Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
April-2017 Volume 15 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2017 Volume 15 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

TRPM8 downregulation by angiotensin II in vascular smooth muscle cells is involved in hypertension

  • Authors:
    • Fang Huang
    • Min Ni
    • Jing‑Ming Zhang
    • Dong‑Jie Li
    • Fu‑Ming Shen
  • View Affiliations / Copyright

    Affiliations: Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
  • Pages: 1900-1908
    |
    Published online on: January 30, 2017
       https://doi.org/10.3892/mmr.2017.6158
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Angiotensin II (Ang II)-induced injury of vascular smooth muscle cells (VSMCs) serves an important role in hypertension and other cardiovascular disorders. Transient receptor potential melastatin 8 (TRPM8) is a thermally‑regulated Ca2+‑permeable channel that is activated by reduced body temperature. Although several recent studies have revealed the regulatory effect of TRPM8 in vascular tone and hypertension, the precise role of TRPM8 in dysfunction of vascular smooth muscle cells (VSMCs) induced by Ang II remains elusive. In the present study, the possible function of TRPM8 in Ang II‑induced VSMCs malfunction in vivo and in vitro was investigated. In the aortae from rats that had undergone a two‑kidney one‑clip operation, which is a widely‑used renovascular hypertension model, the mRNA and protein levels of TRPM8 were reduced. In addition, exogenous Ang II treatment decreased TRPM8 mRNA and protein expression levels in primary cultures of rat VSMCs. TRPM8 activation by menthol, a pharmacological agonist, in VSMCs, significantly attenuated the Ang II‑induced increase in reactive oxygen species and H2O2 production. In addition, TRPM8 activation reduced the Ang II‑induced upregulation of NADPH oxidase (NOX) 1 and NOX4 in VSMCs. Furthermore, TRPM8 activation relieved the Ang II‑induced activation of ras homolog gene family, member A‑rho associated protein kinase 2 and janus kinase 2 signaling pathways in VSMCs. In conclusion, the results presented in the current study indicated that TRPM8 downregulation by Ang II in VSMCs may be involved in hypertension.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Poulter NR, Prabhakaran D and Caulfield M: Hypertension. Lancet. 386:801–812. 2015. View Article : Google Scholar : PubMed/NCBI

2 

He D, Fu M, Miao S, Hotta K, Chandak GR and Xi B: FTO gene variant and risk of hypertension: A meta-analysis of 57,464 hypertensive cases and 41,256 controls. Metabolism. 63:633–639. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Wu YL, Hu CY, Lu SS, Gong FF, Feng F, Qian ZZ, Ding XX, Yang HY and Sun YH: Association between methylenetetrahydrofolate reductase (MTHFR) C677T/A1298C polymorphisms and essential hypertension: A systematic review and meta-analysis. Metabolism. 63:1503–1511. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Rocha NG, Templeton DL, Greiner JJ, Stauffer BL and DeSouza CA: Metabolic syndrome and endothelin-1 mediated vasoconstrictor tone in overweight/obese adults. Metabolism. 63:951–956. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Ait Aissa K, Lagrange J, Mohamadi A, Louis H, Houppert B, Challande P, Wahl D, Lacolley P and Regnault V: Vascular smooth muscle cells are responsible for a prothrombotic phenotype of spontaneously hypertensive rat arteries. Arterioscler Thromb Vasc Biol. 35:930–937. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Zhang C, Li Y, Wang C, Wu Y, Cui W, Miwa T, Sato S, Li H, Song WC and Du J: Complement 5a receptor mediates angiotensin II-induced cardiac inflammation and remodeling. Arterioscler Thromb Vasc Biol. 34:1240–1248. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Xia Y, Jin X, Yan J, Entman ML and Wang Y: CXCR6 plays a critical role in angiotensin II-induced renal injury and fibrosis. Arterioscler Thromb Vasc Biol. 34:1422–1428. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Usui F, Shirasuna K, Kimura H, Tatsumi K, Kawashima A, Karasawa T, Yoshimura K, Aoki H, Tsutsui H, Noda T, et al: Inflammasome activation by mitochondrial oxidative stress in macrophages leads to the development of angiotensin II-induced aortic aneurysm. Arterioscler Thromb Vasc Biol. 35:127–136. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Kigawa Y, Miyazaki T, Lei XF, Nakamachi T, Oguchi T, Kim-Kaneyama JR, Taniyama M, Tsunawaki S, Shioda S and Miyazaki A: NADPH oxidase deficiency exacerbates angiotensin II-induced abdominal aortic aneurysms in mice. Arterioscler Thromb Vasc Biol. 34:2413–2420. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Krishna SM, Seto SW, Jose RJ, Biros E, Moran CS, Wang Y, Clancy P and Golledge J: A peptide antagonist of thrombospondin-1 promotes abdominal aortic aneurysm progression in the angiotensin II-infused apolipoprotein-E-deficient mouse. Arterioscler Thromb Vasc Biol. 35:389–398. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Davis FM, Rateri DL, Balakrishnan A, Howatt DA, Strickland DK, Muratoglu SC, Haggerty CM, Fornwalt BK, Cassis LA and Daugherty A: Smooth muscle cell deletion of low-density lipoprotein receptor-related protein 1 augments angiotensin II-induced superior mesenteric arterial and ascending aortic aneurysms. Arterioscler Thromb Vasc Biol. 35:155–162. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Zreikat HH, Harpe SE, Slattum PW, Mays DP, Essah PA and Cheang KI: Effect of Renin-Angiotensin system inhibition on cardiovascular events in older hypertensive patients with metabolic syndrome. Metabolism. 63:392–399. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Kristensen KE, Torp-Pedersen C, Gislason GH, Egfjord M, Rasmussen HB and Hansen PR: Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in patients with abdominal aortic aneurysms: Nation-wide cohort study. Arterioscler Thromb Vasc Biol. 35:733–740. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Pruthi D, McCurley A, Aronovitz M, Galayda C, Karumanchi SA and Jaffe IZ: Aldosterone promotes vascular remodeling by direct effects on smooth muscle cell mineralocorticoid receptors. Arterioscler Thromb Vasc Biol. 34:355–364. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Alias S, Redwan B, Panzenböck A, Winter MP, Schubert U, Voswinckel R, Frey MK, Jakowitsch J, Alimohammadi A, Hobohm L, et al: Defective angiogenesis delays thrombus resolution: A potential pathogenetic mechanism underlying chronic thromboembolic pulmonary hypertension. Arterioscler Thromb Vasc Biol. 34:810–819. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Manka D, Chatterjee TK, Stoll LL, Basford JE, Konaniah ES, Srinivasan R, Bogdanov VY, Tang Y, Blomkalns AL, Hui DY and Weintraub NL: Transplanted perivascular adipose tissue accelerates injury-induced neointimal hyperplasia: Role of monocyte chemoattractant protein-1. Arterioscler Thromb Vasc Biol. 34:1723–1730. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Demer LL and Tintut Y: Inflammatory, metabolic, and genetic mechanisms of vascular calcification. Arterioscler Thromb Vasc Biol. 34:715–723. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S and Patapoutian A: A TRP channel that senses cold stimuli and menthol. Cell. 108:705–715. 2002. View Article : Google Scholar : PubMed/NCBI

19 

McKemy DD, Neuhausser WM and Julius D: Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature. 416:52–58. 2002. View Article : Google Scholar : PubMed/NCBI

20 

Almeida MC, Hew-Butler T, Soriano RN, Rao S, Wang W, Wang J, Tamayo N, Oliveira DL, Nucci TB, Aryal P, et al: Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature. J Neurosci. 32:2086–2099. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Knowlton WM, Daniels RL, Palkar R, McCoy DD and McKemy DD: Pharmacological blockade of TRPM8 ion channels alters cold and cold pain responses in mice. PLoS One. 6:e258942011. View Article : Google Scholar : PubMed/NCBI

22 

Morenilla-Palao C, Luis E, Fernández-Peña C, Quintero E, Weaver JL, Bayliss DA and Viana F: Ion channel profile of TRPM8 cold receptors reveals a role of TASK-3 potassium channels in thermosensation. Cell Rep. 8:1571–1582. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Borrelli F, Pagano E, Romano B, Panzera S, Maiello F, Coppola D, De Petrocellis L, Buono L, Orlando P and Izzo AA: Colon carcinogenesis is inhibited by the TRPM8 antagonist cannabigerol, a Cannabis-derived non-psychotropic cannabinoid. Carcinogenesis. 35:2787–2797. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Patel R, Gonçalves L, Leveridge M, Mack SR, Hendrick A, Brice NL and Dickenson AH: Anti-hyperalgesic effects of a novel TRPM8 agonist in neuropathic rats: A comparison with topical menthol. Pain. 155:2097–2107. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Ramachandran R, Hyun E, Zhao L, Lapointe TK, Chapman K, Hirota CL, Ghosh S, McKemy DD, Vergnolle N, Beck PL, et al: TRPM8 activation attenuates inflammatory responses in mouse models of colitis. Proc Natl Acad Sci USA. 110:7476–7481. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Ma S, Yu H, Zhao Z, Luo Z, Chen J, Ni Y, Jin R, Ma L, Wang P, Zhu Z, et al: Activation of the cold-sensing TRPM8 channel triggers UCP1-dependent thermogenesis and prevents obesity. J Mol Cell Biol. 4:88–96. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Asuthkar S, Elustondo PA, Demirkhanyan L, Sun X, Baskaran P, Velpula KK, Thyagarajan B, Pavlov EV and Zakharian E: The TRPM8 protein is a testosterone receptor: I. Biochemical evidence for direct TRPM8-testosterone interactions. J Biol Chem. 290:2659–2669. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Quallo T, Vastani N, Horridge E, Gentry C, Parra A, Moss S, Viana F, Belmonte C, Andersson DA and Bevan S: TRPM8 is a neuronal osmosensor that regulates eye blinking in mice. Nat Commun. 6:71502015. View Article : Google Scholar : PubMed/NCBI

29 

Johnson CD, Melanaphy D, Purse A, Stokesberry SA, Dickson P and Zholos AV: Transient receptor potential melastatin 8 channel involvement in the regulation of vascular tone. Am J Physiol Heart Circ Physiol. 296:H1868–H1877. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Sun J, Yang T, Wang P, Ma S and Zhu Z, Pu Y, Li L, Zhao Y, Xiong S, Liu D and Zhu Z: Activation of cold-sensing transient receptor potential melastatin subtype 8 antagonizes vasoconstriction and hypertension through attenuating RhoA/Rho kinase pathway. Hypertension. 63:1354–1363. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Chen JK, Zhao T, Ni M, Li DJ, Tao X and Shen FM: Downregulation of alpha7 nicotinic acetylcholine receptor in two-kidney one-clip hypertensive rats. BMC Cardiovasc Disord. 12:382012. View Article : Google Scholar : PubMed/NCBI

32 

Kato Y, Yokoyama U, Yanai C, Ishige R, Kurotaki D, Umemura M, Fujita T, Kubota T, Okumura S, Sata M, et al: Epac1 deficiency attenuated vascular smooth muscle cell migration and neointimal formation. Arterioscler Thromb Vasc Biol. 35:2617–2625. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Weise-Cross L, Taylor JM and Mack CP: Inhibition of diaphanous formin signaling in vivo impairs cardiovascular development and alters smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol. 35:2374–2383. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Fernandez I, Martin-Garrido A, Zhou DW, Clempus RE, Seidel-Rogol B, Valdivia A, Lassègue B, García AJ, Griendling KK and San Martin A: Hic-5 mediates TGFβ-induced adhesion in vascular smooth muscle cells by a Nox4-dependent mechanism. Arterioscler Thromb Vasc Biol. 35:1198–1206. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Song J, Li J, Hou F, Wang X and Liu B: Mangiferin inhibits endoplasmic reticulum stress-associated thioredoxin-interacting protein/NLRP3 inflammasome activation with regulation of AMPK in endothelial cells. Metabolism. 64:428–437. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Omodei D, Pucino V, Labruna G, Procaccini C, Galgani M, Perna F, Pirozzi D, De Caprio C, Marone G, Fontana L, et al: Immune-metabolic profiling of anorexic patients reveals an anti-oxidant and anti-inflammatory phenotype. Metabolism. 64:396–405. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Hwang HJ, Jung TW, Hong HC, Seo JA, Kim SG, Kim NH, Choi KM, Choi DS, Baik SH and Yoo HJ: LECT2 induces atherosclerotic inflammatory reaction via CD209 receptor-mediated JNK phosphorylation in human endothelial cells. Metabolism. 64:1175–1182. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Kurano M, Hara M, Satoh H and Tsukamoto K: Hepatic NPC1L1 overexpression ameliorates glucose metabolism in diabetic mice via suppression of gluconeogenesis. Metabolism. 64:588–596. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Zhou XB, Feng YX, Sun Q, Lukowski R, Qiu Y, Spiger K, Li Z, Ruth P, Korth M, Skolnik EY, et al: Nucleoside diphosphate kinase B-activated intermediate conductance potassium channels are critical for neointima formation in mouse carotid arteries. Arterioscler Thromb Vasc Biol. 35:1852–1861. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

41 

Lee MJ, Kim EH, Lee SA, Kang YM, Jung CH, Yoon HK, Seol SM, Lee YL, Lee WJ and Park JY: Dehydroepiandrosterone prevents linoleic acid-induced endothelial cell senescence by increasing autophagy. Metabolism. 64:1134–1145. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Ray Hamidie RD, Yamada T, Ishizawa R, Saito Y and Masuda K: Curcumin treatment enhances the effect of exercise on mitochondrial biogenesis in skeletal muscle by increasing cAMP levels. Metabolism. 64:1334–1347. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Kadota Y, Toyoda T, Hayashi-Kato M, Kitaura Y and Shimomura Y: Octanoic acid promotes branched-chain amino acid catabolisms via the inhibition of hepatic branched-chain alpha-keto acid dehydrogenase kinase in rats. Metabolism. 64:1157–1164. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Fu L, Bruckbauer A, Li F, Cao Q, Cui X, Wu R, Shi H, Zemel MB and Xue B: Leucine amplifies the effects of metformin on insulin sensitivity and glycemic control in diet-induced obese mice. Metabolism. 64:845–856. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Soe NN, Sowden M, Baskaran P, Smolock EM, Kim Y, Nigro P and Berk BC: Cyclophilin A is required for angiotensin II-induced p47phox translocation to caveolae in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 33:2147–2153. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Wu YJ, Guo X, Li CJ, Li DQ, Zhang J, Yang Y, Kong Y, Guo H, Liu DM and Chen LM: Dipeptidyl peptidase-4 inhibitor, vildagliptin, inhibits pancreatic beta cell apoptosis in association with its effects suppressing endoplasmic reticulum stress in db/db mice. Metabolism. 64:226–235. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y and Griendling KK: Angiotensin II stimulation of NAD (P)H oxidase activity: Upstream mediators. Circ Res. 91:406–413. 2002. View Article : Google Scholar : PubMed/NCBI

48 

Lasségue B, San M, artín A and Griendling KK: Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res. 110:1364–1390. 2012. View Article : Google Scholar : PubMed/NCBI

49 

Kirabo A, Kearns PN, Jarajapu YP, Sasser JM, Oh SP, Grant MB, Kasahara H, Cardounel AJ, Baylis C, Wagner KU and Sayeski PP: Vascular smooth muscle Jak2 mediates angiotensin II-induced hypertension via increased levels of reactive oxygen species. Cardiovasc Res. 91:171–179. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Montezano AC, Callera GE, Yogi A, He Y, Tostes RC, He G, Schiffrin EL and Touyz RM: Aldosterone and angiotensin II synergistically stimulate migration in vascular smooth muscle cells through c-Src-regulated redox-sensitive RhoA pathways. Arterioscler Thromb Vasc Biol. 28:1511–1518. 2008. View Article : Google Scholar : PubMed/NCBI

51 

Clapham DE, Runnels LW and Strübing C: The trp ion channel family. Nat Rev Neurosci. 2:387–396. 2001. View Article : Google Scholar : PubMed/NCBI

52 

Touyz RM, He Y, Montezano AC, Yao G, Chubanov V, Gudermann T and Callera GE: Differential regulation of transient receptor potential melastatin 6 and 7 cation channels by Ang II in vascular smooth muscle cells from spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 290:R73–R78. 2006. View Article : Google Scholar : PubMed/NCBI

53 

Yogi A, Callera GE, Tostes R and Touyz RM: Bradykinin regulates calpain and proinflammatory signaling through TRPM7-sensitive pathways in vascular smooth muscle cells. Am J Physiol Regul Integr Comp Physiol. 296:R201–R207. 2009. View Article : Google Scholar : PubMed/NCBI

54 

Callera GE, He Y, Yogi A, Montezano AC, Paravicini T, Yao G and Touyz RM: Regulation of the novel Mg2+ transporter transient receptor potential melastatin 7 (TRPM7) cation channel by bradykinin in vascular smooth muscle cells. J Hypertens. 27:155–166. 2009. View Article : Google Scholar : PubMed/NCBI

55 

He Y, Yao G, Savoia C and Touyz RM: Transient receptor potential melastatin 7 ion channels regulate magnesium homeostasis in vascular smooth muscle cells: Role of angiotensin II. Circ Res. 96:207–215. 2005. View Article : Google Scholar : PubMed/NCBI

56 

Montezano AC, Zimmerman D, Yusuf H, Burger D, Chignalia AZ, Wadhera V, van Leeuwen FN and Touyz RM: Vascular smooth muscle cell differentiation to an osteogenic phenotype involves TRPM7 modulation by magnesium. Hypertension. 56:453–462. 2010. View Article : Google Scholar : PubMed/NCBI

57 

Zhang Z, Wang M, Fan XH, Chen JH, Guan YY and Tang YB: Upregulation of TRPM7 channels by angiotensin II triggers phenotypic switching of vascular smooth muscle cells of ascending aorta. Circ Res. 111:1137–1146. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Yang XR, Lin MJ, McIntosh LS and Sham JS: Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol. 290:L1267–L1276. 2006. View Article : Google Scholar : PubMed/NCBI

59 

Ikeda S, Satoh K, Kikuchi N, Miyata S, Suzuki K, Omura J, Shimizu T, Kobayashi K, Kobayashi K, Fukumoto Y, et al: Crucial role of rho-kinase in pressure overload-induced right ventricular hypertrophy and dysfunction in mice. Arterioscler Thromb Vasc Biol. 34:1260–1271. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Gadang V, Konaniah E, Hui DY and Jaeschke A: Mixed-lineage kinase 3 deficiency promotes neointima formation through increased activation of the RhoA pathway in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 34:1429–1436. 2014. View Article : Google Scholar : PubMed/NCBI

61 

Ellawindy A, Satoh K, Sunamura S, Kikuchi N, Suzuki K, Minami T, Ikeda S, Tanaka S, Shimizu T, Enkhjargal B, et al: Rho-Kinase inhibition during early cardiac development causes arrhythmogenic right ventricular cardiomyopathy in mice. Arterioscler Thromb Vasc Biol. 35:2172–2184. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Shimokawa H and Satoh K: 2015 ATVB Plenary Lecture: Translational research on rho-kinase in cardiovascular medicine. Arterioscler Thromb Vasc Biol. 35:1756–1769. 2015. View Article : Google Scholar : PubMed/NCBI

63 

Liu XR, Liu Q, Chen GY, Hu Y, Sham JS and Lin MJ: Down-regulation of TRPM8 in pulmonary arteries of pulmonary hypertensive rats. Cell Physiol Biochem. 31:892–904. 2013. View Article : Google Scholar : PubMed/NCBI

64 

Greenberg S: Vascular responses of the perfused intestine to vasoactive agents during the development of two-kidney, one-clip Goldblatt hypertension in dogs. Circ Res. 48:895–906. 1981. View Article : Google Scholar : PubMed/NCBI

65 

Morishita R, Higaki J, Miyazaki M and Ogihara T: Possible role of the vascular renin-angiotensin system in hypertension and vascular hypertrophy. Hypertension. 19 Suppl 2:II62–II67. 1992. View Article : Google Scholar : PubMed/NCBI

66 

Cervenka L, Horácek V, Vanecková I, Hubácek JA, Oliverio MI, Coffman TM and Navar LG: Essential role of AT1A receptor in the development of 2K1C hypertension. Hypertension. 40:735–741. 2002. View Article : Google Scholar : PubMed/NCBI

67 

Xie QY, Sun M, Yang TL and Sun ZL: Losartan reduces monocyte chemoattractant protein-1 expression in aortic tissues of 2K1C hypertensive rats. Int J Cardiol. 110:60–66. 2006. View Article : Google Scholar : PubMed/NCBI

68 

Maxwell MH, Lupu AN, Viskoper RJ, Aravena LA and Waks UA: Mechanisms of hypertension during the acute and intermediate phases of the one-clip, two-kidney model in the dog. Circ Res. 40(5 Suppl 1): I24–I28. 1977.PubMed/NCBI

69 

Li DJ, Evans RG, Yang ZW, Song SW, Wang P, Ma XJ, Liu C, Xi T, Su DF and Shen FM: Dysfunction of the cholinergic anti-inflammatory pathway mediates organ damage in hypertension. Hypertension. 57:298–307. 2011. View Article : Google Scholar : PubMed/NCBI

70 

Jamerson K, Weber MA, Bakris GL, Dahlöf B, Pitt B, Shi V, Hester A, Gupte J, Gatlin M and Velazquez EJ: ACCOMPLISH Trial Investigators: Benazepril plus amlodipine or hydrochlorothiazide for hypertension in high-risk patients. N Engl J Med. 359:2417–2428. 2008. View Article : Google Scholar : PubMed/NCBI

71 

Jamerson KA, Devereux R, Bakris GL, Dahlöf B, Pitt B, Velazquez EJ, Weir M, Kelly RY, Hua TA, Hester A and Weber MA: Efficacy and duration of benazepril plus amlodipine or hydrochlorothiazide on 24-h ambulatory systolic blood pressure control. Hypertension. 57:174–179. 2011. View Article : Google Scholar : PubMed/NCBI

72 

Valvo E, Casagrande P, Bedogna V, Antiga L, Alberti D, Zamboni M, Perobelli L, Dal Santo F and Maschio G: Systemic and renal effects of a new angiotensin converting enzyme inhibitor, benazepril, in essential hypertension. J Hypertens. 8:991–995. 1990. View Article : Google Scholar : PubMed/NCBI

73 

Balfour JA and Goa KL: Benazepril. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in hypertension and congestive heart failure. Drugs. 42:511–539. 1991. View Article : Google Scholar : PubMed/NCBI

74 

Mochel JP, Fink M, Peyrou M, Soubret A, Giraudel JM and Danhof M: Pharmacokinetic/pharmacodynamic modeling of renin-angiotensin aldosterone biomarkers following angiotensin-converting enzyme (ACE) inhibition therapy with benazepril in dogs. Pharm Res. 32:1931–1946. 2015. View Article : Google Scholar : PubMed/NCBI

75 

Dikalov SI, Nazarewicz RR, Bikineyeva A, Hilenski L, Lassègue B, Griendling KK, Harrison DG and Dikalova AE: Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension. Antioxid Redox Signal. 20:281–294. 2014. View Article : Google Scholar : PubMed/NCBI

76 

Lu S, Xiang L, Clemmer JS, Mittwede PN and Hester RL: Oxidative stress increases pulmonary vascular permeability in diabetic rats through activation of transient receptor potential melastatin 2 channels. Microcirculation. 21:754–760. 2014. View Article : Google Scholar : PubMed/NCBI

77 

Palanivel R, Ganguly R, Turdi S, Xu A and Sweeney G: Adiponectin stimulates Rho-mediated actin cytoskeleton remodeling and glucose uptake via APPL1 in primary cardiomyocytes. Metabolism. 63:1363–1373. 2014. View Article : Google Scholar : PubMed/NCBI

78 

Diaz MB, Herzig S and Vegiopoulos A: Thermogenic adipocytes: From cells to physiology and medicine. Metabolism. 63:1238–1249. 2014. View Article : Google Scholar : PubMed/NCBI

79 

Sun L and Trajkovski M: MiR-27 orchestrates the transcriptional regulation of brown adipogenesis. Metabolism. 63:272–282. 2014. View Article : Google Scholar : PubMed/NCBI

80 

Hondares E, Gallego-Escuredo JM, Flachs P, Frontini A, Cereijo R, Goday A, Perugini J, Kopecky P, Giralt M, Cinti S, et al: Fibroblast growth factor-21 is expressed in neonatal and pheochromocytoma-induced adult human brown adipose tissue. Metabolism. 63:312–317. 2014. View Article : Google Scholar : PubMed/NCBI

81 

Boström PA, Fernández-Real JM and Mantzoros C: Irisin in humans: Recent advances and questions for future research. Metabolism. 63:178–180. 2014. View Article : Google Scholar : PubMed/NCBI

82 

Tsuchiya Y, Ando D, Takamatsu K and Goto K: Resistance exercise induces a greater irisin response than endurance exercise. Metabolism. 64:1042–1050. 2015. View Article : Google Scholar : PubMed/NCBI

83 

Sharma AM, Janke J, Gorzelniak K, Engeli S and Luft FC: Angiotensin blockade prevents type 2 diabetes by formation of fat cells. Hypertension. 40:609–611. 2002. View Article : Google Scholar : PubMed/NCBI

84 

Santos SH, Braga JF, Mario EG, Pôrto LC, Rodrigues-Machado Mda G, Murari A, Botion LM, Alenina N, Bader M and Santos RA: Improved lipid and glucose metabolism in transgenic rats with increased circulating angiotensin-(1–7). Arterioscler Thromb Vasc Biol. 30:953–961. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Huang F, Ni M, Zhang JM, Li DJ and Shen FM: TRPM8 downregulation by angiotensin II in vascular smooth muscle cells is involved in hypertension. Mol Med Rep 15: 1900-1908, 2017.
APA
Huang, F., Ni, M., Zhang, J., Li, D., & Shen, F. (2017). TRPM8 downregulation by angiotensin II in vascular smooth muscle cells is involved in hypertension. Molecular Medicine Reports, 15, 1900-1908. https://doi.org/10.3892/mmr.2017.6158
MLA
Huang, F., Ni, M., Zhang, J., Li, D., Shen, F."TRPM8 downregulation by angiotensin II in vascular smooth muscle cells is involved in hypertension". Molecular Medicine Reports 15.4 (2017): 1900-1908.
Chicago
Huang, F., Ni, M., Zhang, J., Li, D., Shen, F."TRPM8 downregulation by angiotensin II in vascular smooth muscle cells is involved in hypertension". Molecular Medicine Reports 15, no. 4 (2017): 1900-1908. https://doi.org/10.3892/mmr.2017.6158
Copy and paste a formatted citation
x
Spandidos Publications style
Huang F, Ni M, Zhang JM, Li DJ and Shen FM: TRPM8 downregulation by angiotensin II in vascular smooth muscle cells is involved in hypertension. Mol Med Rep 15: 1900-1908, 2017.
APA
Huang, F., Ni, M., Zhang, J., Li, D., & Shen, F. (2017). TRPM8 downregulation by angiotensin II in vascular smooth muscle cells is involved in hypertension. Molecular Medicine Reports, 15, 1900-1908. https://doi.org/10.3892/mmr.2017.6158
MLA
Huang, F., Ni, M., Zhang, J., Li, D., Shen, F."TRPM8 downregulation by angiotensin II in vascular smooth muscle cells is involved in hypertension". Molecular Medicine Reports 15.4 (2017): 1900-1908.
Chicago
Huang, F., Ni, M., Zhang, J., Li, D., Shen, F."TRPM8 downregulation by angiotensin II in vascular smooth muscle cells is involved in hypertension". Molecular Medicine Reports 15, no. 4 (2017): 1900-1908. https://doi.org/10.3892/mmr.2017.6158
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team