|
1
|
Boyle WJ, Simonet WS and Lacey DL:
Osteoclast differentiation and activation. Nature. 423:337–342.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Parfitt AM, Mundy GR, Roodman GD, Hughes
DE and Boyce BF: A new model for the regulation of bone resorption,
with particular reference to the effects of bisphosphonates. J Bone
Miner Res. 11:150–159. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Graves L III and Jilka RL: Comparison of
bone and parathyroid hormone as stimulators of osteoclast
development and activity in calvarial cell cultures from normal and
osteopetrotic (mi/mi) mice. J Cell Physiol. 145:102–109. 1990.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Bragdon B, Moseychuk O, Saldanha S, King
D, Julian J and Nohe A: Bone morphogenetic proteins: A critical
review. Cell Signal. 23:609–620. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Schmierer B and Hill CS: TGFbeta-SMAD
signal transduction: Molecular specificity and functional
flexibility. Nat Rev Mol Cell Biol. 8:970–982. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lavery K, Swain P, Falb D and
Alaoui-Ismaili MH: BMP-2/4 and BMP-6/7 differentially utilize cell
surface receptors to induce osteoblastic differentiation of human
bone marrow-derived mesenchymal stem cells. J Biol Chem.
283:20948–20958. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Luu HH, Song WX, Luo X, Manning D, Luo J,
Deng ZL, Sharff KA, Montag AG, Haydon RC and He TC: Distinct roles
of bone morphogenetic proteins in osteogenic differentiation of
mesenchymal stem cells. J Orthop Res. 25:665–677. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Senta H, Park H, Bergeron E, Drevelle O,
Fong D, Leblanc E, Cabana F, Roux S, Grenier G and Faucheux N: Cell
responses to bone morphogenetic proteins and peptides derived from
them: Biomedical applications and limitations. Cytokine Growth
Factor Rev. 20:213–222. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Bergeron E, Leblanc E, Drevelle O, Giguère
R, Beauvais S, Grenier G and Faucheux N: The evaluation of ectopic
bone formation induced by delivery systems for bone morphogenetic
protein-9 or its derived peptide. Tissue Eng Part A. 18:342–352.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Bergeron E, Senta H, Mailloux A, Park H,
Lord E and Faucheux N: Murine preosteoblast differentiation induced
by a peptide derived from bone morphogenetic proteins-9. Tissue Eng
Part A. 15:3341–3349. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Cunha SI and Pietras K: ALK1 as an
emerging target for antiangiogenic therapy of cancer. Blood.
117:6999–7006. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Scharpfenecker M, van Dinther M, Liu Z,
van Bezooijen RL, Zhao Q, Pukac L, Löwik CW and ten Dijke P: BMP-9
signals via ALK1 and inhibits bFGF-induced endothelial cell
proliferation and VEGF-stimulated angiogenesis. J Cell Sci.
120:964–972. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
David L, Feige JJ and Bailly S: Emerging
role of bone morphogenetic proteins in angiogenesis. Cytokine
Growth Factor Rev. 20:203–212. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Fong D, Bisson M, Laberge G, McManus S,
Grenier G, Faucheux N and Roux S: Bone morphogenetic protein-9
activates Smad and ERK pathways and supports human osteoclast
function and survival in vitro. Cell Signal. 25:717–728. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zheng Y, Wang L, Zhang X, Zhang X, Gu Z
and Wu G: BMP2/7 heterodimer can modulate all cellular events of
the in vitro RANKL-mediated osteoclastogenesis, respectively, in
different dose patterns. Tissue Eng Part A. 18:621–630. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Broege A, Pham L, Jensen ED, Emery A,
Huang TH, Stemig M, Beppu H, Petryk A, O'Connor M, Mansky K and
Gopalakrishnan R: Bone morphogenetic proteins signal via SMAD and
mitogen-activated protein (MAP) kinase pathways at distinct times
during osteoclastogenesis. J Biol Chem. 288:37230–37240. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Itoh K, Udagawa N, Katagiri T, Iemura S,
Ueno N, Yasuda H, Higashio K, Quinn JM, Gillespie MT, Martin TJ, et
al: Bone morphogenetic protein 2 stimulates osteoclast
differentiation and survival supported by receptor activator of
nuclear factor-kappaB ligand. Endocrinology. 142:3656–3662. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Jensen ED, Pham L, Billington CJ Jr, Espe
K, Carlson AE, Westendorf JJ, Petryk A, Gopalakrishnan R and Mansky
K: Bone morphogenic protein 2 directly enhances differentiation of
murine osteoclast precursors. J Cell Biochem. 109:672–682.
2010.PubMed/NCBI
|
|
19
|
Kaneko H, Arakawa T, Mano H, Kaneda T,
Ogasawara A, Nakagawa M, Toyama Y, Yabe Y, Kumegawa M and Hakeda Y:
Direct stimulation of osteoclastic bone resorption by bone
morphogenetic protein (BMP)-2 and expression of BMP receptors in
mature osteoclasts. Bone. 27:479–486. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Xie F, Liu W, Feng F, Li X, Yang L, Lv D,
Qin X, Li L and Chen L: A static pressure sensitive receptor APJ
promote H9c2 cardiomyocyte hypertrophy via PI3K-autophagy pathway.
Acta Biochim Biophys Sin (Shanghai). 46:699–708. 2014. View Article : Google Scholar : PubMed/NCBI
|