|
1
|
Lee TI and Young RA: Transcriptional
regulation and its misregulation in disease. Cell. 152:1237–1251.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Lawrence MS, Stojanov P, Mermel CH,
Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander
ES and Getz G: Discovery and saturation analysis of cancer genes
across 21 tumour types. Nature. 505:495–501. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
MacLellan WR, Wang Y and Lusis AJ:
Systems-based approaches to cardiovascular disease. Nat Rev
Cardiol. 9:172–184. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Bai B, Hales CM, Chen PC, Gozal Y, Dammer
EB, Fritz JJ, Wang X, Xia Q, Duong DM, Street C, et al: U1 small
nuclear ribonucleoprotein complex and RNA splicing alterations in
Alzheimer's disease. Proc Natl Acad Sci USA. 110:16562–16567. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Yang F, Yi F, Zheng Z, Ling Z, Ding J, Guo
J, Mao W, Wang X, Ding X, Wang X, et al: Characterization of a
carcinogenesis-associated long non-coding RNA. RNA Biol. 9:110–116.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
ENCODE Project Consortium: An integrated
encyclopedia of DNA elements in the human genome. Nature.
489:57–74. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Esteller M: Non-coding RNAs in human
disease. Nat Rev Genet. 12:861–874. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Flynn RA and Chang HY: Long noncoding RNAs
in cell-fate programming and reprogramming. Cell Stem Cell.
14:752–761. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kung JT, Colognori D and Lee JT: Long
noncoding RNAs: Past, present, and future. Genetics. 193:651–669.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Bachellerie JP, Cavaillé J and Hüttenhofer
A: The expanding snoRNA world. Biochimie. 84:775–790. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
van Stijn T and Galloway S: A BamHI
polymorphism at the ovine inactive X-specific transcript locus
(XIST). Anim Genet. 26:279–280. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Brockdorff N, Ashworth A, Kay GF, McCabe
VM, Norris DP, Cooper PJ, Swift S and Rastan S: The product of the
mouse Xist gene is a 15 kb inactive X-specific transcript
containing no conserved ORF and located in the nucleus. Cell.
71:515–526. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Rinn JL, Kertesz M, Wang JK, Squazzo SL,
Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E and
Chang HY: Functional demarcation of active and silent chromatin
domains in human HOX loci by noncoding RNAs. Cell. 129:1311–1323.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Dehwah MA, Xu A and Huang Q: MicroRNAs and
type 2 diabetes/obesity. J Genet Genomics. 39:11–18. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Medina PP, Nolde M and Slack FJ: OncomiR
addiction in an in vivo model of microRNA-21-induced pre-B-cell
lymphoma. Nature. 467:86–90. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zhao JJ, Lin J, Yang H, Kong W, He L, Ma
X, Coppola D and Cheng JQ: MicroRNA-221/222 negatively regulates
estrogen receptor alpha and is associated with tamoxifen resistance
in breast cancer. J Biol Chem. 283:31079–31086. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Herrera-Esparza R, Kruse L, von Essen M,
Campos L, Barbosa O, Bollain JJ, Badillo I and Avalos-Díaz E: U3
snoRNP associates with fibrillarin a component of the scleroderma
clumpy nucleolar domain. Arch Dermatol Res. 294:310–317.
2002.PubMed/NCBI
|
|
18
|
Yang JM, Hildebromdt B, Luderschmidt C and
Pollard KM: Human scleroderma sera contain autoantibodies to
protein components specific to the U3 small nucleolar RNP complex.
Arthritis Rheum. 48:210–217. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Nicoloso MS, Spizzo R, Shimizu M, Rossi S
and Calin GA: MicroRNAs-the micro steering wheel of tumour
metastases. Nature Rev Cancer. 9:293–302. 2009. View Article : Google Scholar
|
|
20
|
Sang Q, Yao Z, Wang H, Feng R, Wang H,
Zhao X, Xing Q, Jin L, He L, Wu L and Wang L: Identification of
microRNAs in human follicular fluid: Characterization of microRNAs
that govern steroidogenesis in vitro and are associated with
polycystic ovary syndrome in vivo. J Clin Endocrinol Metab.
98:3068–3079. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Yan Z, Hu HY, Jiang X, Maierhofer V, Neb
E, He L, Hu Y, Hu H, Li N, Chen W and Khaitovich P: Widespread
expression of piRNA-like molecules in somatic tissues. Nucleic
Acids Res. 39:6596–6607. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yang X, Zhou Y, Peng S, Wu L, Lin HY, Wang
S and Wang H: Differentially expressed plasma microRNAs in
premature ovarian failure patients and the potential regulatory
function of mir-23a in granulosa cell apoptosis. Reproduction.
144:235–244. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ohno S: So much ‘junk’ DNA in our genome.
Brookhaven Symp Biol. 23:366–370. 1972.PubMed/NCBI
|
|
24
|
Zhang R, Zhang L and Yu W: Genome-wide
expression of non-coding RNA and global chromatin modification.
Acta Biochim Biophys Sin (Shanghai). 44:40–47. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Hertel J, De Jong D, Marz M, Rose D, Tafer
H, Tanzer A, Schierwater B and Stadler PF: Non-coding RNA
annotation of the genome of Trichoplax adhaerens. Nucleic Acids
Res. 37:1602–1615. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Mohr AM and Mott JL: Overview of MicroRNA
biology. Semin Liver Dis. 35:3–11. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Sirotkin AV, Lauková M, Ovcharenko D,
Brenaut P and Mlyncek M: Identification of microRNAs controlling
human ovarian cell proliferation and apoptosis. J Cell Physiol.
223:49–56. 2010.PubMed/NCBI
|
|
28
|
Jiang L, Huang J, Li L, Chen Y, Chen X,
Zhao X and Yang D: MicroRNA-93 promotes ovarian granulosa cells
proliferation through targeting CDKN1A in polycystic ovarian
syndrome. J Clin Endocrinol Metab. 100:E729–E738. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Thomson T and Lin H: The biogenesis and
function of PIWI proteins and piRNAs: Progress and prospect. Annu
Rev Cell Dev Biol. 25:355–376. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Aravin AA, Hannon GJ and Brennecke J: The
Piwi-piRNA pathway provides an adaptive defense in the transposon
arms race. Science. 318:761–764. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Aravin AA, Sachidanandam R, Girard A,
Fejes-Toth K and Hannon GJ: Developmentally regulated piRNA
clusters implicate MILI in transposon control. Science.
316:744–747. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Brennecke J, Aravin AA, Stark A, Dus M,
Kellis M, Sachidanandam R and Hannon GJ: Discrete small
RNA-generating loci as master regulators of transposon activity in
Drosophila. Cell. 128:1089–1103. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Gunawardane LS, Saito K, Nishida KM,
Miyoshi K, Kawamura Y, Nagami T, Siomi H and Siomi MC: A
slicer-mediated mechanism for repeat-associated siRNA 5′ end
formation in Drosophila. Science. 315:1587–1590. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Pal-Bhadra M, Leibovitch BA, Gandhi SG,
Chikka MR, Bhadra U, Birchler JA and Elgin SC: Heterochromatic
silencing and HP1 localization in Drosophila are dependent on the
RNAi machinery. Science. 303:669–672. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Kiss-László Z, Henry Y, Bachellerie JP,
Caizergues-Ferrer M and Kiss T: Site-specific ribose methylation of
preribosomal RNA: A novel function for small nucleolar RNAs. Cell.
85:1077–1088. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ni J, Tien AL and Fournier MJ: Small
nucleolar RNAs direct site-specific synthesis of pseudouridine in
ribosomal RNA. Cell. 89:565–573. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
King TH, Liu B, McCully RR and Fournier
MJ: Ribosome structure and activity are altered in cells lacking
snoRNPs that form pseudouridines in the peptidyl transferase
center. Mol Cell. 11:425–435. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Carthew RW and Sontheimer EJ: Origins and
mechanisms of miRNAs and siRNAs. Cell. 136:642–655. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Diederichs S and Haber DA: Dual role for
argonautes in microRNA processing and posttranscriptional
regulation of microRNA expression. Cell. 131:1097–1108. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Tam OH, Aravin AA, Stein P, Girard A,
Murchison EP, Cheloufi S, Hodges E, Anger M, Sachidanandam R,
Schultz RM and Hannon GJ: Pseudogene-derived small interfering RNAs
regulate gene expression in mouse oocytes. Nature. 453:534–538.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Rinn JL and Chang HY: Genome regulation by
long noncoding RNAs. Annu Rev Biochem. 81:145–166. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Guttman M, Amit I, Garber M, French C, Lin
MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, et al:
Chromatin signature reveals over a thousand highly conserved large
non-coding RNAs in mammals. Nature. 458:223–227. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Derrien T, Johnson R, Bussotti G, Tanzer
A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG,
et al: The GENCODE v7 catalog of human long noncoding RNAs:
Analysis of their gene structure, evolution, and expression. Genome
Res. 22:1775–1789. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wang KC and Chang HY: Molecular mechanisms
of long noncoding RNAs. Mol Cell. 43:904–914. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Brannan CI, Dees EC, Ingram RS and
Tilghman SM: The product of the H19 gene may function as an RNA.
Mol Cell Biol. 10:28–36. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Okamura K and Lai EC: Endogenous small
interfering RNAs in animals. Nat Rev Mol Cell Biol. 9:673–678.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ørom UA, Derrien T, Guigo R and
Shiekhattar R: Long noncoding RNAs as enhancers of gene expression.
Cold Spring Harb Symp Quant Biol. 75:325–331. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Feuerhahn S, Iglesias N, Panza A, Porro A
and Lingner J: TERRA biogenesis, turnover and implications for
function. FEBS Lett. 584:3812–3818. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Kanellopoulou C, Muljo SA, Kung AL,
Ganesan S, Drapkin R, Jenuwein T, Livingston DM and Rajewsky K:
Dicer-deficient mouse embryonic stem cells are defective in
differentiation and centromeric silencing. Genes Dev. 19:489–501.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Lei L, Jin S, Gonzalez G, Behringer RR and
Woodruff TK: The regulatory role of Dicer in folliculogenesis in
mice. Mol Cell Endocrinol. 315:63–73. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Otsuka M, Zheng M, Hayashi M, Lee JD,
Yoshino O, Lin S and Han J: Impaired microRNA processing causes
corpus luteum insufficiency and infertility in mice. J Clin Invest.
118:1944–1954. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Hossain MM, Cao M, Wang Q, Kim JY,
Schellander K, Tesfaye D and Tsang BK: Altered expression of miRNAs
in a dihydrotestosterone-induced rat PCOS model. J Ovarian Res.
6:362013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Malone CD, Brennecke J, Dus M, Stark A,
McCombie WR, Sachidanandam R and Hannon GJ: Specialized piRNA
pathways act in germline and somatic tissues of the Drosophila
ovary. Cell. 137:522–535. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Li C, Vagin VV, Lee S, Xu J, Ma S, Xi H,
Seitz H, Horwich MD, Syrzycka M, Honda BM, et al: Collapse of
germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs
in flies. Cell. 137:509–521. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Saito K, Inagaki S, Mituyama T, Kawamura
Y, Ono Y, Sakota E, Kotani H, Asai K, Siomi H and Siomi MC: A
regulatory circuit for piwi by the large Maf gene traffic jam in
Drosophila. Nature. 461:1296–1299. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Sasaki H and Matsui Y: Epigenetic events
in mammalian germ-cell development: Reprogramming and beyond. Nat
Rev Genet. 9:129–140. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Esquela-Kerscher A and Slack FJ:
OncomiRs-microRNAs with a role in cancer. Nat Rev Cancer.
6:259–269. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Hammond SM: MicroRNAs as tumor
suppressors. Nat Genet. 39:582–583. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Croce CM: Causes and consequences of
microRNA dysregulation in cancer. Nat Rev Genet. 10:704–714. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Calin GA, Sevignani C, Dumitru CD, Hyslop
T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M
and Croce CM: Human microRNA genes are frequently located at
fragile sites and genomic regions involved in cancers. Proc Natl
Acad Sci USA. 101:2999–3004. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Lanz RB, McKenna NJ, Onate SA, Albrecht U,
Wong J, Tsai SY, Tsai MJ and O'Malley BW: A steroid receptor
coactivator, SRA, functions as an RNA and is present in an SRC-1
complex. Cell. 97:17–27. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Cooper C, Guo J, Yan Y,
Chooniedass-Kothari S, Hube F, Hamedani MK, Murphy LC, Myal Y and
Leygue E: Increasing the relative expression of endogenous
non-coding Steroid Receptor RNA Activator (SRA) in human breast
cancer cells using modified oligonucleotides. Nucleic Acids Res.
37:4518–4531. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Lanz RB, Chua SS, Barron N, Söder BM,
DeMayo F and O'Malley BW: Steroid receptor RNA activator stimulates
proliferation as well as apoptosis in vivo. Mol Cell Biol.
23:7163–7176. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Miura K, Obama M, Yun K, Masuzaki H, Ikeda
Y, Yoshimura S, Akashi T, Niikawa N, Ishimaru T and Jinno Y:
Methylation imprinting of H19 and SNRPN genes in human benign
ovarian teratomas. Am J Hum Genet. 65:1359–1367. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Yang F, Yi F, Zheng Z, Ling Z, Ding J, Guo
J, Mao W, Wang X, Wang X, Ding X, et al: Characterization of a
carcinogenesis-associated long non-coding RNA. RNA Biol. 9:110–116.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Lee JH, Schütte D, Wulf G, Füzesi L,
Radzun HJ, Schweyer S, Engel W and Nayernia K: Stem-cell protein
Piwil2 is widely expressed in tumors and inhibits apoptosis through
activation of Stat3/Bcl-XL pathway. Hum Mol Genet. 15:201–211.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Chang LS, Lin SY, Lieu AS and Wu TL:
Differential expression of human 5S snoRNA genes. Biochem Biophys
Res Commun. 299:196–200. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Liao J, Yu L, Mei Y, Guarnera M, Shen J,
Li R, Liu Z and Jiang F: Small nucleolar RNA signatures as
biomarkers for non-small-cell lung cancer. Mol Cancer. 9:1982010.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Dong XY, Guo P, Boyd J, Sun X, Li Q, Zhou
W and Dong JT: Implication of snoRNA U50 in human breast cancer. J
Genet Genomics. 36:447–454. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Roth LW, McCallie B, Alvero R, Schoolcraft
WB, Minjarez D and Katz-Jaffe MG: Altered microRNA and gene
expression in the follicular fluid of women with polycystic ovary
syndrome. J Assist Reprod Genet. 31:355–362. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Liu S, Zhang X, Shi C, Lin J, Chen G, Wu
B, Wu L, Shi H, Yuan Y, Zhou W, et al: Altered microRNAs expression
profiling in cumulus cells from patients with polycystic ovary
syndrome. J Transl Med. 13:2382015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Lin L, Du T, Huang J, Huang LL and Yang
DZ: Identification of differentially expressed microRNAs in the
ovary of polycystic ovary syndrome with hyperandrogenism and
insulin resistance. Chin Med J (Enql). 128:169–174. 2015.
View Article : Google Scholar
|
|
73
|
Lydon JP, DeMayo FJ, Funk CR, Mani SK,
Hughes AR, Montgomery CA Jr, Shyamala G, Conneely OM and O'Malley
BW: Mice lacking progesterone receptor exhibit pleiotropic
reproductive abnormalities. Genes Dev. 9:2266–2278. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zurvarra FM, Salvetti NR, Mason JI,
Velazquez MM, Alfaro NS and Ortega HH: Disruption in the expression
and immunolocalisation of steroid receptors and steroidogenic
enzymes in letrozole-induced polycystic ovaries in rat. Reprod
Fertil Dev. 21:827–839. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhao X, Patton JR, Davis SL, Florence B,
Ames SJ and Spanjaard RA: Regulation of nuclear receptor activity
by a pseudouridine synthase through posttranscriptional
modification of steroid receptor RNA activator. Mol Cell.
15:549–558. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Takayama K, Tsutsumi S, Katayama S,
Okayama T, Horie-Inoue K, Ikeda K, Urano T, Kawazu C, Hasegawa A,
Ikeo K, et al: Integration of cap analysis of gene expression and
chromatin immunoprecipitation analysis on array reveals genome-wide
androgen receptor signaling in prostate cancer cells. Oncogene.
30:619–630. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Kuang H, Han D, Xie J, Yan Y, Li J and Ge
P: Profiling of differentially expressed microRNAs in premature
ovarian failure in an animal model. Gynecol Endocrinol. 30:57–61.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K,
Guo J, Zhang Y, Chen J, Guo X, et al: Characterization of microRNAs
in serum: A novel class of biomarkers for diagnosis of cancer and
other diseases. Cell Res. 18:997–1006. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Long W, Zhao C, Ji C, Ding H, Cui Y, Guo
X, Shen R and Liu J: Characterization of serum microRNAs profile of
PCOS and identification of novel non-invasive biomarkers. Cell
Physiol Biochem. 33:1304–1315. 2014. View Article : Google Scholar : PubMed/NCBI
|