|
1
|
Weigel D, Jürgens G, Küttner F, Seifert E
and Jäckle H: The homeotic gene fork head encodes a nuclear protein
and is expressed in the terminal regions of the Drosophila embryo.
Cell. 57:645–658. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Weigel D and Jäckle H: The fork head
domain: A novel DNA binding motif of eukaryotic transcription
factors? Cell. 63:455–456. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kaufmann E and Knöchel W: Five years on
the wings of fork head. Mech Dev. 57:3–20. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Furuyama T, Nakazawa T, Nakano I and Mori
N: Identification of the differential distribution patterns of
mRNAs and consensus binding sequences for mouse DAF-16 homologues.
Biochem J. 349:629–634. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Kaestner KH, Knochel W and Martinez DE:
Unified nomenclature for the winged helix/forkhead transcription
factors. Genes Dev. 14:142–146. 2000.PubMed/NCBI
|
|
6
|
Myatt SS and Lam EW: The emerging roles of
forkhead box (Fox) proteins in cancer. Nat Rev Cancer. 7:847–859.
2007. View
Article : Google Scholar : PubMed/NCBI
|
|
7
|
Shen X, Cui J and Gong Q: Fox gene loci in
Takifugu rubripes and Tetraodon nigroviridis genomes and comparison
with those of medaka and zebrafish genomes. Genome. 54:965–972.
2011. View
Article : Google Scholar : PubMed/NCBI
|
|
8
|
Greer EL and Brunet A: FOXO transcription
factors at the interface between longevity and tumor suppression.
Oncogene. 24:7410–7425. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Jacobs FM, van der Heide LP, Wijchers PJ,
Burbach JP, Hoekman MF and Smidt MP: FoxO6, a novel member of the
FoxO class of transcription factors with distinct shuttling
dynamics. J Biol Chem. 278:35959–35967. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Hu HJ, Zhang LG, Wang ZH and Guo XX: FoxO6
inhibits cell proliferation in lung carcinoma through up-regulation
of USP7. Mol Med Rep. 12:575–580. 2015.PubMed/NCBI
|
|
11
|
Kim DH, Zhang T, Lee S, Calabuig-Navarro
V, Yamauchi J, Piccirillo A, Fan Y, Uppala R, Goetzman E and Dong
HH: FoxO6 integrates insulin signaling with MTP for regulating VLDL
production in the liver. Endocrinology. 155:1255–1267. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Larroux C, Luke GN, Koopman P, Rokhsar DS,
Shimeld SM and Degnan BM: Genesis and expansion of metazoan
transcription factor gene classes. Mol Biol Evol. 25:980–996. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Lapierre LR, Kumsta C, Sandri M, Ballabio
A and Hansen M: Transcriptional and epigenetic regulation of
autophagy in aging. Autophagy. 11:867–880. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Edmonds JW, Prasain JK, Dorand D, Yang Y,
Hoang HD, Vibbert J, Kubagawa HM and Miller MA: Insulin/FOXO
signaling regulates ovarian prostaglandins critical for
reproduction. Dev Cell. 19:858–871. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Lin L, Hron JD and Peng SL: Regulation of
NF-kappaB, Th activation, and autoinflammation by the forkhead
transcription factor Foxo3a. Immunity. 21:203–213. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Smith WW, Norton DD, Gorospe M, Jiang H,
Nemoto S, Holbrook NJ, Finkel T and Kusiak JW: Phosphorylation of
p66Shc and forkhead proteins mediates Abeta toxicity. J Cell Biol.
169:331–339. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
van der Vos KE and Coffer PJ: The
extending network of FOXO transcriptional target genes. Antioxid
Redox Signal. 14:579–592. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Huang H, Regan KM, Wang F, Wang D, Smith
DI, van Deursen JM and Tindall DJ: Skp2 inhibits FOXO1 in tumor
suppression through ubiquitin-mediated degradation. Proc Natl Acad
Sci USA. 102:1649–1654. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zhang X, Gan L, Pan H, Guo S, He X, Olson
ST, Mesecar A, Adam S and Unterman TG: Phosphorylation of serine
256 suppresses transactivation by FKHR (FOXO1) by multiple
mechanisms. Direct and indirect effects on nuclear/cytoplasmic
shuttling and DNA binding. J Biol Chem. 277:45276–45284. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Brunet A, Park J, Tran H, Hu LS, Hemmings
BA and Greenberg ME: Protein kinase SGK mediates survival signals
by phosphorylating the forkhead transcription factor FKHRL1
(FOXO3a). Mol Cell Biol. 21:952–965. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Brunet A, Kanai F, Stehn J, Xu J,
Sarbassova D, Frangioni JV, Dalal SN, DeCaprio JA, Greenberg ME and
Yaffe MB: 14-3-3 transits to the nucleus and participates in
dynamic nucleocytoplasmic transport. J Cell Biol. 156:817–828.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Obsilova V, Vecer J, Herman P, Pabianova
A, Sulc M, Teisinger J, Boura E and Obsil T: 14-3-3 Protein
interacts with nuclear localization sequence of forkhead
transcription factor FoxO4. Biochemistry. 44:11608–11617. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Rena G, Prescott AR, Guo S, Cohen P and
Unterman TG: Roles of the forkhead in rhabdomyosarcoma (FKHR)
phosphorylation sites in regulating 14-3-3 binding, transactivation
and nuclear targetting. Biochem J. 354:605–612. 2001. View Article : Google Scholar : PubMed/NCBI:
|
|
24
|
Tsai WC, Bhattacharyya N, Han LY, Hanover
JA and Rechler MM: Insulin inhibition of transcription stimulated
by the forkhead protein Foxo1 is not solely due to nuclear
exclusion. Endocrinology. 144:5615–5622. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Obsil T, Ghirlando R, Anderson DE, Hickman
AB and Dyda F: Two 14-3-3 binding motifs are required for stable
association of Forkhead transcription factor FOXO4 with 14-3-3
proteins and inhibition of DNA binding. Biochemistry.
42:15264–15272. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Plas DR and Thompson CB: Akt activation
promotes degradation of tuberin and FOXO3a via the proteasome. J
Biol Chem. 278:12361–12366. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Aoki M, Jiang H and Vogt PK: Proteasomal
degradation of the FoxO1 transcriptional regulator in cells
transformed by the P3k and Akt oncoproteins. Proc Natl Acad Sci
USA. 101:13613–13617. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Matsuzaki H, Daitoku H, Hatta M, Tanaka K
and Fukamizu A: Insulin-induced phosphorylation of FKHR (Foxo1)
targets to proteasomal degradation. Proc Natl Acad Sci USA.
100:11285–11290. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Santo EE, Stroeken P, Sluis PV, Koster J,
Versteeg R and Westerhout EM: FOXO3a is a major target of
inactivation by PI3K/AKT signaling in aggressive neuroblastoma.
Cancer Res. 73:2189–2198. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Alon U: Network motifs: Theory and
experimental approaches. Nat Rev Genet. 8:450–461. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhang W, Hietakangas V, Wee S, Lim SC,
Gunaratne J and Cohen SM: ER stress potentiates insulin resistance
through PERK-mediated FOXO phosphorylation. Genes Dev. 27:441–449.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Mounir Z, Krishnamoorthy JL, Wang S,
Papadopoulou B, Campbell S, Muller WJ, Hatzoglou M and Koromilas
AE: Akt determines cell fate through inhibition of the PERK-eIF2α
phosphorylation pathway. Sci Signal. 4:ra622011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Bobrovnikova-Marjon E, Pytel D, Riese MJ,
Vaites LP, Singh N, Koretzky GA, Witze ES and Diehl JA: PERK
utilizes intrinsic lipid kinase activity to generate phosphatidic
acid, mediate Akt activation, and promote adipocyte
differentiation. Mol Cell Biol. 32:2268–2278. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Xiao L and Yuan Z: Redemystifying
MST1/hippo signaling. Protein Cell. 1:706–708. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zeng Q and Hong W: The emerging role of
the hippo pathway in cell contact inhibition, organ size control
and cancer development in mammals. Cancer Cell. 13:188–192. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Lehtinen MK, Yuan Z, Boag PR, Yang Y,
Villén J, Becker EB, DiBacco S, de la Iglesia N, Gygi S, Blackwell
TK and Bonni A: A conserved MST-FOXO signaling pathway mediates
oxidative-stress responses and extends life span. Cell.
125:987–1001. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yuan Z, Lehtinen MK, Merlo P, Villén J,
Gygi S and Bonni A: Regulation of neuronal cell death by MST1-FOXO1
signaling. J Biol Chem. 284:11285–11292. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Valis K, Prochazka L, Boura E, Chladova J,
Obsil T, Rohlena J, Truksa J, Dong LF, Ralph SJ and Neuzil J:
Hippo/Mst1 stimulates transcription of the proapoptotic mediator
NOXA in a FoxO1-dependent manner. Cancer Res. 71:946–954. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Essers MA, Weijzen S, de Vries-Smits AM,
Saarloos I, de Ruiter ND, Bos JL and Burgering BM: FOXO
transcription factor activation by oxidative stress mediated by the
small GTPase Ral and JNK. EMBO J. 23:4802–4812. 2004. View Article : Google Scholar : PubMed/NCBI:
|
|
40
|
van den Berg MC, van Gogh IJ, Smits AM,
van Triest M, Dansen TB, Visscher M, Polderman PE, Vliem MJ,
Rehmann H and Burgering BM: The small GTPase RALA controls c-Jun
N-terminal kinase-mediated FOXO activation by regulation of a JIP1
scaffold complex. J Biol Chem. 288:21729–21741. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Sunayama J, Tsuruta F, Masuyama N and
Gotoh Y: JNK antagonizes Akt-mediated survival signals by
phosphorylating 14-3-3. J Cell Biol. 170:295–304. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Kawamori D, Kaneto H, Nakatani Y, Matsuoka
TA, Matsuhisa M, Hori M and Yamasaki Y: The forkhead transcription
factor Foxo1 bridges the JNK pathway and the transcription factor
PDX-1 through its intracellular translocation. J Biol Chem.
281:1091–1098. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Song JJ and Lee YJ: Cross-talk between
JIP3 and JIP1 during glucose deprivation: SEK1-JNK2 and Akt1 act as
mediators. J Biol Chem. 280:26845–26855. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Asada S, Daitoku H, Matsuzaki H, Saito T,
Sudo T, Mukai H, Iwashita S, Kako K, Kishi T, Kasuya Y and Fukamizu
A: Mitogen-activated protein kinases, Erk and p38, phosphorylate
and regulate Foxo1. Cell Signal. 19:519–527. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ho KK, McGuire VA, Koo CY, Muir KW, de
Olano N, Maifoshie E, Kelly DJ, McGovern UB, Monteiro LJ, Gomes AR,
et al: Phosphorylation of FOXO3a on Ser-7 by p38 promotes its
nuclear localization in response to doxorubicin. J Biol Chem.
287:1545–1555. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Lin A, Yao J, Zhuang L, Wang D, Han J, Lam
EW and Gan B: The FoxO-BNIP3 axis exerts a unique regulation of
mTORC1 and cell survival under energy stress. Oncogene.
33:3183–3194. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Yang JY, Zong CS, Xia W, Yamaguchi H, Ding
Q, Xie X, Lang JY, Lai CC, Chang CJ, Huang WC, et al: ERK promotes
tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation.
Nat Cell Biol. 10:138–148. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Hu Y, Wang X, Zeng L, Cai DY, Sabapathy K,
Goff SP, Firpo EJ and Li B: ERK phosphorylates p66shcA on Ser36 and
subsequently regulates p27kip1 expression via the Akt-FOXO3a
pathway: Implication of p27kip1 in cell response to oxidative
stress. Mol Biol Cell. 16:3705–3718. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Pramod S and Shivakumar K: Mechanisms in
cardiac fibroblast growth: An obligate role for Skp2 and FOXO3a in
ERK1/2 MAPK-dependent regulation of p27kip1. Am J Physiol Heart
Circ Physiol. 306:H844–H855. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kodiha M, Banski P and Stochaj U:
Interplay between MEK and PI3Kinase signaling regulates the
subcellular localization of protein kinases ERK1/2 and Akt upon
oxidative stress. FEBS Lett. 583:1987–1993. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Huang H, Regan KM, Lou Z, Chen J and
Tindall DJ: CDK2-dependent phosphorylation of FOXO1 as an apoptotic
response to DNA damage. Science. 314:294–297. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Yuan Z, Becker EB, Merlo P, Yamada T,
DiBacco S, Konishi Y, Schaefer EM and Bonni A: Activation of FOXO1
by Cdk1 in cycling cells and postmitotic neurons. Science.
319:1665–1668. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Liu P, Kao TP and Huang H: CDK1 promotes
cell proliferation and survival via phosphorylation and inhibition
of FOXO1 transcription factor. Oncogene. 27:4733–4744. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhou J, Li H, Li X, Zhang G, Niu Y, Yuan
Z, Herrup K, Zhang YW, Bu G, Xu H and Zhang J: The roles of
Cdk5-mediated subcellular localization of FOXO1 in neuronal death.
J Neurosci. 35:2624–2635. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Greer EL, Oskoui PR, Banko MR, Maniar JM,
Gygi MP, Gygi SP and Brunet A: The energy sensor AMP-activated
protein kinase directly regulates the mammalian FOXO3 transcription
factor. J Biol Chem. 282:30107–30119. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Chiacchiera F, Matrone A, Ferrari E,
Ingravallo G, Lo Sasso G, Murzilli S, Petruzzelli M, Salvatore L,
Moschetta A and Simone C: p38alpha blockade inhibits colorectal
cancer growth in vivo by inducing a switch from HIF1alpha- to
FoxO-dependent transcription. Cell Death Differ. 16:1203–1214.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yun H, Park S, Kim MJ, Yang WK, Im DU,
Yang KR, Hong J, Choe W, Kang I, Kim SS and Ha J: AMP-activated
protein kinase mediates the antioxidant effects of resveratrol
through regulation of the transcription factor FoxO1. FEBS J.
281:4421–4438. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Chiacchiera F and Simone C: The
AMPK-FoxO3A axis as a target for cancer treatment. Cell Cycle.
9:1091–1096. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Nakashima K and Yakabe Y: AMPK activation
stimulates myofibrillar protein degradation and expression of
atrophy-related ubiquitin ligases by increasing FOXO transcription
factors in C2C12 myotubes. Biosci Biotechnol Biochem. 71:1650–1656.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Peserico A, Chiacchiera F, Grossi V,
Matrone A, Latorre D, Simonatto M, Fusella A, Ryall JG, Finley LW,
Haigis MC, et al: A novel AMPK-dependent FoxO3A-SIRT3
intramitochondrial complex sensing glucose levels. Cell Mol Life
Sci. 70:2015–2029. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Li XN, Song J, Zhang L, LeMaire SA, Hou X,
Zhang C, Coselli JS, Chen L, Wang XL, Zhang Y and Shen YH:
Activation of the AMPK-FOXO3 pathway reduces fatty acid-induced
increase in intracellular reactive oxygen species by upregulating
thioredoxin. Diabetes. 58:2246–2257. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Sengupta A, Molkentin JD, Paik JH, DePinho
RA and Yutzey KE: FoxO transcription factors promote cardiomyocyte
survival upon induction of oxidative stress. J Biol Chem.
286:7468–7478. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Greer EL, Dowlatshahi D, Banko MR, Villen
J, Hoang K, Blanchard D, Gygi SP and Brunet A: An AMPK-FOXO pathway
mediates longevity induced by a novel method of dietary restriction
in C. elegans. Curr Biol. 17:1646–1656. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Tullet JM, Araiz C, Sanders MJ, Au C,
Benedetto A, Papatheodorou I, Clark E, Schmeisser K, Jones D,
Schuster EF, et al: DAF-16/FoxO directly regulates an atypical
AMP-activated protein kinase gamma isoform to mediate the effects
of insulin/IGF-1 signaling on aging in Caenorhabditis elegans. PLoS
Genet. 10:e10041092014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Eijkelenboom A, Mokry M, de Wit E, Smits
LM, Polderman PE, van Triest MH, van Boxtel R, Schulze A, de Laat
W, Cuppen E and Burgering BM: Genome-wide analysis of FOXO3
mediated transcription regulation through RNA polymerase II
profiling. Mol Syst Biol. 9:6382013. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Lützner N, De-Castro Arce J and Rösl F:
Gene expression of the tumour suppressor LKB1 is mediated by Sp1,
NF-Y and FOXO transcription factors. PLoS One. 7:e325902012.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Cantó C, Gerhart-Hines Z, Feige JN,
Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P and Auwerx
J: AMPK regulates energy expenditure by modulating NAD+ metabolism
and SIRT1 activity. Nature. 458:1056–1060. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Tezil T, Bodur C, Kutuk O and Basaga H:
IKK-β mediates chemoresistance by sequestering FOXO3; a critical
factor for cell survival and death. Cell Signal. 24:1361–1368.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Shen RR and Hahn WC: Emerging roles for
the non-canonical IKKs in cancer. Oncogene. 30:631–641. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Guo JP, Tian W, Shu S, Xin Y, Shou C and
Cheng JQ: IKBKE phosphorylation and inhibition of FOXO3a: A
mechanism of IKBKE oncogenic function. PLoS One. 8:e636362013.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Guo JP, Coppola D and Cheng JQ: IKBKE
protein activates Akt independent of phosphatidylinositol
3-kinase/PDK1/mTORC2 and the pleckstrin homology domain to sustain
malignant transformation. J Biol Chem. 286:37389–37398. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Luron L, Saliba D, Blazek K, Lanfrancotti
A and Udalova IA: FOXO3 as a new IKK-ε-controlled check-point of
regulation of IFN-β expression. Eur J Immunol. 42:1030–1037. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Chapuis N, Park S, Leotoing L, Tamburini
J, Verdier F, Bardet V, Green AS, Willems L, Agou F, Ifrah N, et
al: IkB kinase overcomes PI3K/Akt and ERK/MAPK to control FOXO3a
activity in acute myeloid leukemia. Blood. 116:4240–4250. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wilson MK, McWhirter SM, Amin RH, Huang D
and Schlissel MS: Abelson virus transformation prevents TRAIL
expression by inhibiting FoxO3a and NF-kappaB. Mol Cells.
29:333–341. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Li Z, Zhang H, Chen Y, Fan L and Fang J:
Forkhead transcription factor FOXO3a protein activates nuclear
factor kB through B-cell lymphoma/leukemia 10 (BCL10) protein and
promotes tumor cell survival in serum deprivation. J Biol Chem.
287:17737–17745. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
West AC and Johnstone RW: New and emerging
HDAC inhibitors for cancer treatment. J Clin Invest. 124:30–39.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Auburger G, Gispert S and Jendrach M:
Mitochondrial acetylation and genetic models of Parkinson's
disease. Prog Mol Biol Transl Sci. 127:155–182. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Khongkow M, Olmos Y, Gong C, Gomes AR,
Monteiro LJ, Yagüe E, Cavaco TB, Khongkow P, Man EP, Laohasinnarong
S, et al: SIRT6 modulates paclitaxel and epirubicin resistance and
survival in breast cancer. Carcinogenesis. 34:1476–1486. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Beharry AW, Sandesara PB, Roberts BM,
Ferreira LF, Senf SM and Judge AR: HDAC1 activates FoxO and is both
sufficient and required for skeletal muscle atrophy. J Cell Sci.
127:1441–1453. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Mihaylova MM, Vasquez DS, Ravnskjaer K,
Denechaud PD, Yu RT, Alvarez JG, Downes M, Evans RM, Montminy M and
Shaw RJ: Class IIa histone deacetylases are hormone-activated
regulators of FOXO and mammalian glucose homeostasis. Cell.
145:607–621. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Bertaggia E, Coletto L and Sandri M:
Posttranslational modifications control FoxO3 activity during
denervation. Am J Physiol Cell Physiol. 302:C587–C596. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Senf SM, Sandesara PB, Reed SA and Judge
AR: p300 Acetyltransferase activity differentially regulates the
localization and activity of the FOXO homologues in skeletal
muscle. Am J Physiol Cell Physiol. 300:C1490–C1501. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Salminen A, Kaarniranta K and Kauppinen A:
Crosstalk between oxidative stress and SIRT1: Impact on the aging
process. Int J Mol Sci. 14:3834–3859. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Xiong S, Salazar G, Patrushev N and
Alexander RW: FoxO1 mediates an autofeedback loop regulating SIRT1
expression. J Biol Chem. 286:5289–5299. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wang YQ, Cao Q, Wang F, Huang LY, Sang TT,
Liu F and Chen SY: SIRT1 protects against oxidative stress-induced
endothelial progenitor cells apoptosis by inhibiting FOXO3a via
FOXO3a ubiquitination and degradation. J Cell Physiol.
230:2098–2107. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wang F, Chan CH, Chen K, Guan X, Lin HK
and Tong Q: Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to
Skp2-mediated FOXO3 ubiquitination and degradation. Oncogene.
31:1546–1557. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Motta MC, Divecha N, Lemieux M, Kamel C,
Chen D, Gu W, Bultsma Y, McBurney M and Guarente L: Mammalian SIRT1
represses forkhead transcription factors. Cell. 116:551–563. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Kitamura YI, Kitamura T, Kruse JP, Raum
JC, Stein R, Gu W and Accili D: FoxO1 protects against pancreatic
beta cell failure through NeuroD and MafA induction. Cell Metab.
2:153–163. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Aquilano K, Baldelli S, Pagliei B and
Ciriolo MR: Extranuclear localization of SIRT1 and PGC-1α: An
insight into possible roles in diseases associated with
mitochondrial dysfunction. Curr Mol Med. 13:140–154. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Morselli E, Mariño G, Bennetzen MV,
Eisenberg T, Megalou E, Schroeder S, Cabrera S, Bénit P, Rustin P,
Criollo A, et al: Spermidine and resveratrol induce autophagy by
distinct pathways converging on the acetylproteome. J Cell Biol.
192:615–629. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Ng F and Tang BL: Sirtuins' modulation of
autophagy. J Cell Physiol. 228:2262–2270. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Yun JM, Chien A, Jialal I and Devaraj S:
Resveratrol up-regulates SIRT1 and inhibits cellular oxidative
stress in the diabetic milieu: Mechanistic insights. J Nutr
Biochem. 23:699–705. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Sin TK, Yung BY and Siu PM: Modulation of
SIRT1-Foxo1 signaling axis by resveratrol: Implications in skeletal
muscle aging and insulin resistance. Cell Physiol Biochem.
35:541–552. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Yang Y, Hou H, Haller EM, Nicosia SV and
Bai W: Suppression of FOXO1 activity by FHL2 through SIRT1-mediated
deacetylation. EMBO J. 24:1021–1032. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Liu X, Greer C and Secombe J: KDM5
interacts with Foxo to modulate cellular levels of oxidative
stress. PLoS Genet. 10:e10046762014. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wang F, Nguyen M, Qin FX and Tong Q: SIRT2
deacetylates FOXO3a in response to oxidative stress and caloric
restriction. Aging Cell. 6:505–514. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Wang F and Tong Q: SIRT2 suppresses
adipocyte differentiation by deacetylating FOXO1 and enhancing
FOXO1's repressive interaction with PPARgamma. Mol Biol Cell.
20:801–808. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Jing E, Gesta S and Kahn CR: SIRT2
regulates adipocyte differentiation through FoxO1
acetylation/deacetylation. Cell Metab. 6:105–114. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Lombard DB, Alt FW, Cheng HL, Bunkenborg
J, Streeper RS, Mostoslavsky R, Kim J, Yancopoulos G, Valenzuela D,
Murphy A, et al: Mammalian Sir2 homolog SIRT3 regulates global
mitochondrial lysine acetylation. Mol Cell Biol. 27:8807–8814.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Kim HS, Patel K, Muldoon-Jacobs K, Bisht
KS, Aykin-Burns N, Pennington JD, van der Meer R, Nguyen P, Savage
J, Owens KM, et al: SIRT3 is a mitochondria-localized tumor
suppressor required for maintenance of mitochondrial integrity and
metabolism during stress. Cancer Cell. 17:41–52. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Jia G, Su L, Singhal S and Liu X: Emerging
roles of SIRT6 on telomere maintenance, DNA repair, metabolism and
mammalian aging. Mol Cell Biochem. 364:345–350. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Matsuzaki H, Daitoku H, Hatta M, Aoyama H,
Yoshimochi K and Fukamizu A: Acetylation of Foxo1 alters its
DNA-binding ability and sensitivity to phosphorylation. Proc Natl
Acad Sci USA. 102:11278–11283. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Brunet A, Sweeney LB, Sturgill JF, Chua
KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, et
al: Stress-dependent regulation of FOXO transcription factors by
the SIRT1 deacetylase. Science. 303:2011–2015. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Fukuoka M, Daitoku H, Hatta M, Matsuzaki
H, Umemura S and Fukamizu A: Negative regulation of forkhead
transcription factor AFX (Foxo4) by CBP-induced acetylation. Int J
Mol Med. 12:503–508. 2003.PubMed/NCBI
|
|
105
|
van der Horst A, Tertoolen LG, de
Vries-Smits LM, Frye RA, Medema RH and Burgering BM: FOXO4 is
acetylated upon peroxide stress and deacetylated by the longevity
protein hSir2(SIRT1). J Biol Chem. 279:28873–28879. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Qiang L, Banks AS and Accili D: Uncoupling
of acetylation from phosphorylation regulates FoxO1 function
independent of its subcellular localization. J Biol Chem.
285:27396–27401. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Perrot V and Rechler MM: The coactivator
p300 directly acetylates the forkhead transcription factor Foxo1
and stimulates Foxo1-induced transcription. Mol Endocrinol.
19:2283–2298. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Pramanik KC, Fofaria NM, Gupta P and
Srivastava SK: CBP-mediated FOXO-1 acetylation inhibits pancreatic
tumor growth by targeting SirT. Mol Cancer Ther. 13:687–698. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Nakae J, Cao Y, Hakuno F, Takemori H,
Kawano Y, Sekioka R, Abe T, Kiyonari H, Tanaka T, Sakai J, et al:
Novel repressor regulates insulin sensitivity through interaction
with Foxo1. EMBO J. 31:2275–2295. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Li F, Xie P, Fan Y, Zhang H, Zheng L, Gu
D, Patterson C and Li H: C terminus of Hsc70-interacting protein
promotes smooth muscle cell proliferation and survival through
ubiquitin-mediated degradation of FoxO1. J Biol Chem.
284:20090–20098. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Kato S, Ding J, Pisck E, Jhala US and Du
K: COP1 functions as a FoxO1 ubiquitin E3 ligase to regulate
FoxO1-mediated gene expression. J Biol Chem. 283:35464–35473. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Hu MC, Lee DF, Xia W, Golfman LS, Ou-Yang
F, Yang JY, Zou Y, Bao S, Hanada N, Saso H, et al: IkappaB kinase
promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell.
117:225–237. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Brenkman AB, de Keizer PL, van den Broek
NJ, Jochemsen AG and Burgering BM: Mdm2 induces mono-ubiquitination
of FOXO4. PLoS One. 3:e28192008. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
van der Horst A, de Vries-Smits AM,
Brenkman AB, van Triest MH, van den Broek N, Colland F, Maurice MM
and Burgering BM: FOXO4 transcriptional activity is regulated by
monoubiquitination and USP7/HAUSP. Nat Cell Biol. 8:1064–1073.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Hall JA, Tabata M, Rodgers JT and
Puigserver P: USP7 attenuates hepatic gluconeogenesis through
modulation of FoxO1 gene promoter occupancy. Mol Endocrinol.
28:912–924. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Li HH, Willis MS, Lockyer P, Miller N,
McDonough H, Glass DJ and Patterson C: Atrogin-1 inhibits
Akt-dependent cardiac hypertrophy in mice via ubiquitin-dependent
coactivation of Forkhead proteins. J Clin Invest. 117:3211–3223.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Ratti F, Ramond F, Moncollin V, Simonet T,
Milan G, Méjat A, Thomas JL, Streichenberger N, Gilquin B, Matthias
P, et al: Histone deacetylase 6 is a FoxO transcription
factor-dependent effector in skeletal muscle atrophy. J Biol Chem.
290:4215–4224. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Yamagata K, Daitoku H, Takahashi Y, Namiki
K, Hisatake K, Kako K, Mukai H, Kasuya Y and Fukamizu A: Arginine
methylation of FOXO transcription factors inhibits their
phosphorylation by Akt. Mol Cell. 32:221–231. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Huang J and Berger SL: The emerging field
of dynamic lysine methylation of non-histone proteins. Curr Opin
Genet Dev. 18:152–158. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Xie Q, Hao Y, Tao L, Peng S, Rao C, Chen
H, You H, Dong MQ and Yuan Z: Lysine methylation of FOXO3 regulates
oxidative stress-induced neuronal cell death. EMBO Rep. 13:371–377.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Calnan DR, Webb AE, White JL, Stowe TR,
Goswami T, Shi X, Espejo A, Bedford MT, Gozani O, Gygi SP and
Brunet A: Methylation by Set9 modulates FoxO3 stability and
transcriptional activity. Aging (Albany NY). 4:462–479. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Kuo M, Zilberfarb V, Gangneux N, Christeff
N and Issad T: O-glycosylation of FoxO1 increases its
transcriptional activity towards the glucose 6-phosphatase gene.
FEBS Lett. 582:829–834. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Housley MP, Rodgers JT, Udeshi ND, Kelly
TJ, Shabanowitz J, Hunt DF, Puigserver P and Hart GW: O-GlcNAc
regulates FoxO activation in response to glucose. J Biol Chem.
283:16283–16292. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Butt AM, Feng D, Idrees M, Tong Y and Lu
J: Computational identification and modeling of crosstalk between
phosphorylation, O-β-glycosylation and methylation of FoxO3 and
implications for cancer therapeutics. Int J Mol Sci. 13:2918–2938.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Ho SR, Wang K, Whisenhunt TR, Huang P, Zhu
X, Kudlow JE and Paterson AJ: O-GlcNAcylation enhances FOXO4
transcriptional regulation in response to stress. FEBS Lett.
584:49–54. 2010. View Article : Google Scholar : PubMed/NCBI
|