Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
April-2017 Volume 15 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2017 Volume 15 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

MicroRNA-34c is regulated by p53 and is involved in sevoflurane-induced apoptosis in the developing rat brain potentially via the mitochondrial pathway

  • Authors:
    • Xue Zhou
    • Dongfeng Xian
    • Jiehua Xia
    • Ying Tang
    • Wenda Li
    • Xiaohui Chen
    • Zhibin Zhou
    • Dihan Lu
    • Xia Feng
  • View Affiliations / Copyright

    Affiliations: Department of Anesthesiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China, Department of Anatomy, Zhong Shan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China, Department of Hepatobiliary Surgery, The Sun Yat‑sen Memorial Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
    Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 2204-2212
    |
    Published online on: March 1, 2017
       https://doi.org/10.3892/mmr.2017.6268
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The commonly used inhalation anesthetic, sevoflurane, has been previously demonstrated to induce apoptosis in the developing brain; however, the underlying molecular mechanisms remain largely unknown. MicroRNAs (miRNAs) serve important roles in multiple physiological/pathological processes, such as cell death and survival. In the present study, the miRNA sequence that was most closely associated with sevoflurane‑induced apoptosis in the hippocampus of neonatal rat brains was identified. Seven‑day‑old Sprague Dawley rats were first exposed to 2.3% sevoflurane for 6 h. Hippocampal brain tissues were harvested at 6 h following sevoflurane exposure. Cleaved caspase‑3 levels were examined using an immunofluorescence assay. Alterations in miRNA expression were assessed by microarray analysis and reverse transcription-quantitative polymerase chain reaction. The protein levels of p53, phosphorylated (p)‑p53, B-cell lymphoma-2 (Bcl-2) and Bax were assessed by western blot analysis. Sevoflurane exposure significantly increased the levels of cleaved caspase‑3 in the hippocampus. In addition, among the 688 miRNAs that were observed to be expressed in the hippocampus, sevoflurane exposure altered the expression levels of 266 miRNAs. Among these differentially expressed miRNAs, eight were significantly upregulated and one (miRNA‑34c) was significantly downregulated following sevoflurane exposure. Bioinformatics analyses indicated the miRNA‑34c was a direct downstream target of p53. Sevoflurane exposure induced significant alterations in the level of p‑p53, Bcl‑2 and Bax in the hippocampus of neonatal rats. In conclusion, the results of the present study suggest that miRNA‑34c may be regulated by p53 and is involved in sevoflurane‑induced neural apoptosis in the hippocampus of developing rat brains, potentially via the mitochondrial pathway.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Wilder RT, Flick RP, Sprung J, Katusic SK, Barbaresi WJ, Mickelson C, Gleich SJ, Schroeder DR, Weaver AL and Warner DO: Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology. 110:796–804. 2009. View Article : Google Scholar : PubMed/NCBI

2 

DiMaggio C, Sun LS and Li G: Early childhood exposure to anesthesia and risk of developmental and behavioral disorders in a sibling birth cohort. Anesth Analg. 113:1143–1151. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Ing C, DiMaggio C, Whitehouse A, Hegarty MK, Brady J, von U, ngern-Sternberg BS, Davidson A, Wood AJ, Li G and Sun LS: Long-term differences in language and cognitive function after childhood exposure to anesthesia. Pediatrics. 130:e476–e485. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Hansen TG, Pedersen JK, Henneberg SW, Pedersen DA, Murray JC, Morton NS and Christensen K: Academic performance in adolescence after inguinal hernia repair in infancy: A nationwide cohort study. Anesthesiology. 114:1076–1085. 2011. View Article : Google Scholar : PubMed/NCBI

5 

Sun L: Early childhood general anaesthesia exposure and neurocognitive development. Br J Anaesth. 105 Suppl 1:i61–i68. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Deng M, Hofacer RD, Jiang C, Joseph B, Hughes EA, Jia B, Danzer SC and Loepke AW: Brain regional vulnerability to anaesthesia-induced neuroapoptosis shifts with age at exposure and extends into adulthood for some regions. Br J Anaesth. 113:443–451. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Zou X, Liu F, Zhang X, Patterson TA, Callicott R, Liu S, Hanig JP, Paule MG, Slikker W Jr and Wang C: Inhalation anesthetic-induced neuronal damage in the developing rhesus monkey. Neurotoxicol Teratol. 33:592–597. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Feng X, Liu JJ, Zhou X, Song FH, Yang XY, Chen XS, Huang WQ, Zhou LH and Ye JH: Single sevoflurane exposure decreases neuronal nitric oxide synthase levels in the hippocampus of developing rats. Br J Anaesth. 109:225–233. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Zhang X, Xue Z and Sun A: Subclinical concentration of sevoflurane potentiates neuronal apoptosis in the developing C57BL/6 mouse brain. Neurosci Lett. 447:109–114. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Satomoto M, Satoh Y, Terui K, Miyao H, Takishima K, Ito M and Imaki J: Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice. Anesthesiology. 110:628–637. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Pan ZQ, Lu XF, Shao C, Zhang C, Yang J, Ma T, Zhang LC and Cao JL: The effects of sevoflurane anesthesia on rat hippocampus: A genomic expression analysis. Brain Res. 1381:124–133. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Carthew RW and Sontheimer EJ: Origins and mechanisms of miRNAs and siRNAs. Cell. 136:642–655. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Moreno-Moya JM, Vilella F and Simón C: MicroRNA: Key gene expression regulators. Fertil Steril. 101:1516–1523. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Goto G, Hori Y, Ishikawa M, Tanaka S and Sakamoto A: Changes in the gene expression levels of microRNAs in the rat hippocampus by sevoflurane and propofol anesthesia. Mol Med Rep. 9:1715–1722. 2014.PubMed/NCBI

15 

Jiang XL, Du BX, Chen J, Liu L, Shao WB and Song J: MicroRNA-34a negatively regulates anesthesia-induced hippocampal apoptosis and memory impairment through FGFR1. Int J Clin Exp Pathol. 7:6760–6767. 2014.PubMed/NCBI

16 

He L, He X, Lim LP, De Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, et al: A microRNA component of the p53 tumour suppressor network. Nature. 447:1130–1134. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Zovoilis A, Agbemenyah HY, Agis-Balboa RC, Stilling RM, Edbauer D, Rao P, Farinelli L, Delalle I, Schmitt A, Falkai P, et al: microRNA-34c is a novel target to treat dementias. Embo J. 30:4299–4308. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Cha YH, Kim NH, Park C, Lee I, Kim HS and Yook JI: MiRNA-34 intrinsically links p53 tumor suppressor and Wnt signaling. Cell Cycle. 11:1273–1281. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Suzuki HI and Miyazono K: Dynamics of microRNA biogenesis: Crosstalk between p53 network and microRNA processing pathway. J Mol Med (Berl). 88:1085–1094. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Tang Y, Ling ZM, Fu R, Li YQ, Cheng X, Song FH, Luo HX and Zhou LH: Time-specific microRNA changes during spinal motoneuron degeneration in adult rats following unilateral brachial plexus root avulsion: Ipsilateral vs. contralateral changes. BMC Neurosci. 15:922014. View Article : Google Scholar : PubMed/NCBI

21 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C (T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

22 

Yudkowitz FS: Anesthetics and the developing brain. Semin Cardiothorac Vasc Anesth. 14:44–45. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Lemkuil BP, Head BP, Pearn ML, Patel HH, Drummond JC and Patel PM: Isoflurane neurotoxicity is mediated by p75 (NTR)-RhoA activation and actin depolymerization. Anesthesiology. 114:49–57. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Zhou X, Song FH, He W, Yang XY, Zhou ZB, Feng X and Zhou LH: Neonatal exposure to sevoflurane causes apoptosis and reduces nNOS protein expression in rat hippocampus. Mol Med Rep. 6:543–546. 2012.PubMed/NCBI

25 

Haseneder R, Kratzer S, von Meyer L, Eder M, Kochs E and Rammes G: Isoflurane and sevoflurane dose-dependently impair hippocampal long-term potentiation. Eur J Pharmacol. 623:47–51. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Brambrink AM, Evers AS, Avidan MS, Farber NB, Smith DJ, Martin LD, Dissen GA, Creeley CE and Olney JW: Ketamine-induced neuroapoptosis in the fetal and neonatal rhesus macaque brain. Anesthesiology. 116:372–384. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Maroof H, Salajegheh A, Smith RA and Lam AK: Role of microRNA-34 family in cancer with particular reference to cancer angiogenesis. Exp Mol Pathol. 97:298–304. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Corney DC, Flesken-Nikitin A, Godwin AK, Wang W and Nikitin AY: MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res. 67:8433–8438. 2007. View Article : Google Scholar : PubMed/NCBI

29 

Kanehisa M, Goto S, Sato Y, Furumichi M and Tanabe M: KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40(Database issue): D109–D114. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Panduri V, Surapureddi S, Soberanes S, Weitzman SA, Chandel N and Kamp DW: P53 mediates amosite asbestos-induced alveolar epithelial cell mitochondria-regulated apoptosis. Am J Respir Cell Mol Biol. 34:443–452. 2006. View Article : Google Scholar : PubMed/NCBI

31 

Cory S and Adams JM: The Bcl2 family: Regulators of the cellular life-or-death switch. Nat Rev Cancer. 2:647–656. 2002. View Article : Google Scholar : PubMed/NCBI

32 

Ouyang YB and Giffard RG: MicroRNAs affect BCL-2 family proteins in the setting of cerebral ischemia. Neurochem Int. 77:2–8. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Loop T, Dovi-Akue D, Frick M, Roesslein M, Egger L, Humar M, Hoetzel A, Schmidt R, Borner C, Pahl HL, et al: Volatile anesthetics induce caspase-dependent, mitochondria-mediated apoptosis in human T lymphocytes in vitro. Anesthesiology. 102:1147–1157. 2005. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhou X, Xian D, Xia J, Tang Y, Li W, Chen X, Zhou Z, Lu D and Feng X: MicroRNA-34c is regulated by p53 and is involved in sevoflurane-induced apoptosis in the developing rat brain potentially via the mitochondrial pathway. Mol Med Rep 15: 2204-2212, 2017.
APA
Zhou, X., Xian, D., Xia, J., Tang, Y., Li, W., Chen, X. ... Feng, X. (2017). MicroRNA-34c is regulated by p53 and is involved in sevoflurane-induced apoptosis in the developing rat brain potentially via the mitochondrial pathway. Molecular Medicine Reports, 15, 2204-2212. https://doi.org/10.3892/mmr.2017.6268
MLA
Zhou, X., Xian, D., Xia, J., Tang, Y., Li, W., Chen, X., Zhou, Z., Lu, D., Feng, X."MicroRNA-34c is regulated by p53 and is involved in sevoflurane-induced apoptosis in the developing rat brain potentially via the mitochondrial pathway". Molecular Medicine Reports 15.4 (2017): 2204-2212.
Chicago
Zhou, X., Xian, D., Xia, J., Tang, Y., Li, W., Chen, X., Zhou, Z., Lu, D., Feng, X."MicroRNA-34c is regulated by p53 and is involved in sevoflurane-induced apoptosis in the developing rat brain potentially via the mitochondrial pathway". Molecular Medicine Reports 15, no. 4 (2017): 2204-2212. https://doi.org/10.3892/mmr.2017.6268
Copy and paste a formatted citation
x
Spandidos Publications style
Zhou X, Xian D, Xia J, Tang Y, Li W, Chen X, Zhou Z, Lu D and Feng X: MicroRNA-34c is regulated by p53 and is involved in sevoflurane-induced apoptosis in the developing rat brain potentially via the mitochondrial pathway. Mol Med Rep 15: 2204-2212, 2017.
APA
Zhou, X., Xian, D., Xia, J., Tang, Y., Li, W., Chen, X. ... Feng, X. (2017). MicroRNA-34c is regulated by p53 and is involved in sevoflurane-induced apoptosis in the developing rat brain potentially via the mitochondrial pathway. Molecular Medicine Reports, 15, 2204-2212. https://doi.org/10.3892/mmr.2017.6268
MLA
Zhou, X., Xian, D., Xia, J., Tang, Y., Li, W., Chen, X., Zhou, Z., Lu, D., Feng, X."MicroRNA-34c is regulated by p53 and is involved in sevoflurane-induced apoptosis in the developing rat brain potentially via the mitochondrial pathway". Molecular Medicine Reports 15.4 (2017): 2204-2212.
Chicago
Zhou, X., Xian, D., Xia, J., Tang, Y., Li, W., Chen, X., Zhou, Z., Lu, D., Feng, X."MicroRNA-34c is regulated by p53 and is involved in sevoflurane-induced apoptosis in the developing rat brain potentially via the mitochondrial pathway". Molecular Medicine Reports 15, no. 4 (2017): 2204-2212. https://doi.org/10.3892/mmr.2017.6268
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team