Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
December-2016 Volume 14 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2016 Volume 14 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Post-translational modifications of FOXO family proteins (Review)

  • Authors:
    • Ziyao Wang
    • Tinghe Yu
    • Ping Huang
  • View Affiliations / Copyright

    Affiliations: National Key Clinical Department, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, P.R. China, Chongqing Key Medical Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400000, P.R. China
  • Pages: 4931-4941
    |
    Published online on: October 20, 2016
       https://doi.org/10.3892/mmr.2016.5867
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The Forkhead box O (FOXO) protein family is predominantly involved in apoptosis, oxidative stress, DNA damage/repair, tumor angiogenesis, glycometabolism, regulating life span and other important biological processes. Its activity is affected by a variety of posttranslational modifications (PTMs), including phosphorylation, acetylation, ubiquitination, methylation and glycosylation. When cells are subjected to different environments, the corresponding PTMs act on the FOXO protein family, to change transcriptional activity or subcellular localization, and the expression of downstream target genes, will ultimately affect the biological behavior of the cells. In this review, we will discuss the biological characteristics of FOXO protein PTMs.
View Figures
View References

1 

Weigel D, Jürgens G, Küttner F, Seifert E and Jäckle H: The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell. 57:645–658. 1989. View Article : Google Scholar : PubMed/NCBI

2 

Weigel D and Jäckle H: The fork head domain: A novel DNA binding motif of eukaryotic transcription factors? Cell. 63:455–456. 1990. View Article : Google Scholar : PubMed/NCBI

3 

Kaufmann E and Knöchel W: Five years on the wings of fork head. Mech Dev. 57:3–20. 1996. View Article : Google Scholar : PubMed/NCBI

4 

Furuyama T, Nakazawa T, Nakano I and Mori N: Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem J. 349:629–634. 2000. View Article : Google Scholar : PubMed/NCBI

5 

Kaestner KH, Knochel W and Martinez DE: Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev. 14:142–146. 2000.PubMed/NCBI

6 

Myatt SS and Lam EW: The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer. 7:847–859. 2007. View Article : Google Scholar : PubMed/NCBI

7 

Shen X, Cui J and Gong Q: Fox gene loci in Takifugu rubripes and Tetraodon nigroviridis genomes and comparison with those of medaka and zebrafish genomes. Genome. 54:965–972. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Greer EL and Brunet A: FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 24:7410–7425. 2005. View Article : Google Scholar : PubMed/NCBI

9 

Jacobs FM, van der Heide LP, Wijchers PJ, Burbach JP, Hoekman MF and Smidt MP: FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J Biol Chem. 278:35959–35967. 2003. View Article : Google Scholar : PubMed/NCBI

10 

Hu HJ, Zhang LG, Wang ZH and Guo XX: FoxO6 inhibits cell proliferation in lung carcinoma through up-regulation of USP7. Mol Med Rep. 12:575–580. 2015.PubMed/NCBI

11 

Kim DH, Zhang T, Lee S, Calabuig-Navarro V, Yamauchi J, Piccirillo A, Fan Y, Uppala R, Goetzman E and Dong HH: FoxO6 integrates insulin signaling with MTP for regulating VLDL production in the liver. Endocrinology. 155:1255–1267. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Larroux C, Luke GN, Koopman P, Rokhsar DS, Shimeld SM and Degnan BM: Genesis and expansion of metazoan transcription factor gene classes. Mol Biol Evol. 25:980–996. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Lapierre LR, Kumsta C, Sandri M, Ballabio A and Hansen M: Transcriptional and epigenetic regulation of autophagy in aging. Autophagy. 11:867–880. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Edmonds JW, Prasain JK, Dorand D, Yang Y, Hoang HD, Vibbert J, Kubagawa HM and Miller MA: Insulin/FOXO signaling regulates ovarian prostaglandins critical for reproduction. Dev Cell. 19:858–871. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Lin L, Hron JD and Peng SL: Regulation of NF-kappaB, Th activation, and autoinflammation by the forkhead transcription factor Foxo3a. Immunity. 21:203–213. 2004. View Article : Google Scholar : PubMed/NCBI

16 

Smith WW, Norton DD, Gorospe M, Jiang H, Nemoto S, Holbrook NJ, Finkel T and Kusiak JW: Phosphorylation of p66Shc and forkhead proteins mediates Abeta toxicity. J Cell Biol. 169:331–339. 2005. View Article : Google Scholar : PubMed/NCBI

17 

van der Vos KE and Coffer PJ: The extending network of FOXO transcriptional target genes. Antioxid Redox Signal. 14:579–592. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Huang H, Regan KM, Wang F, Wang D, Smith DI, van Deursen JM and Tindall DJ: Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci USA. 102:1649–1654. 2005. View Article : Google Scholar : PubMed/NCBI

19 

Zhang X, Gan L, Pan H, Guo S, He X, Olson ST, Mesecar A, Adam S and Unterman TG: Phosphorylation of serine 256 suppresses transactivation by FKHR (FOXO1) by multiple mechanisms. Direct and indirect effects on nuclear/cytoplasmic shuttling and DNA binding. J Biol Chem. 277:45276–45284. 2002. View Article : Google Scholar : PubMed/NCBI

20 

Brunet A, Park J, Tran H, Hu LS, Hemmings BA and Greenberg ME: Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Mol Cell Biol. 21:952–965. 2001. View Article : Google Scholar : PubMed/NCBI

21 

Brunet A, Kanai F, Stehn J, Xu J, Sarbassova D, Frangioni JV, Dalal SN, DeCaprio JA, Greenberg ME and Yaffe MB: 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J Cell Biol. 156:817–828. 2002. View Article : Google Scholar : PubMed/NCBI

22 

Obsilova V, Vecer J, Herman P, Pabianova A, Sulc M, Teisinger J, Boura E and Obsil T: 14-3-3 Protein interacts with nuclear localization sequence of forkhead transcription factor FoxO4. Biochemistry. 44:11608–11617. 2005. View Article : Google Scholar : PubMed/NCBI

23 

Rena G, Prescott AR, Guo S, Cohen P and Unterman TG: Roles of the forkhead in rhabdomyosarcoma (FKHR) phosphorylation sites in regulating 14-3-3 binding, transactivation and nuclear targetting. Biochem J. 354:605–612. 2001. View Article : Google Scholar : PubMed/NCBI:

24 

Tsai WC, Bhattacharyya N, Han LY, Hanover JA and Rechler MM: Insulin inhibition of transcription stimulated by the forkhead protein Foxo1 is not solely due to nuclear exclusion. Endocrinology. 144:5615–5622. 2003. View Article : Google Scholar : PubMed/NCBI

25 

Obsil T, Ghirlando R, Anderson DE, Hickman AB and Dyda F: Two 14-3-3 binding motifs are required for stable association of Forkhead transcription factor FOXO4 with 14-3-3 proteins and inhibition of DNA binding. Biochemistry. 42:15264–15272. 2003. View Article : Google Scholar : PubMed/NCBI

26 

Plas DR and Thompson CB: Akt activation promotes degradation of tuberin and FOXO3a via the proteasome. J Biol Chem. 278:12361–12366. 2003. View Article : Google Scholar : PubMed/NCBI

27 

Aoki M, Jiang H and Vogt PK: Proteasomal degradation of the FoxO1 transcriptional regulator in cells transformed by the P3k and Akt oncoproteins. Proc Natl Acad Sci USA. 101:13613–13617. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Matsuzaki H, Daitoku H, Hatta M, Tanaka K and Fukamizu A: Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc Natl Acad Sci USA. 100:11285–11290. 2003. View Article : Google Scholar : PubMed/NCBI

29 

Santo EE, Stroeken P, Sluis PV, Koster J, Versteeg R and Westerhout EM: FOXO3a is a major target of inactivation by PI3K/AKT signaling in aggressive neuroblastoma. Cancer Res. 73:2189–2198. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Alon U: Network motifs: Theory and experimental approaches. Nat Rev Genet. 8:450–461. 2007. View Article : Google Scholar : PubMed/NCBI

31 

Zhang W, Hietakangas V, Wee S, Lim SC, Gunaratne J and Cohen SM: ER stress potentiates insulin resistance through PERK-mediated FOXO phosphorylation. Genes Dev. 27:441–449. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Mounir Z, Krishnamoorthy JL, Wang S, Papadopoulou B, Campbell S, Muller WJ, Hatzoglou M and Koromilas AE: Akt determines cell fate through inhibition of the PERK-eIF2α phosphorylation pathway. Sci Signal. 4:ra622011. View Article : Google Scholar : PubMed/NCBI

33 

Bobrovnikova-Marjon E, Pytel D, Riese MJ, Vaites LP, Singh N, Koretzky GA, Witze ES and Diehl JA: PERK utilizes intrinsic lipid kinase activity to generate phosphatidic acid, mediate Akt activation, and promote adipocyte differentiation. Mol Cell Biol. 32:2268–2278. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Xiao L and Yuan Z: Redemystifying MST1/hippo signaling. Protein Cell. 1:706–708. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Zeng Q and Hong W: The emerging role of the hippo pathway in cell contact inhibition, organ size control and cancer development in mammals. Cancer Cell. 13:188–192. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villén J, Becker EB, DiBacco S, de la Iglesia N, Gygi S, Blackwell TK and Bonni A: A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell. 125:987–1001. 2006. View Article : Google Scholar : PubMed/NCBI

37 

Yuan Z, Lehtinen MK, Merlo P, Villén J, Gygi S and Bonni A: Regulation of neuronal cell death by MST1-FOXO1 signaling. J Biol Chem. 284:11285–11292. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Valis K, Prochazka L, Boura E, Chladova J, Obsil T, Rohlena J, Truksa J, Dong LF, Ralph SJ and Neuzil J: Hippo/Mst1 stimulates transcription of the proapoptotic mediator NOXA in a FoxO1-dependent manner. Cancer Res. 71:946–954. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Essers MA, Weijzen S, de Vries-Smits AM, Saarloos I, de Ruiter ND, Bos JL and Burgering BM: FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J. 23:4802–4812. 2004. View Article : Google Scholar : PubMed/NCBI:

40 

van den Berg MC, van Gogh IJ, Smits AM, van Triest M, Dansen TB, Visscher M, Polderman PE, Vliem MJ, Rehmann H and Burgering BM: The small GTPase RALA controls c-Jun N-terminal kinase-mediated FOXO activation by regulation of a JIP1 scaffold complex. J Biol Chem. 288:21729–21741. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Sunayama J, Tsuruta F, Masuyama N and Gotoh Y: JNK antagonizes Akt-mediated survival signals by phosphorylating 14-3-3. J Cell Biol. 170:295–304. 2005. View Article : Google Scholar : PubMed/NCBI

42 

Kawamori D, Kaneto H, Nakatani Y, Matsuoka TA, Matsuhisa M, Hori M and Yamasaki Y: The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation. J Biol Chem. 281:1091–1098. 2006. View Article : Google Scholar : PubMed/NCBI

43 

Song JJ and Lee YJ: Cross-talk between JIP3 and JIP1 during glucose deprivation: SEK1-JNK2 and Akt1 act as mediators. J Biol Chem. 280:26845–26855. 2005. View Article : Google Scholar : PubMed/NCBI

44 

Asada S, Daitoku H, Matsuzaki H, Saito T, Sudo T, Mukai H, Iwashita S, Kako K, Kishi T, Kasuya Y and Fukamizu A: Mitogen-activated protein kinases, Erk and p38, phosphorylate and regulate Foxo1. Cell Signal. 19:519–527. 2007. View Article : Google Scholar : PubMed/NCBI

45 

Ho KK, McGuire VA, Koo CY, Muir KW, de Olano N, Maifoshie E, Kelly DJ, McGovern UB, Monteiro LJ, Gomes AR, et al: Phosphorylation of FOXO3a on Ser-7 by p38 promotes its nuclear localization in response to doxorubicin. J Biol Chem. 287:1545–1555. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Lin A, Yao J, Zhuang L, Wang D, Han J, Lam EW and Gan B: The FoxO-BNIP3 axis exerts a unique regulation of mTORC1 and cell survival under energy stress. Oncogene. 33:3183–3194. 2014. View Article : Google Scholar : PubMed/NCBI

47 

Yang JY, Zong CS, Xia W, Yamaguchi H, Ding Q, Xie X, Lang JY, Lai CC, Chang CJ, Huang WC, et al: ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol. 10:138–148. 2008. View Article : Google Scholar : PubMed/NCBI

48 

Hu Y, Wang X, Zeng L, Cai DY, Sabapathy K, Goff SP, Firpo EJ and Li B: ERK phosphorylates p66shcA on Ser36 and subsequently regulates p27kip1 expression via the Akt-FOXO3a pathway: Implication of p27kip1 in cell response to oxidative stress. Mol Biol Cell. 16:3705–3718. 2005. View Article : Google Scholar : PubMed/NCBI

49 

Pramod S and Shivakumar K: Mechanisms in cardiac fibroblast growth: An obligate role for Skp2 and FOXO3a in ERK1/2 MAPK-dependent regulation of p27kip1. Am J Physiol Heart Circ Physiol. 306:H844–H855. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Kodiha M, Banski P and Stochaj U: Interplay between MEK and PI3Kinase signaling regulates the subcellular localization of protein kinases ERK1/2 and Akt upon oxidative stress. FEBS Lett. 583:1987–1993. 2009. View Article : Google Scholar : PubMed/NCBI

51 

Huang H, Regan KM, Lou Z, Chen J and Tindall DJ: CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage. Science. 314:294–297. 2006. View Article : Google Scholar : PubMed/NCBI

52 

Yuan Z, Becker EB, Merlo P, Yamada T, DiBacco S, Konishi Y, Schaefer EM and Bonni A: Activation of FOXO1 by Cdk1 in cycling cells and postmitotic neurons. Science. 319:1665–1668. 2008. View Article : Google Scholar : PubMed/NCBI

53 

Liu P, Kao TP and Huang H: CDK1 promotes cell proliferation and survival via phosphorylation and inhibition of FOXO1 transcription factor. Oncogene. 27:4733–4744. 2008. View Article : Google Scholar : PubMed/NCBI

54 

Zhou J, Li H, Li X, Zhang G, Niu Y, Yuan Z, Herrup K, Zhang YW, Bu G, Xu H and Zhang J: The roles of Cdk5-mediated subcellular localization of FOXO1 in neuronal death. J Neurosci. 35:2624–2635. 2015. View Article : Google Scholar : PubMed/NCBI

55 

Greer EL, Oskoui PR, Banko MR, Maniar JM, Gygi MP, Gygi SP and Brunet A: The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem. 282:30107–30119. 2007. View Article : Google Scholar : PubMed/NCBI

56 

Chiacchiera F, Matrone A, Ferrari E, Ingravallo G, Lo Sasso G, Murzilli S, Petruzzelli M, Salvatore L, Moschetta A and Simone C: p38alpha blockade inhibits colorectal cancer growth in vivo by inducing a switch from HIF1alpha- to FoxO-dependent transcription. Cell Death Differ. 16:1203–1214. 2009. View Article : Google Scholar : PubMed/NCBI

57 

Yun H, Park S, Kim MJ, Yang WK, Im DU, Yang KR, Hong J, Choe W, Kang I, Kim SS and Ha J: AMP-activated protein kinase mediates the antioxidant effects of resveratrol through regulation of the transcription factor FoxO1. FEBS J. 281:4421–4438. 2014. View Article : Google Scholar : PubMed/NCBI

58 

Chiacchiera F and Simone C: The AMPK-FoxO3A axis as a target for cancer treatment. Cell Cycle. 9:1091–1096. 2010. View Article : Google Scholar : PubMed/NCBI

59 

Nakashima K and Yakabe Y: AMPK activation stimulates myofibrillar protein degradation and expression of atrophy-related ubiquitin ligases by increasing FOXO transcription factors in C2C12 myotubes. Biosci Biotechnol Biochem. 71:1650–1656. 2007. View Article : Google Scholar : PubMed/NCBI

60 

Peserico A, Chiacchiera F, Grossi V, Matrone A, Latorre D, Simonatto M, Fusella A, Ryall JG, Finley LW, Haigis MC, et al: A novel AMPK-dependent FoxO3A-SIRT3 intramitochondrial complex sensing glucose levels. Cell Mol Life Sci. 70:2015–2029. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Li XN, Song J, Zhang L, LeMaire SA, Hou X, Zhang C, Coselli JS, Chen L, Wang XL, Zhang Y and Shen YH: Activation of the AMPK-FOXO3 pathway reduces fatty acid-induced increase in intracellular reactive oxygen species by upregulating thioredoxin. Diabetes. 58:2246–2257. 2009. View Article : Google Scholar : PubMed/NCBI

62 

Sengupta A, Molkentin JD, Paik JH, DePinho RA and Yutzey KE: FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress. J Biol Chem. 286:7468–7478. 2011. View Article : Google Scholar : PubMed/NCBI

63 

Greer EL, Dowlatshahi D, Banko MR, Villen J, Hoang K, Blanchard D, Gygi SP and Brunet A: An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol. 17:1646–1656. 2007. View Article : Google Scholar : PubMed/NCBI

64 

Tullet JM, Araiz C, Sanders MJ, Au C, Benedetto A, Papatheodorou I, Clark E, Schmeisser K, Jones D, Schuster EF, et al: DAF-16/FoxO directly regulates an atypical AMP-activated protein kinase gamma isoform to mediate the effects of insulin/IGF-1 signaling on aging in Caenorhabditis elegans. PLoS Genet. 10:e10041092014. View Article : Google Scholar : PubMed/NCBI

65 

Eijkelenboom A, Mokry M, de Wit E, Smits LM, Polderman PE, van Triest MH, van Boxtel R, Schulze A, de Laat W, Cuppen E and Burgering BM: Genome-wide analysis of FOXO3 mediated transcription regulation through RNA polymerase II profiling. Mol Syst Biol. 9:6382013. View Article : Google Scholar : PubMed/NCBI

66 

Lützner N, De-Castro Arce J and Rösl F: Gene expression of the tumour suppressor LKB1 is mediated by Sp1, NF-Y and FOXO transcription factors. PLoS One. 7:e325902012. View Article : Google Scholar : PubMed/NCBI

67 

Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P and Auwerx J: AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 458:1056–1060. 2009. View Article : Google Scholar : PubMed/NCBI

68 

Tezil T, Bodur C, Kutuk O and Basaga H: IKK-β mediates chemoresistance by sequestering FOXO3; a critical factor for cell survival and death. Cell Signal. 24:1361–1368. 2012. View Article : Google Scholar : PubMed/NCBI

69 

Shen RR and Hahn WC: Emerging roles for the non-canonical IKKs in cancer. Oncogene. 30:631–641. 2011. View Article : Google Scholar : PubMed/NCBI

70 

Guo JP, Tian W, Shu S, Xin Y, Shou C and Cheng JQ: IKBKE phosphorylation and inhibition of FOXO3a: A mechanism of IKBKE oncogenic function. PLoS One. 8:e636362013. View Article : Google Scholar : PubMed/NCBI

71 

Guo JP, Coppola D and Cheng JQ: IKBKE protein activates Akt independent of phosphatidylinositol 3-kinase/PDK1/mTORC2 and the pleckstrin homology domain to sustain malignant transformation. J Biol Chem. 286:37389–37398. 2011. View Article : Google Scholar : PubMed/NCBI

72 

Luron L, Saliba D, Blazek K, Lanfrancotti A and Udalova IA: FOXO3 as a new IKK-ε-controlled check-point of regulation of IFN-β expression. Eur J Immunol. 42:1030–1037. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Chapuis N, Park S, Leotoing L, Tamburini J, Verdier F, Bardet V, Green AS, Willems L, Agou F, Ifrah N, et al: IkB kinase overcomes PI3K/Akt and ERK/MAPK to control FOXO3a activity in acute myeloid leukemia. Blood. 116:4240–4250. 2010. View Article : Google Scholar : PubMed/NCBI

74 

Wilson MK, McWhirter SM, Amin RH, Huang D and Schlissel MS: Abelson virus transformation prevents TRAIL expression by inhibiting FoxO3a and NF-kappaB. Mol Cells. 29:333–341. 2010. View Article : Google Scholar : PubMed/NCBI

75 

Li Z, Zhang H, Chen Y, Fan L and Fang J: Forkhead transcription factor FOXO3a protein activates nuclear factor kB through B-cell lymphoma/leukemia 10 (BCL10) protein and promotes tumor cell survival in serum deprivation. J Biol Chem. 287:17737–17745. 2012. View Article : Google Scholar : PubMed/NCBI

76 

West AC and Johnstone RW: New and emerging HDAC inhibitors for cancer treatment. J Clin Invest. 124:30–39. 2014. View Article : Google Scholar : PubMed/NCBI

77 

Auburger G, Gispert S and Jendrach M: Mitochondrial acetylation and genetic models of Parkinson's disease. Prog Mol Biol Transl Sci. 127:155–182. 2014. View Article : Google Scholar : PubMed/NCBI

78 

Khongkow M, Olmos Y, Gong C, Gomes AR, Monteiro LJ, Yagüe E, Cavaco TB, Khongkow P, Man EP, Laohasinnarong S, et al: SIRT6 modulates paclitaxel and epirubicin resistance and survival in breast cancer. Carcinogenesis. 34:1476–1486. 2013. View Article : Google Scholar : PubMed/NCBI

79 

Beharry AW, Sandesara PB, Roberts BM, Ferreira LF, Senf SM and Judge AR: HDAC1 activates FoxO and is both sufficient and required for skeletal muscle atrophy. J Cell Sci. 127:1441–1453. 2014. View Article : Google Scholar : PubMed/NCBI

80 

Mihaylova MM, Vasquez DS, Ravnskjaer K, Denechaud PD, Yu RT, Alvarez JG, Downes M, Evans RM, Montminy M and Shaw RJ: Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell. 145:607–621. 2011. View Article : Google Scholar : PubMed/NCBI

81 

Bertaggia E, Coletto L and Sandri M: Posttranslational modifications control FoxO3 activity during denervation. Am J Physiol Cell Physiol. 302:C587–C596. 2012. View Article : Google Scholar : PubMed/NCBI

82 

Senf SM, Sandesara PB, Reed SA and Judge AR: p300 Acetyltransferase activity differentially regulates the localization and activity of the FOXO homologues in skeletal muscle. Am J Physiol Cell Physiol. 300:C1490–C1501. 2011. View Article : Google Scholar : PubMed/NCBI

83 

Salminen A, Kaarniranta K and Kauppinen A: Crosstalk between oxidative stress and SIRT1: Impact on the aging process. Int J Mol Sci. 14:3834–3859. 2013. View Article : Google Scholar : PubMed/NCBI

84 

Xiong S, Salazar G, Patrushev N and Alexander RW: FoxO1 mediates an autofeedback loop regulating SIRT1 expression. J Biol Chem. 286:5289–5299. 2011. View Article : Google Scholar : PubMed/NCBI

85 

Wang YQ, Cao Q, Wang F, Huang LY, Sang TT, Liu F and Chen SY: SIRT1 protects against oxidative stress-induced endothelial progenitor cells apoptosis by inhibiting FOXO3a via FOXO3a ubiquitination and degradation. J Cell Physiol. 230:2098–2107. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Wang F, Chan CH, Chen K, Guan X, Lin HK and Tong Q: Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation. Oncogene. 31:1546–1557. 2012. View Article : Google Scholar : PubMed/NCBI

87 

Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, McBurney M and Guarente L: Mammalian SIRT1 represses forkhead transcription factors. Cell. 116:551–563. 2004. View Article : Google Scholar : PubMed/NCBI

88 

Kitamura YI, Kitamura T, Kruse JP, Raum JC, Stein R, Gu W and Accili D: FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction. Cell Metab. 2:153–163. 2005. View Article : Google Scholar : PubMed/NCBI

89 

Aquilano K, Baldelli S, Pagliei B and Ciriolo MR: Extranuclear localization of SIRT1 and PGC-1α: An insight into possible roles in diseases associated with mitochondrial dysfunction. Curr Mol Med. 13:140–154. 2013. View Article : Google Scholar : PubMed/NCBI

90 

Morselli E, Mariño G, Bennetzen MV, Eisenberg T, Megalou E, Schroeder S, Cabrera S, Bénit P, Rustin P, Criollo A, et al: Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol. 192:615–629. 2011. View Article : Google Scholar : PubMed/NCBI

91 

Ng F and Tang BL: Sirtuins' modulation of autophagy. J Cell Physiol. 228:2262–2270. 2013. View Article : Google Scholar : PubMed/NCBI

92 

Yun JM, Chien A, Jialal I and Devaraj S: Resveratrol up-regulates SIRT1 and inhibits cellular oxidative stress in the diabetic milieu: Mechanistic insights. J Nutr Biochem. 23:699–705. 2012. View Article : Google Scholar : PubMed/NCBI

93 

Sin TK, Yung BY and Siu PM: Modulation of SIRT1-Foxo1 signaling axis by resveratrol: Implications in skeletal muscle aging and insulin resistance. Cell Physiol Biochem. 35:541–552. 2015. View Article : Google Scholar : PubMed/NCBI

94 

Yang Y, Hou H, Haller EM, Nicosia SV and Bai W: Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. EMBO J. 24:1021–1032. 2005. View Article : Google Scholar : PubMed/NCBI

95 

Liu X, Greer C and Secombe J: KDM5 interacts with Foxo to modulate cellular levels of oxidative stress. PLoS Genet. 10:e10046762014. View Article : Google Scholar : PubMed/NCBI

96 

Wang F, Nguyen M, Qin FX and Tong Q: SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell. 6:505–514. 2007. View Article : Google Scholar : PubMed/NCBI

97 

Wang F and Tong Q: SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARgamma. Mol Biol Cell. 20:801–808. 2009. View Article : Google Scholar : PubMed/NCBI

98 

Jing E, Gesta S and Kahn CR: SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab. 6:105–114. 2007. View Article : Google Scholar : PubMed/NCBI

99 

Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, Mostoslavsky R, Kim J, Yancopoulos G, Valenzuela D, Murphy A, et al: Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol. 27:8807–8814. 2007. View Article : Google Scholar : PubMed/NCBI

100 

Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns N, Pennington JD, van der Meer R, Nguyen P, Savage J, Owens KM, et al: SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell. 17:41–52. 2010. View Article : Google Scholar : PubMed/NCBI

101 

Jia G, Su L, Singhal S and Liu X: Emerging roles of SIRT6 on telomere maintenance, DNA repair, metabolism and mammalian aging. Mol Cell Biochem. 364:345–350. 2012. View Article : Google Scholar : PubMed/NCBI

102 

Matsuzaki H, Daitoku H, Hatta M, Aoyama H, Yoshimochi K and Fukamizu A: Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc Natl Acad Sci USA. 102:11278–11283. 2005. View Article : Google Scholar : PubMed/NCBI

103 

Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, et al: Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 303:2011–2015. 2004. View Article : Google Scholar : PubMed/NCBI

104 

Fukuoka M, Daitoku H, Hatta M, Matsuzaki H, Umemura S and Fukamizu A: Negative regulation of forkhead transcription factor AFX (Foxo4) by CBP-induced acetylation. Int J Mol Med. 12:503–508. 2003.PubMed/NCBI

105 

van der Horst A, Tertoolen LG, de Vries-Smits LM, Frye RA, Medema RH and Burgering BM: FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem. 279:28873–28879. 2004. View Article : Google Scholar : PubMed/NCBI

106 

Qiang L, Banks AS and Accili D: Uncoupling of acetylation from phosphorylation regulates FoxO1 function independent of its subcellular localization. J Biol Chem. 285:27396–27401. 2010. View Article : Google Scholar : PubMed/NCBI

107 

Perrot V and Rechler MM: The coactivator p300 directly acetylates the forkhead transcription factor Foxo1 and stimulates Foxo1-induced transcription. Mol Endocrinol. 19:2283–2298. 2005. View Article : Google Scholar : PubMed/NCBI

108 

Pramanik KC, Fofaria NM, Gupta P and Srivastava SK: CBP-mediated FOXO-1 acetylation inhibits pancreatic tumor growth by targeting SirT. Mol Cancer Ther. 13:687–698. 2014. View Article : Google Scholar : PubMed/NCBI

109 

Nakae J, Cao Y, Hakuno F, Takemori H, Kawano Y, Sekioka R, Abe T, Kiyonari H, Tanaka T, Sakai J, et al: Novel repressor regulates insulin sensitivity through interaction with Foxo1. EMBO J. 31:2275–2295. 2012. View Article : Google Scholar : PubMed/NCBI

110 

Li F, Xie P, Fan Y, Zhang H, Zheng L, Gu D, Patterson C and Li H: C terminus of Hsc70-interacting protein promotes smooth muscle cell proliferation and survival through ubiquitin-mediated degradation of FoxO1. J Biol Chem. 284:20090–20098. 2009. View Article : Google Scholar : PubMed/NCBI

111 

Kato S, Ding J, Pisck E, Jhala US and Du K: COP1 functions as a FoxO1 ubiquitin E3 ligase to regulate FoxO1-mediated gene expression. J Biol Chem. 283:35464–35473. 2008. View Article : Google Scholar : PubMed/NCBI

112 

Hu MC, Lee DF, Xia W, Golfman LS, Ou-Yang F, Yang JY, Zou Y, Bao S, Hanada N, Saso H, et al: IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell. 117:225–237. 2004. View Article : Google Scholar : PubMed/NCBI

113 

Brenkman AB, de Keizer PL, van den Broek NJ, Jochemsen AG and Burgering BM: Mdm2 induces mono-ubiquitination of FOXO4. PLoS One. 3:e28192008. View Article : Google Scholar : PubMed/NCBI

114 

van der Horst A, de Vries-Smits AM, Brenkman AB, van Triest MH, van den Broek N, Colland F, Maurice MM and Burgering BM: FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat Cell Biol. 8:1064–1073. 2006. View Article : Google Scholar : PubMed/NCBI

115 

Hall JA, Tabata M, Rodgers JT and Puigserver P: USP7 attenuates hepatic gluconeogenesis through modulation of FoxO1 gene promoter occupancy. Mol Endocrinol. 28:912–924. 2014. View Article : Google Scholar : PubMed/NCBI

116 

Li HH, Willis MS, Lockyer P, Miller N, McDonough H, Glass DJ and Patterson C: Atrogin-1 inhibits Akt-dependent cardiac hypertrophy in mice via ubiquitin-dependent coactivation of Forkhead proteins. J Clin Invest. 117:3211–3223. 2007. View Article : Google Scholar : PubMed/NCBI

117 

Ratti F, Ramond F, Moncollin V, Simonet T, Milan G, Méjat A, Thomas JL, Streichenberger N, Gilquin B, Matthias P, et al: Histone deacetylase 6 is a FoxO transcription factor-dependent effector in skeletal muscle atrophy. J Biol Chem. 290:4215–4224. 2015. View Article : Google Scholar : PubMed/NCBI

118 

Yamagata K, Daitoku H, Takahashi Y, Namiki K, Hisatake K, Kako K, Mukai H, Kasuya Y and Fukamizu A: Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol Cell. 32:221–231. 2008. View Article : Google Scholar : PubMed/NCBI

119 

Huang J and Berger SL: The emerging field of dynamic lysine methylation of non-histone proteins. Curr Opin Genet Dev. 18:152–158. 2008. View Article : Google Scholar : PubMed/NCBI

120 

Xie Q, Hao Y, Tao L, Peng S, Rao C, Chen H, You H, Dong MQ and Yuan Z: Lysine methylation of FOXO3 regulates oxidative stress-induced neuronal cell death. EMBO Rep. 13:371–377. 2012. View Article : Google Scholar : PubMed/NCBI

121 

Calnan DR, Webb AE, White JL, Stowe TR, Goswami T, Shi X, Espejo A, Bedford MT, Gozani O, Gygi SP and Brunet A: Methylation by Set9 modulates FoxO3 stability and transcriptional activity. Aging (Albany NY). 4:462–479. 2012. View Article : Google Scholar : PubMed/NCBI

122 

Kuo M, Zilberfarb V, Gangneux N, Christeff N and Issad T: O-glycosylation of FoxO1 increases its transcriptional activity towards the glucose 6-phosphatase gene. FEBS Lett. 582:829–834. 2008. View Article : Google Scholar : PubMed/NCBI

123 

Housley MP, Rodgers JT, Udeshi ND, Kelly TJ, Shabanowitz J, Hunt DF, Puigserver P and Hart GW: O-GlcNAc regulates FoxO activation in response to glucose. J Biol Chem. 283:16283–16292. 2008. View Article : Google Scholar : PubMed/NCBI

124 

Butt AM, Feng D, Idrees M, Tong Y and Lu J: Computational identification and modeling of crosstalk between phosphorylation, O-β-glycosylation and methylation of FoxO3 and implications for cancer therapeutics. Int J Mol Sci. 13:2918–2938. 2012. View Article : Google Scholar : PubMed/NCBI

125 

Ho SR, Wang K, Whisenhunt TR, Huang P, Zhu X, Kudlow JE and Paterson AJ: O-GlcNAcylation enhances FOXO4 transcriptional regulation in response to stress. FEBS Lett. 584:49–54. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang Z, Yu T and Huang P: Post-translational modifications of FOXO family proteins (Review). Mol Med Rep 14: 4931-4941, 2016.
APA
Wang, Z., Yu, T., & Huang, P. (2016). Post-translational modifications of FOXO family proteins (Review). Molecular Medicine Reports, 14, 4931-4941. https://doi.org/10.3892/mmr.2016.5867
MLA
Wang, Z., Yu, T., Huang, P."Post-translational modifications of FOXO family proteins (Review)". Molecular Medicine Reports 14.6 (2016): 4931-4941.
Chicago
Wang, Z., Yu, T., Huang, P."Post-translational modifications of FOXO family proteins (Review)". Molecular Medicine Reports 14, no. 6 (2016): 4931-4941. https://doi.org/10.3892/mmr.2016.5867
Copy and paste a formatted citation
x
Spandidos Publications style
Wang Z, Yu T and Huang P: Post-translational modifications of FOXO family proteins (Review). Mol Med Rep 14: 4931-4941, 2016.
APA
Wang, Z., Yu, T., & Huang, P. (2016). Post-translational modifications of FOXO family proteins (Review). Molecular Medicine Reports, 14, 4931-4941. https://doi.org/10.3892/mmr.2016.5867
MLA
Wang, Z., Yu, T., Huang, P."Post-translational modifications of FOXO family proteins (Review)". Molecular Medicine Reports 14.6 (2016): 4931-4941.
Chicago
Wang, Z., Yu, T., Huang, P."Post-translational modifications of FOXO family proteins (Review)". Molecular Medicine Reports 14, no. 6 (2016): 4931-4941. https://doi.org/10.3892/mmr.2016.5867
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team