Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
March-2017 Volume 15 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2017 Volume 15 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Surgically‑induced mouse models in the study of bone regeneration: Current models and future directions (Review)

  • Authors:
    • Bin Ning
    • Yunpeng Zhao
    • John A. Buza III
    • Wei Li
    • Wenzhao Wang
    • Tanghong Jia
  • View Affiliations / Copyright

    Affiliations: Department of Orthopedic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China, Department of Orthopedic Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China, Department of Orthopedic Surgery, New York University Medical Center, New York, NY 10003, USA
    Copyright: © Ning et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1017-1023
    |
    Published online on: January 26, 2017
       https://doi.org/10.3892/mmr.2017.6155
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Bone regeneration has been extensively studied over the past several decades. The surgically‑induced mouse model is the key animal model for studying bone regeneration, of the various research strategies used. These mouse models mimic the trauma and recovery processes in vivo and serve as carriers for tissue engineering and gene modification to test various therapies or associated genes in bone regeneration. The present review introduces a classification of surgically induced mouse models in bone regeneration, evaluates the application and value of these models and discusses the potential development of further innovations in this field in the future.
View Figures

Figure 1

Figure 2

View References

1 

Gomes PS and Fernandes MH: Rodent models in bone-related research: The relevance of calvarial defects in the assessment of bone regeneration strategies. Lab Anim. 45:14–24. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Hobby B and Lee MA: Managing atrophic nonunion in the geriatric population: Incidence, distribution and causes. Orthop Clin North Am. 44:251–256. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Edwards BJ, Bunta AD, Lane J, Odvina C, Rao DS, Raisch DW, McKoy JM, Omar I, Belknap SM, Garg V, et al: Bisphosphonates and nonhealing femoral fractures: Analysis of the FDA adverse event reporting system (FAERS) and international safety efforts: A systematic review from the research on adverse drug events and reports (RADAR) project. J Bone Joint Surg Am. 95:297–307. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Kleinschmidt K, Ploeger F, Nickel J, Glockenmeier J, Kunz P and Richter W: Enhanced reconstruction of long bone architecture by a growth factor mutant combining positive features of GDF-5 and BMP-2. Biomaterials. 34:5926–5936. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Zhang X, Zara J, Siu RK, Ting K and Soo C: The role of NELL-1, a growth factor associated with craniosynostosis, in promoting bone regeneration. J Dent Res. 89:865–878. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Zhao YP, Tian QY and Liu CJ: Progranulin deficiency exaggerates, whereas progranulin-derived Atsttrin attenuates, severity of dermatitis in mice. FEBS Lett. 587:1805–1810. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Szpalski C, Barr J, Wetterau M, Saadeh PB and Warren SM: Cranial bone defects: Current and future strategies. Neurosurgical Focus. 29:E82010. View Article : Google Scholar : PubMed/NCBI

8 

Wahl EC, Aronson J, Liu L, Skinner RA, Ronis MJ and Lumpkin CK Jr: Distraction osteogenesis in TNF receptor 1 deficient mice is protected from chronic ethanol exposure. Alcohol. 46:133–138. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Zhang X, Péault B, Chen W, Li W, Corselli M, James AW, Lee M, Siu RK, Shen P, Zheng Z, et al: The Nell-1 growth factor stimulates bone formation by purified human perivascular cells. Tissue Eng Part A. 17:2497–2509. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Mashiba T, Iwata K, Komatsubara S and Manabe T: Animal models for bone and joint disease. Animal fracture model and fracture healing process. Clin calcium. 21:235–241. 2011.PubMed/NCBI

11 

Burg KJ, Porter S and Kellam JF: Biomaterial developments for bone tissue engineering. Biomaterials. 21:2347–2359. 2000. View Article : Google Scholar : PubMed/NCBI

12 

Giannoudis PV and Pountos I: Tissue regeneration. The past, the present and the future. Injury. 36:(Suppl 4). S2–S5. 2005. View Article : Google Scholar : PubMed/NCBI

13 

Maes C, Carmeliet G and Schipani E: Hypoxia-driven pathways in bone development, regeneration and disease. Nat Rev Rheumatol. 8:358–366. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Rosen V: BMP2 signaling in bone development and repair. Cytokine Growth Factor Rev. 20:475–480. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Cheng L, Ye F, Yang R, Lu X, Shi Y, Li L, Fan H and Bu H: Osteoinduction of hydroxyapatite/beta-tricalcium phosphate bioceramics in mice with a fractured fibula. Acta Biomater. 6:1569–1574. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Kayal RA, Siqueira M, Alblowi J, McLean J, Krothapalli N, Faibish D, Einhorn TA, Gerstenfeld LC and Graves DT: TNF-alpha mediates diabetes-enhanced chondrocyte apoptosis during fracture healing and stimulates chondrocyte apoptosis through FOXO1. J Bone Miner Res. 25:1604–1615. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Holstein JH, Karabin-Kehl B, Scheuer C, Garcia P, Histing T, Meier C, Benninger E, Menger MD and Pohlemann T: Endostatin inhibits Callus remodeling during fracture healing in mice. J Orthop Res. 31:1579–1584. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Holstein JH, Matthys R, Histing T, Becker SC, Fiedler M, Garcia P, Meier C, Pohlemann T and Menger MD: Development of a stable closed femoral fracture model in mice. J Surg Res. 153:71–75. 2009. View Article : Google Scholar : PubMed/NCBI

19 

O'Neill KR, Stutz CM, Mignemi NA, Burns MC, Murry MR, Nyman JS and Schoenecker JG: Micro-computed tomography assessment of the progression of fracture healing in mice. Bone. 50:1357–1367. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Einhorn TA: Enhancement of fracture-healing. J Bone Joint Surg Am. 77:940–956. 1995. View Article : Google Scholar : PubMed/NCBI

21 

Kellum E, Starr H, Arounleut P, Immel D, Fulzele S, Wenger K and Hamrick MW: Myostatin (GDF-8) deficiency increases fracture callus size, Sox-5 expression, and callus bone volume. Bone. 44:17–23. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Wigner NA, Kulkarni N, Yakavonis M, Young M, Tinsley B, Meeks B, Einhorn TA and Gerstenfeld LC: Urine matrix metalloproteinases (MMPs) as biomarkers for the progression of fracture healing. Injury. 43:274–278. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Gerstenfeld LC, Cho TJ, Kon T, Aizawa T, Tsay A, Fitch J, Barnes GL, Graves DT and Einhorn TA: Impaired fracture healing in the absence of TNF-alpha signaling: The role of TNF-alpha in endochondral cartilage resorption. J Bone Miner Res. 18:1584–1592. 2003. View Article : Google Scholar : PubMed/NCBI

24 

Haddock NT, Wapner K and Levin LS: Vascular bone transfer options in the foot and ankle: A retrospective review and update on strategies. Plast Reconstr Surg. 132:685–693. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Zhao YP, Tian QY, Frenkel S and Liu CJ: The promotion of bone healing by progranulin, a downstream molecule of BMP-2, through interacting with TNF/TNFR signaling. Biomaterials. 34:6412–6421. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Ben-David D, Srouji S, Shapira-Schweitzer K, Kossover O, Ivanir E, Kuhn G, Müller R, Seliktar D and Livne E: Low dose BMP-2 treatment for bone repair using a PEGylated fibrinogen hydrogel matrix. Biomaterials. 34:2902–2910. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Annibali S, Cicconetti A, Cristalli MP, Giordano G, Trisi P, Pilloni A and Ottolenghi L: A comparative morphometric analysis of biodegradable scaffolds as carriers for dental pulp and periosteal stem cells in a model of bone regeneration. J Craniofac Surg. 24:866–871. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Yang F, Wang J, Hou J, Guo H and Liu C: Bone regeneration using cell-mediated responsive degradable PEG-based scaffolds incorporating with rhBMP-2. Biomaterials. 34:1514–1528. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Zhang H and Xing L: Ubiquitin e3 ligase itch negatively regulates osteoblast differentiation from mesenchymal progenitor cells. Stem cells. 31:1574–1583. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Fricain JC, Schlaubitz S, Le Visage C, Arnault I, Derkaoui SM, Siadous R, Catros S, Lalande C, Bareille R, Renard M, et al: A nano-hydroxyapatite-pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering. Biomaterials. 34:2947–2959. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Gao X, Usas A, Lu A, Tang Y, Wang B, Chen CW, Li H, Tebbets JC, Cummins JH and Huard J: BMP2 is superior to BMP4 for promoting human muscle-derived stem cell-mediated bone regeneration in a critical-sized calvarial defect model. Cell transplantat. 22:2393–2408. 2013. View Article : Google Scholar

32 

Tanaka K, Tanaka S, Sakai A, Ninomiya T, Arai Y and Nakamura T: Deficiency of vitamin A delays bone healing process in association with reduced BMP2 expression after drill-hole injury in mice. Bone. 47:1006–1012. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Katae Y, Tanaka S, Sakai A, Nagashima M, Hirasawa H and Nakamura T: Elcatonin injections suppress systemic bone resorption without affecting cortical bone regeneration after drill-hole injuries in mice. J Orthop Res. 27:1652–1658. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Behr B, Leucht P, Longaker MT and Quarto N: Fgf-9 is required for angiogenesis and osteogenesis in long bone repair. Proc Natl Acad Sci USA. 107:11853–11858. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Tang N, Song WX, Luo J, Luo X, Chen J, Sharff KA, Bi Y, He BC, Huang JY, Zhu GH, et al: BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/beta-catenin signalling. J Cell Mol Med. 13:2448–2464. 2009. View Article : Google Scholar : PubMed/NCBI

36 

He YX, Zhang G, Pan XH, Liu Z, Zheng LZ, Chan CW, Lee KM, Cao YP, Li G, Wei L, et al: Impaired bone healing pattern in mice with ovariectomy-induced osteoporosis: A drill-hole defect model. Bone. 48:1388–1400. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Jawad MU, Fritton KE, Ma T, Ren PG, Goodman SB, Ke HZ, Babij P and Genovese MC: Effects of sclerostin antibody on healing of a non-critical size femoral bone defect. J Orthop Res. 31:155–163. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Meszaros LB, Usas A, Cooper GM and Huard J: Effect of host sex and sex hormones on muscle-derived stem cell-mediated bone formation and defect healing. Tissue Eng Part A. 18:1751–1759. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Behr B, Sorkin M, Lehnhardt M, Renda A, Longaker MT and Quarto N: A comparative analysis of the osteogenic effects of BMP-2, FGF-2, and VEGFA in a calvarial defect model. Tissue Eng Part A. 18:1079–1086. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Liu K, Li D, Huang X, Lv K, Ongodia D, Zhu L, Zhou L and Li Z: A murine femoral segmental defect model for bone tissue engineering using a novel rigid internal fixation system. J Surg Res. 183:493–502. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Manassero M, Viateau V, Matthys R, Deschepper M, Vallefuoco R, Bensidhoum M and Petite H: A novel murine femoral segmental critical-sized defect model stabilized by plate osteosynthesis for bone tissue engineering purposes. Tissue Eng Part C Methods. 19:271–280. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Krebsbach PH, Mankani MH, Satomura K, Kuznetsov SA and Robey PG: Repair of craniotomy defects using bone marrow stromal cells. Transplantation. 66:1272–1278. 1998. View Article : Google Scholar : PubMed/NCBI

43 

Lee JY, Musgrave D, Pelinkovic D, Fukushima K, Cummins J, Usas A, Robbins P, Fu FH and Huard J: Effect of bone morphogenetic protein-2-expressing muscle-derived cells on healing of critical-sized bone defects in mice. J Bone Joint Surg Am. 83-A:1032–1039. 2001. View Article : Google Scholar : PubMed/NCBI

44 

Wang D, Gilbert JR, Cray JJ Jr, Kubala AA, Shaw MA, Billiar TR and Cooper GM: Accelerated calvarial healing in mice lacking Toll-like receptor 4. PLoS One. 7:e469452012. View Article : Google Scholar : PubMed/NCBI

45 

Levi B, Hyun JS, Montoro DT, Lo DD, Chan CK, Hu S, Sun N, Lee M, Grova M, Connolly AJ, et al: In vivo directed differentiation of pluripotent stem cells for skeletal regeneration. Proc Natl Acad Sci USA. 109:20379–20384. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Lo DD, Mackanos MA, Chung MT, Hyun JS, Montoro DT, Grova M, Liu C, Wang J, Palanker D, Connolly AJ, et al: Femtosecond plasma mediated laser ablation has advantages over mechanical osteotomy of cranial bone. Lasers Surg Med. 44:805–814. 2012. View Article : Google Scholar : PubMed/NCBI

47 

Garcia P, Holstein JH, Maier S, Schaumlöffel H, Al-Marrawi F, Hannig M, Pohlemann T and Menger MD: Development of a reliable non-union model in mice. J Surg Res. 147:84–91. 2008. View Article : Google Scholar : PubMed/NCBI

48 

Zwingenberger S, Niederlohmann E, Vater C, Rammelt S, Matthys R, Bernhardt R, Valladares RD, Goodman SB and Stiehler M: Establishment of a femoral critical-size bone defect model in immunodeficient mice. J Surg Res. 181:e7–e14. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Lin EA, Liu CJ, Monroy A, Khurana S and Egol KA: Prevention of atrophic nonunion by the systemic administration of parathyroid hormone (PTH 1–34) in an experimental animal model. J Orthop Trauma. 26:719–723. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Holstein JH, Orth M, Scheuer C, Tami A, Becker SC, Garcia P, Histing T, Mörsdorf P, Klein M, Pohlemann T and Menger MD: Erythropoietin stimulates bone formation, cell proliferation, and angiogenesis in a femoral segmental defect model in mice. Bone. 49:1037–1045. 2011. View Article : Google Scholar : PubMed/NCBI

51 

Kimelman-Bleich N, Pelled G, Sheyn D, Kallai I, Zilberman Y, Mizrahi O, Tal Y, Tawackoli W, Gazit Z and Gazit D: The use of a synthetic oxygen carrier-enriched hydrogel to enhance mesenchymal stem cell-based bone formation in vivo. Biomaterials. 30:4639–4648. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Moutsatsos IK, Turgeman G, Zhou S, Kurkalli BG, Pelled G, Tzur L, Kelley P, Stumm N, Mi S, Müller R, et al: Exogenously regulated stem cell-mediated gene therapy for bone regeneration. Mol Ther. 3:449–461. 2001. View Article : Google Scholar : PubMed/NCBI

53 

Kimelman-Bleich N, Pelled G, Zilberman Y, Kallai I, Mizrahi O, Tawackoli W, Gazit Z and Gazit D: Targeted gene-and-host progenitor cell therapy for nonunion bone fracture repair. Mol Ther. 19:53–59. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Tai K, Pelled G, Sheyn D, Bershteyn A, Han L, Kallai I, Zilberman Y, Ortiz C and Gazit D: Nanobiomechanics of repair bone regenerated by genetically modified mesenchymal stem cells. Tissue Eng Part A. 14:1709–1720. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Bergeron E, Leblanc E, Drevelle O, Giguère R, Beauvais S, Grenier G and Faucheux N: The evaluation of ectopic bone formation induced by delivery systems for bone morphogenetic protein-9 or its derived peptide. Tissue Eng Part A. 18:342–352. 2012. View Article : Google Scholar : PubMed/NCBI

56 

Kamiya N: The role of BMPs in bone anabolism and their potential targets SOST and DKK1. Curr Mol Pharmacol. 5:153–163. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Chen L, Jiang W, Huang J, He BC, Zuo GW, Zhang W, Luo Q, Shi Q, Zhang BQ and Wagner ER: Insulin-like growth factor 2 (IGF-2) potentiates BMP-9-induced osteogenic differentiation and bone formation. J Bone Miner Res. 25:2447–2459. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Wagner-Ecker M, Voltz P, Egermann M and Richter W: The collagen component of biological bone graft substitutes promotes ectopic bone formation by human mesenchymal stem cells. Acta Biomater. 9:7298–7307. 2013. View Article : Google Scholar : PubMed/NCBI

59 

Frescaline G, Bouderlique T, Mansoor L, Carpentier G, Baroukh B, Sineriz F, Trouillas M, Saffar JL, Courty J, Lataillade JJ, et al: Glycosaminoglycan mimetic associated to human mesenchymal stem cell-based scaffolds inhibit ectopic bone formation, but induce angiogenesis in vivo. Tissue Eng Part A. 19:1641–1653. 2013. View Article : Google Scholar : PubMed/NCBI

60 

Hasharoni A, Zilberman Y, Turgeman G, Helm GA, Liebergall M and Gazit D: Murine spinal fusion induced by engineered mesenchymal stem cells that conditionally express bone morphogenetic protein-2. J Neurosurg Spine. 3:47–52. 2005. View Article : Google Scholar : PubMed/NCBI

61 

Sheyn D, Pelled G, Zilberman Y, Talasazan F, Frank JM, Gazit D and Gazit Z: Nonvirally engineered porcine adipose tissue-derived stem cells: Use in posterior spinal fusion. Stem cells. 26:1056–1064. 2008. View Article : Google Scholar : PubMed/NCBI

62 

Medici D, Shore EM, Lounev VY, Kaplan FS, Kalluri R and Olsen BR: Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med. 16:1400–1406. 2010. View Article : Google Scholar : PubMed/NCBI

63 

Shimono K, Tung WE, Macolino C, Chi AH, Didizian JH, Mundy C, Chandraratna RA, Mishina Y, Enomoto-Iwamoto M, Pacifici M and Iwamoto M: Potent inhibition of heterotopic ossification by nuclear retinoic acid receptor-γ agonists. Nat Med. 17:454–460. 2011. View Article : Google Scholar : PubMed/NCBI

64 

Eyckmans J, Roberts SJ, Bolander J, Schrooten J, Chen CS and Luyten FP: Mapping calcium phosphate activated gene networks as a strategy for targeted osteoinduction of human progenitors. Biomaterials. 34:4612–4621. 2013. View Article : Google Scholar : PubMed/NCBI

65 

Aalami OO, Nacamuli RP, Lenton KA, Cowan CM, Fang TD, Fong KD, Shi YY, Song HM, Sahar DE and Longaker MT: Applications of a mouse model of calvarial healing: Differences in regenerative abilities of juveniles and adults. Plast Reconstr Surg. 114:713–720. 2004. View Article : Google Scholar : PubMed/NCBI

66 

Zhang T, Yu H, Gong W, Zhang L, Jia T, Wooley PH and Yang SY: The effect of osteoprotegerin gene modification on wear debris-induced osteolysis in a murine model of knee prosthesis failure. Biomaterials. 30:6102–6108. 2009. View Article : Google Scholar : PubMed/NCBI

67 

Baron R and Kneissel M: WNT signaling in bone homeostasis and disease: From human mutations to treatments. Nat Med. 19:179–192. 2013. View Article : Google Scholar : PubMed/NCBI

68 

Seto J, Busse B, Gupta HS, Schäfer C, Krauss S, Dunlop JW, Masic A, Kerschnitzki M, Zaslansky P, Boesecke P, et al: Accelerated growth plate mineralization and foreshortened proximal limb bones in fetuin-A knockout mice. PLoS One. 7:e473382012. View Article : Google Scholar : PubMed/NCBI

69 

Xie C, Xue M, Wang Q, Schwarz EM, O'Keefe RJ and Zhang X: Tamoxifen-inducible CreER-mediated gene targeting in periosteum via bone-graft transplantation. J Bone Joint Surg Am. 90:(Suppl 1). S9–S13. 2008. View Article : Google Scholar

70 

Bockamp E, Maringer M, Spangenberg C, Fees S, Fraser S, Eshkind L, Oesch F and Zabel B: Of mice and models: Improved animal models for biomedical research. Physiol Genomics. 11:115–132. 2002. View Article : Google Scholar : PubMed/NCBI

71 

Matsushita Y, Sakamoto K, Tamamura Y, Shibata Y, Minamizato T, Kihara T, Ito M, Katsube K, Hiraoka S, Koseki H, et al: CCN3 protein participates in bone regeneration as an inhibitory factor. J Biol Chem. 288:19973–19985. 2013. View Article : Google Scholar : PubMed/NCBI

72 

Gualeni B, de Vernejoul MC, Marty-Morieux C, De Leonardis F, Franchi M, Monti L, Forlino A, Houillier P, Rossi A and Geoffroy V: Alteration of proteoglycan sulfation affects bone growth and remodeling. Bone. 54:83–91. 2013. View Article : Google Scholar : PubMed/NCBI

73 

do Soung Y, Gentile MA, le Duong T and Drissi H: Effects of pharmacological inhibition of cathepsin K on fracture repair in mice. Bone. 55:248–255. 2013. View Article : Google Scholar : PubMed/NCBI

74 

Colnot C, Zhang X and Tate Knothe ML: Current insights on the regenerative potential of the periosteum: Molecular, cellular, and endogenous engineering approaches. J Orthop Res. 30:1869–1878. 2012. View Article : Google Scholar : PubMed/NCBI

75 

Yu YY, Bahney C, Hu D, Marcucio RS and Miclau T III: Creating rigidly stabilized fractures for assessing intramembranous ossification, distraction osteogenesis, or healing of critical sized defects. J Vis Exp pii. 35522012.

76 

Bose S, Roy M and Bandyopadhyay A: Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 30:546–554. 2012. View Article : Google Scholar : PubMed/NCBI

77 

Yun YR, Jang JH, Jeon E, Kang W, Lee S, Won JE, Kim HW and Wall I: Administration of growth factors for bone regeneration. Regen Med. 7:369–385. 2012. View Article : Google Scholar : PubMed/NCBI

78 

Zhao YP, Tian QY, Liu B, Cuellar J, Richbourgh B, Jia TH and Liu CJ: Progranulin knockout accelerates intervertebral disc degeneration in aging mice. Sci Rep. 5:91022015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ning B, Zhao Y, Buza III JA, Li W, Wang W and Jia T: Surgically‑induced mouse models in the study of bone regeneration: Current models and future directions (Review). Mol Med Rep 15: 1017-1023, 2017.
APA
Ning, B., Zhao, Y., Buza III, J.A., Li, W., Wang, W., & Jia, T. (2017). Surgically‑induced mouse models in the study of bone regeneration: Current models and future directions (Review). Molecular Medicine Reports, 15, 1017-1023. https://doi.org/10.3892/mmr.2017.6155
MLA
Ning, B., Zhao, Y., Buza III, J. A., Li, W., Wang, W., Jia, T."Surgically‑induced mouse models in the study of bone regeneration: Current models and future directions (Review)". Molecular Medicine Reports 15.3 (2017): 1017-1023.
Chicago
Ning, B., Zhao, Y., Buza III, J. A., Li, W., Wang, W., Jia, T."Surgically‑induced mouse models in the study of bone regeneration: Current models and future directions (Review)". Molecular Medicine Reports 15, no. 3 (2017): 1017-1023. https://doi.org/10.3892/mmr.2017.6155
Copy and paste a formatted citation
x
Spandidos Publications style
Ning B, Zhao Y, Buza III JA, Li W, Wang W and Jia T: Surgically‑induced mouse models in the study of bone regeneration: Current models and future directions (Review). Mol Med Rep 15: 1017-1023, 2017.
APA
Ning, B., Zhao, Y., Buza III, J.A., Li, W., Wang, W., & Jia, T. (2017). Surgically‑induced mouse models in the study of bone regeneration: Current models and future directions (Review). Molecular Medicine Reports, 15, 1017-1023. https://doi.org/10.3892/mmr.2017.6155
MLA
Ning, B., Zhao, Y., Buza III, J. A., Li, W., Wang, W., Jia, T."Surgically‑induced mouse models in the study of bone regeneration: Current models and future directions (Review)". Molecular Medicine Reports 15.3 (2017): 1017-1023.
Chicago
Ning, B., Zhao, Y., Buza III, J. A., Li, W., Wang, W., Jia, T."Surgically‑induced mouse models in the study of bone regeneration: Current models and future directions (Review)". Molecular Medicine Reports 15, no. 3 (2017): 1017-1023. https://doi.org/10.3892/mmr.2017.6155
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team