|
1
|
Falzone L, Marconi A, Loreto C, Franco S,
Spandidos DA and Libra M: Occupational exposure to carcinogens:
Benzene, pesticides and fibers (Review). Mol Med Rep. 14:4467–4474.
2016.PubMed/NCBI
|
|
2
|
Clapp RW, Jacobs MM and Loechler EL:
Environmental and occupational causes of cancer: New evidence
2005–2007. Rev Environ Health. 23:1–37. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Boffetta P and Nyberg F: Contribution of
environmental factors to cancer risk. Br Med Bull. 68:71–94. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Blair A, Marrett L and Freeman Beane L:
Occupational cancer in developed countries. Environ Health.
10:(Suppl 1). S92011. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Hardell L, Carlberg M and Mild KH:
Case-control study of the association between the use of cellular
and cordless telephones and malignant brain tumors diagnosed during
2000–2003. Environ Res. 100:232–241. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Cheng H, Sathiakumar N, Graff J, Matthews
R and Delzell E: 1,3-Butadiene and leukemia among synthetic rubber
industry workers: Exposure-response relationships. Chem Biol
Interact. 166:15–24. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Rybicki BA, Neslund-Dudas C, Nock NL,
Schultz LR, Eklund L, Rosbolt J, Bock CH and Monaghan KG: Prostate
cancer risk from occupational exposure to polycyclic aromatic
hydrocarbons interacting with the GSTP1 Ile105Val
polymorphism. Cancer Detect Prev. 30:412–422. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Agalliu I, Eisen EA, Kriebel D, Quinn MM
and Wegman DH: A biological approach to characterizing exposure to
metalworking fluids and risk of prostate cancer (United States).
Cancer Causes Control. 16:323–331. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kellen E, Zeegers M, Paulussen A,
Vlietinck R, Vlem EV, Veulemans H and Buntinx F: Does occupational
exposure to PAHs, diesel and aromatic amines interact with smoking
and metabolic genetic polymorphisms to increase the risk on bladder
cancer? The Belgian case control study on bladder cancer risk.
Cancer Lett. 245:51–60. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Kellen E, Zeegers MP, Hond ED and Buntinx
F: Blood cadmium may be associated with bladder carcinogenesis: The
Belgian case-control study on bladder cancer. Cancer Detect Prev.
31:77–82. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhao Y, Krishnadasan A, Kennedy N,
Morgenstern H and Ritz B: Estimated effects of solvents and mineral
oils on cancer incidence and mortality in a cohort of aerospace
workers. Am J Ind Med. 48:249–258. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Sharma S, Kelly TK and Jones PA:
Epigenetics in cancer. Carcinogenesis. 31:27–36. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Herceg Z, Lambert MP, van Veldhoven K,
Demetriou C, Vineis P, Smith MT, Straif K and Wild CP: Towards
incorporating epigenetic mechanisms into carcinogen identification
and evaluation. Carcinogenesis. 34:1955–1967. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Smith MT, Guyton KZ, Gibbons CF, Fritz JM,
Portier CJ, Rusyn I, DeMarini DM, Caldwell JC, Kavlock RJ, Lambert
P, et al: Key characteristics of carcinogens as a basis for
organizing data on mechanisms of carcinogenesis. Environ Health
Perspect. 124:713–721. 2016.PubMed/NCBI
|
|
15
|
Koturbash I, Beland FA and Pogribny IP:
Role of epigenetic events in chemical carcinogenesis - A
justification for incorporating epigenetic evaluations in cancer
risk assessment. Toxicol Mech Methods. 21:289–297. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Pogribny IP and Rusyn I: Environmental
toxicants, epigenetics, and cancer. Adv Exp Med Biol. 754:215–232.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Chen JX, Zheng Y, West M and Tang MS:
Carcinogens preferentially bind at methylated CpG in the p53
mutational hot spots. Cancer Res. 58:2070–2075. 1998.PubMed/NCBI
|
|
18
|
Christensen BC, Godleski JJ, Marsit CJ,
Houseman EA, Lopez-Fagundo CY, Longacker JL, Bueno R, Sugarbaker
DJ, Nelson HH and Kelsey KT: Asbestos exposure predicts cell cycle
control gene promoter methylation in pleural mesothelioma.
Carcinogenesis. 29:1555–1559. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Lan Q, Zhang L, Li G, Vermeulen R,
Weinberg RS, Dosemeci M, Rappaport SM, Shen M, Alter BP, Wu Y, et
al: Hematotoxicity in workers exposed to low levels of benzene.
Science. 306:1774–1776. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Collins JJ, Ireland B, Buckley CF and
Shepperly D: Lymphohaematopoeitic cancer mortality among workers
with benzene exposure. Occup Environ Med. 60:676–679. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Infante PF, Rinsky RA, Wagoner JK and
Young RJ: Leukaemia in benzene workers. Lancet. 2:76–78. 1977.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Infante PF: Benzene exposure and multiple
myeloma: A detailed meta-analysis of benzene cohort studies. Ann N
Y Acad Sci. 1076:90–109. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Glass DC, Gray CN, Jolley DJ, Gibbons C,
Sim MR, Fritschi L, Adams GG, Bisby JA and Manuell R: Leukemia risk
associated with low-level benzene exposure. Epidemiology.
14:569–577. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kalousová M, Zima T, Tesar V,
Dusilová-Sulková S and Skrha J: Advanced glycoxidation end products
in chronic diseases - clinical chemistry and genetic background
(Review). Mutat Res. 579:37–46. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Subrahmanyam VV, Ross D, Eastmond DA and
Smith MT: Potential role of free radicals in benzene-induced
myelotoxicity and leukemia. Free Radic Biol Med. 11:495–515. 1991.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhang L, Eastmond DA and Smith MT: The
nature of chromosomal aberrations detected in humans exposed to
benzene. Crit Rev Toxicol. 32:1–42. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Costa C, Ozcagli E, Gangemi S, Schembri F,
Giambò F, Androutsopoulos V, Tsatsakis A and Fenga C: Molecular
biomarkers of oxidative stress and role of dietary factors in
gasoline station attendants. Food Chem Toxicol. 90:30–35. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Bollati V, Baccarelli A, Hou L, Bonzini M,
Fustinoni S, Cavallo D, Byun HM, Jiang J, Marinelli B, Pesatori AC,
et al: Changes in DNA methylation patterns in subjects exposed to
low-dose benzene. Cancer Res. 67:876–880. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Fenga C, Gangemi S and Costa C: Benzene
exposure is associated with epigenetic changes (Review). Mol Med
Rep. 13:3401–3405. 2016.PubMed/NCBI
|
|
30
|
Tabish AM, Poels K, Hoet P and Godderis L:
Epigenetic factors in cancer risk: Effect of chemical carcinogens
on global DNA methylation pattern in human TK6 cells. PLoS One.
7:e346742012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lübbert M, Oster W, Ludwig WD, Ganser A,
Mertelsmann R and Herrmann F: A switch toward demethylation is
associated with the expression of myeloperoxidase in acute
myeloblastic and promyelocytic leukemias. Blood. 80:2066–2073.
1992.PubMed/NCBI
|
|
32
|
McCubrey JA, Steelman LS, Franklin RA,
Abrams SL, Chappell WH, Wong EW, Lehmann BD, Terrian DM, Basecke J,
Stivala F, et al: Targeting the RAF/MEK/ERK, PI3K/AKT and p53
pathways in hematopoietic drug resistance. Adv Enzyme Regul.
47:64–103. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Xing C, Wang QF, Li B, Tian H, Ni Y, Yin S
and Li G: Methylation and expression analysis of tumor suppressor
genes p15 and p16 in benzene poisoning. Chem Biol Interact.
184:306–309. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Yu K, Shi YF, Yang KY, Zhuang Y, Zhu RH,
Xu X and Cai G: Decreased topoisomerase IIα expression and altered
histone and regulatory factors of topoisomerase IIα promoter in
patients with chronic benzene poisoning. Toxicol Lett. 203:111–117.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Bai W, Chen Y, Yang J, Niu P, Tian L and
Gao A: Aberrant miRNA profiles associated with chronic benzene
poisoning. Exp Mol Pathol. 96:426–430. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Bai W, Yang J, Yang G, Niu P, Tian L and
Gao A: Long non-coding RNA NR_045623 and NR_028291 involved in
benzene hematotoxicity in occupationally benzene-exposed workers.
Exp Mol Pathol. 96:354–360. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Morinaga K, Kishimoto T, Sakatani M, Akira
M, Yokoyama K and Sera Y: Asbestos-related lung cancer and
mesothelioma in Japan. Ind Health. 39:65–74. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Norbet C, Joseph A, Rossi SS, Bhalla S and
Gutierrez FR: Asbestos-related lung disease: A pictorial review.
Curr Probl Diagn Radiol. 44:371–382. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Tan C and Treasure T: Mesothelioma: Time
to take stock. J R Soc Med. 98:455–458. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kukreja J, Jaklitsch MT, Wiener DC,
Sugarbaker DJ, Burgers S and Baas P: Malignant pleural
mesothelioma: Overview of the North American and European
experience. Thorac Surg Clin. 14:435–445. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wang NS, Jaurand MC, Magne L, Kheuang L,
Pinchon MC and Bignon J: The interactions between asbestos fibers
and metaphase chromosomes of rat pleural mesothelial cells in
culture. A scanning and transmission electron microscopic study. Am
J Pathol. 126:343–349. 1987.PubMed/NCBI
|
|
42
|
Xu A, Wu LJ, Santella RM and Hei TK: Role
of oxyradicals in mutagenicity and DNA damage induced by
crocidolite asbestos in mammalian cells. Cancer Res. 59:5922–5926.
1999.PubMed/NCBI
|
|
43
|
Xu A, Huang X, Lien YC, Bao L, Yu Z and
Hei TK: Genotoxic mechanisms of asbestos fibers: Role of
extranuclear targets. Chem Res Toxicol. 20:724–733. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Tsou JA, Galler JS, Wali A, Ye W, Siegmund
KD, Groshen S, Laird PW, Turla S, Koss MN, Pass HI, et al: DNA
methylation profile of 28 potential marker loci in malignant
mesothelioma. Lung Cancer. 58:220–230. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Jones PA and Baylin SB: The fundamental
role of epigenetic events in cancer. Nat Rev Genet. 3:415–428.
2002.PubMed/NCBI
|
|
46
|
Saito Y, Liang G, Egger G, Friedman JM,
Chuang JC, Coetzee GA and Jones PA: Specific activation of
microRNA-127 with downregulation of the proto-oncogene BCL6
by chromatin-modifying drugs in human cancer cells. Cancer Cell.
9:435–443. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Lodygin D, Tarasov V, Epanchintsev A,
Berking C, Knyazeva T, Körner H, Knyazev P, Diebold J and Hermeking
H: Inactivation of miR-34a by aberrant CpG methylation in multiple
types of cancer. Cell Cycle. 7:2591–2600. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Busacca S, Germano S, De Cecco L, Rinaldi
M, Comoglio F, Favero F, Murer B, Mutti L, Pierotti M and Gaudino
G: MicroRNA signature of malignant mesothelioma with potential
diagnostic and prognostic implications. Am J Respir Cell Mol Biol.
42:312–319. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Pass HI, Goparaju C, Ivanov S, Donington
J, Carbone M, Hoshen M, Cohen D, Chajut A, Rosenwald S, Dan H, et
al: hsa-miR-29c* is linked to the prognosis of malignant pleural
mesothelioma. Cancer Res. 70:1916–1924. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kubo T, Toyooka S, Tsukuda K, Sakaguchi M,
Fukazawa T, Soh J, Asano H, Ueno T, Muraoka T, Yamamoto H, et al:
Epigenetic silencing of microRNA-34b/c plays an important role in
the pathogenesis of malignant pleural mesothelioma. Clin Cancer
Res. 17:4965–4974. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Christensen BC, Houseman EA, Godleski JJ,
Marsit CJ, Longacker JL, Roelofs CR, Karagas MR, Wrensch MR, Yeh
RF, Nelson HH, et al: Epigenetic profiles distinguish pleural
mesothelioma from normal pleura and predict lung asbestos burden
and clinical outcome. Cancer Res. 69:227–234. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Arita A and Costa M: Epigenetics in metal
carcinogenesis: Nickel, arsenic, chromium and cadmium. Metallomics.
1:222–228. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Salnikow K and Zhitkovich A: Genetic and
epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis:
Nickel, arsenic, and chromium. Chem Res Toxicol. 21:28–44. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Langård S: One hundred years of chromium
and cancer: A review of epidemiological evidence and selected case
reports. Am J Ind Med. 17:189–215. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Gibb HJ, Lees PS, Pinsky PF and Rooney BC:
Lung cancer among workers in chromium chemical production. Am J Ind
Med. 38:115–126. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Nickens KP, Patierno SR and Ceryak S:
Chromium genotoxicity: A double-edged sword. Chem Biol Interact.
188:276–288. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Beyersmann D: Effects of carcinogenic
metals on gene expression. Toxicol Lett. 127:63–68. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Park RM, Bena JF, Stayner LT, Smith RJ,
Gibb HJ and Lees PS: Hexavalent chromium and lung cancer in the
chromate industry: A quantitative risk assessment. Risk Anal.
24:1099–1108. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Takahashi Y, Kondo K, Hirose T, Nakagawa
H, Tsuyuguchi M, Hashimoto M, Sano T, Ochiai A and Monden Y:
Microsatellite instability and protein expression of the DNA
mismatch repair gene, hMLH1, of lung cancer in
chromate-exposed workers. Mol Carcinog. 42:150–158. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sun H, Zhou X, Chen H, Li Q and Costa M:
Modulation of histone methylation and MLH1 gene silencing by
hexavalent chromium. Toxicol Appl Pharmacol. 237:258–266. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
International Agency for Research on
Cancer: Nickel and nickel compounds, IARC monographs on the
evaluation of carcinogenic risks to humans. 100C:http://monographs.iarc.fr/ENG/Monographs/vol100C/mono100C-10.pdfAccessed.
December 12–2014.
|
|
62
|
Morgan LG and Usher V: Health problems
associated with nickel refining and use. Ann Occup Hyg. 38:189–198.
1994.PubMed/NCBI
|
|
63
|
Doll R, Morgan LG and Speizer FE: Cancers
of the lung and nasal sinuses in nickel workers. Br J Cancer.
24:623–632. 1970. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Polesel J, Franceschi S, Talamini R, Negri
E, Barzan L, Montella M, Libra M, Vaccher E, Franchin G, La Vecchia
C, et al: Tobacco smoking, alcohol drinking, and the risk of
different histological types of nasopharyngeal cancer in a low-risk
population. Oral Oncol. 47:541–545. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Denkhaus E and Salnikow K: Nickel
essentiality, toxicity, and carcinogenicity. Crit Rev Oncol
Hematol. 42:35–56. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Karaczyn AA, Golebiowski F and Kasprzak
KS: Truncation, deamidation, and oxidation of histone H2B in cells
cultured with nickel (II). Chem Res Toxicol. 18:1934–1942. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Golebiowski F and Kasprzak KS: Inhibition
of core histones acetylation by carcinogenic nickel (II). Mol Cell
Biochem. 279:133–139. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kowara R, Salnikow K, Diwan BA, Bare RM,
Waalkes MP and Kasprzak KS: Reduced Fhit protein expression in
nickel-transformed mouse cells and in nickel-induced murine
sarcomas. Mol Cell Biochem. 255:195–202. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Govindarajan B, Klafter R, Miller MS,
Mansur C, Mizesko M, Bai X, LaMontagne K Jr and Arbiser JL:
Reactive oxygen-induced carcinogenesis causes hypermethylation of
p16(Ink4a) and activation of MAP kinase. Mol Med. 8:1–8.
2002.PubMed/NCBI
|
|
70
|
Broday L, Peng W, Kuo MH, Salnikow K,
Zoroddu M and Costa M: Nickel compounds are novel inhibitors of
histone H4 acetylation. Cancer Res. 60:238–241. 2000.PubMed/NCBI
|
|
71
|
Chen H, Ke Q, Kluz T, Yan Y and Costa M:
Nickel ions increase histone H3 lysine 9 dimethylation and induce
transgene silencing. Mol Cell Biol. 26:3728–3737. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Gangemi S, Miozzi E, Teodoro M, Briguglio
G, De Luca A, Alibrando C, Polito I and Libra M: Occupational
exposure to pesticides as a possible risk factor for the
development of chronic diseases in humans (Review). Mol Med Rep.
14:4475–4488. 2016.PubMed/NCBI
|
|
73
|
Tchounwou PB, Centeno JA and Patlolla AK:
Arsenic toxicity, mutagenesis, and carcinogenesis - A health risk
assessment and management approach. Mol Cell Biochem. 255:47–55.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Barrett JC, Lamb PW, Wang TC and Lee TC:
Mechanisms of arsenic-induced cell transformation. Biol Trace Elem
Res. 21:421–429. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Lee TC, Tanaka N, Lamb PW, Gilmer TM and
Barrett JC: Induction of gene amplification by arsenic. Science.
241:79–81. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Baylin SB and Herman JG: DNA
hypermethylation in tumorigenesis: Epigenetics joins genetics.
Trends Genet. 16:168–174. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zhao CQ, Young MR, Diwan BA, Coogan TP and
Waalkes MP: Association of arsenic-induced malignant transformation
with DNA hypomethylation and aberrant gene expression. Proc Natl
Acad Sci USA. 94:10907–10912. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Chanda S, Dasgupta UB, Guhamazumder D,
Gupta M, Chaudhuri U, Lahiri S, Das S, Ghosh N and Chatterjee D:
DNA hypermethylation of promoter of gene p53 and p16 in
arsenic-exposed people with and without malignancy. Toxicol Sci.
89:431–437. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Cui X, Wakai T, Shirai Y, Hatakeyama K and
Hirano S: Chronic oral exposure to inorganic arsenate interferes
with methylation status of p16INK4a and RASSF1A and
induces lung cancer in A/J mice. Toxicol Sci. 91:372–381. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Miozzi E, Rapisarda V, Marconi A, Costa C,
Polito I, Spandidos DA, Libra M and Fenga C: Fluoro-edenite and
carbon nanotubes: The health impact of ‘asbestos-like’ fibres. Exp
Ther Med. 11:21–27. 2016.PubMed/NCBI
|
|
81
|
Rapisarda V, Salemi R, Marconi A, Loreto
C, Graziano AC, Cardile V, Basile MS, Candido S, Falzone L,
Spandidos DA, et al: Fluoro-edenite induces fibulin-3
overexpression in non-malignant human mesothelial cells. Oncol
Lett. 12:3363–3367. 2016.PubMed/NCBI
|
|
82
|
Rapisarda V, Ledda C, Migliore M, Salemi
R, Musumeci A, Bracci M, Marconi A, Loreto C and Libra M: FBLN-3 as
a biomarker of pleural plaques in workers occupationally exposed to
carcinogenic fibers: A pilot study. Future Oncol. 11:(Suppl).
35–37. 2015. View Article : Google Scholar : PubMed/NCBI
|