. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Li L, Du Y, Kong X, Li Z, Jia Z, Cui J,
Gao J, Wang G and Xie K: Lamin B1 is a novel therapeutic target of
betulinic acid in pancreatic cancer. Clin Cancer Res. 19:4651–4661.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Sun S, Xu MZ, Poon RT, Day PJ and Luk JM:
Circulating Lamin B1 (LMNB1) biomarker detects early stages of
liver cancer in patients. J Proteome Res. 9:70–78. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Karna E, Szoka L and Palka JA: Betulinic
acid inhibits the expression of hypoxia-inducible factor 1alpha and
vascular endothelial growth factor in human endometrial
adenocarcinoma cells. Mol Cell Biochem. 340:15–20. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Gleadle JM and Ratcliffe PJ: Induction of
hypoxia-inducible factor-1, erythropoietin, vascular endothelial
growth factor and glucose transporter-1 by hypoxia: Evidence
against a regulatory role for Src kinase. Blood. 89:503–509.
1997.PubMed/NCBI
|
|
64
|
Van Waes C: Nuclear factor-kappaB in
development, prevention and therapy of cancer. Clin Cancer Res.
13:1076–1082. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Patel HM, Rane R, Thapliyal N, Palkar M,
Shaikh M and Karpoormath R: Epidermal growth factor receptor (EGFR)
tyrosine kinase inhibitors from the natural origin: A recent
perspective. Anticancer Agents Med Chem. 15:988–1011. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Nikiforov YE: RET/PTC rearrangement in
thyroid tumors. Endocr Pathol. 13:3–16. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Nikiforov YE and Nikiforova MN: Molecular
genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol.
7:569–580. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wada S and Tanaka R: Betulinic acid and
its derivatives, potent DNA topoisomerase II in “hibitors, from the
bark of Bischofia javanica. Chem Biodivers. 2:689–694. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Ganguly A, Das B, Roy A, Sen N, Dasgupta
SB, Mukhopadhayay S and Majumder HK: Betulinic acid, a catalytic
inhibitor of topoisomerase I, inhibits reactive oxygen
species-mediated apoptotic topoisomerase I-DNA cleavable complex
formation in prostate cancer cells but does not affect the process
of cell death. Cancer Res. 67:11848–11858. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Dillon LW, Pierce LC, Lehman CE, Nikiforov
YE and Wang YH: DNA topoisomerases participate in fragility of the
oncogene RET. PLoS One. 8:e757412013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Kommera H, Kaluderovic GN, Kalbitz J and
Paschke R: Synthesis and anticancer activity of novel betulinic
acid and betulin derivatives. Arch Pharm (Weinheim). 343:449–457.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Bache M, Bernhardt S, Passin S, Wichmann
H, Hein A, Zschornak M, Kappler M, Taubert H, Paschke R and
Vordermark D: Betulinic acid derivatives NVX-207 and B10 for
treatment of glioblastoma-an in vitro study of cytotoxicity and
radiosensitization. Int J Mol Sci. 15:19777–19790. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Engelman JA: Targeting PI3K signalling in
cancer: Opportunities, challenges and limitations. Nat Rev Cancer.
9:550–562. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Shaw RJ and Cantley LC: Ras, PI (3)K and
mTOR signalling controls tumour cell growth. Nature. 441:424–430.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Madge LA, Li JH, Choi J and Pober JS:
Inhibition of phosphatidylinositol 3-kinase sensitizes vascular
endothelial cells to cytokine-initiated cathepsin-dependent
apoptosis. J Biol Chem. 278:21295–21306. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Gonzalez P, Mader I, Tchoghandjian A,
Enzenmuller S, Cristofanon S, Basit F, Debatin KM and Fulda S:
Impairment of lysosomal integrity by B10, a glycosylated derivative
of betulinic acid, leads to lysosomal cell death and converts
autophagy into a detrimental process. Cell Death Differ.
19:1337–1346. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Pandey MK, Sung B and Aggarwal BB:
Betulinic acid suppresses STAT3 activation pathway through
induction of protein tyrosine phosphatase SHP-1 in human multiple
myeloma cells. Int J Cancer. 127:282–292. 2010.PubMed/NCBI
|
|
78
|
Yang LJ, Chen Y, He J, Yi S, Wen L, Zhao
J, Zhang BP and Cui GH: Betulinic acid inhibits autophagic flux and
induces apoptosis in human multiple myeloma cells in vitro. Acta
Pharmacol Sin. 33:1542–1548. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Cheng YQ, Chen Y, Wu QL, Fang J and Yang
LJ: Effect of betulinic acid on inducing apoptosis of human
multiple myeloma cell line RPMI-8226. Zhongguo Shi Yan Xue Ye Xue
Za Zhi. 17:1224–1229. 2009.(In Chinese). PubMed/NCBI
|
|
80
|
Ehrhardt H, Fulda S, Fuhrer M, Debatin KM
and Jeremias I: Betulinic acid-induced apoptosis in leukemia cells.
Leukemia. 18:1406–1412. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Kumar D, Mallick S, Vedasiromoni JR and
Pal BC: Anti-leukemic activity of Dillenia indica L. fruit extract
and quantification of betulinic acid by HPLC. Phytomedicine.
17:431–435. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wu Q, He J, Fang J and Hong M: Antitumor
effect of betulinic acid on human acute leukemia K562 cells in
vitro. J Huazhong Univ Technolog Med Sci. 30:453–457. 2010.
View Article : Google Scholar
|
|
83
|
Chen Z, Wu Q, Chen Y and He J: Effects of
betulinic acid on proliferation and apoptosis in Jurkat cells and
its in vitro mechanism. J Huazhong Univ Sci Technolog Med Sci.
28:634–638. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Chen Z, Wu QL, Chen Y and He J: Effect of
betulinic acid on proliferation, apoptosis, and cell cycle of human
lymphoma cell line Raji. Zhong Cao Yao Bian Ji Bu. 4:556–559.
2008.
|