|
1
|
Becker M, De Bastiani MA, Parisi MM, Guma
FT, Markoski MM, Castro MA, Kaplan MH, Barbé-Tuana FM and Klamt F:
Integrated transcriptomics establish macrophage polarization
signatures and have potential applications for clinical health and
disease. Sci Rep. 5:133512015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Vishwanath P, Prashant A, Nataraj SM,
Kotekar N and Doddamani P: Can soluble CD163 predict outcome of
patients with acute respiratory distress from mechanical
ventilation? A pilot study. Indian J Crit Care Med. 17:355–358.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Buechler C, Eisinger K and Krautbauer S:
Diagnostic and prognostic potential of the macrophage specific
receptor CD163 in inflammatory diseases. Inflamm Allergy Drug
Targets. 12:391–402. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Bielecki M, Kowal K, Lapinska A,
Chyczewski L and Kowal-Bielecka O: Increased release of soluble
CD163 by the peripheral blood mononuclear cells is associated with
worse prognosis in patients with systemic sclerosis. Adv Med Sci.
58:126–133. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Thomsen HH, Møller HJ, Trolle C, Groth KA,
Skakkebæk A, Bojesen A, Høst C and Gravholt CH: The macrophage
low-grade inflammation marker sCD163 is modulated by exogenous sex
steroids. Endocr Connect. 2:216–224. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Shimizu K, Ogawa F, Yoshizaki A, Akiyama
Y, Kuwatsuka Y, Okazaki S, Tomita H, Takenaka M and Sato S:
Increased serum levels of soluble CD163 in patients with
scleroderma. Clin Rheumatol. 31:1059–1064. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Fabriek BO, Møller HJ, Vloet RP, van
Winsen LM, Hanemaaijer R, Teunissen CE, Uitdehaag BM, van den Berg
TK and Dijkstra CD: Proteolytic shedding of the macrophage
scavenger receptor CD163 in multiple sclerosis. J Neuroimmunol.
187:179–186. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Timmermann M and Högger P: Oxidative
stress and 8-iso-prostaglandin F (2alpha) induce ectodomain
shedding of CD163 and release of tumor necrosis factor-alpha from
human monocytes. Free Radic Biol Med. 39:98–107. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Periyalil HA, Wood LG, Scott HA, Jensen ME
and Gibson PG: Macrophage activation, age and sex effects of
immunometabolism in obese asthma. Eur Respir J. 45:388–395. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Davis BH and Zarev PV: Human monocyte
CD163 expression inversely correlates with soluble CD163 plasma
levels. Cytometry B Clin Cytom. 63:16–22. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Etzerodt A, Maniecki MB, Møller K, Møller
HJ and Moestrup SK: Tumor necrosis factor α-converting enzyme
(TACE/ADAM17) mediates ectodomain shedding of the scavenger
receptor CD163. J Leukoc Biol. 88:1201–1205. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Møller HJ, Aerts H, Grønbaek H, Peterslund
NA, Petersen Hyltoft P, Hornung N, Rejnmark L, Jabbarpour E and
Moestrup SK: Soluble CD163: A marker molecule for
monocyte/macrophage activity in disease. Scand J Clin Lab Invest
Suppl. 237:29–33. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Verreck FA, de Boer T, Langenberg DM, van
der Zanden L and Ottenhoff TH: Phenotypic and functional profiling
of human proinflammatory type-1 and anti-inflammatory type-2
macrophages in response to microbial antigens and IFN-gamma- and
CD40L-mediated costimulation. J Leukoc Biol. 79:285–293. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Savage ND, de Boer T, Walburg KV, Joosten
SA, van Meijgaarden K, Geluk A and Ottenhoff TH: Human
anti-inflammatory macrophages induce
Foxp3+GITR+CD25+ regulatory T
cells, which suppress via membrane-bound TGFbeta-1. J Immunol.
181:2220–2226. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Xu W, Roos A, Schlagwein N, Woltman AM,
Daha MR and van Kooten C: IL-10-producing macrophages
preferentially clear early apoptotic cells. Blood. 107:4930–4937.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Schmieder A, Schledzewski K, Michel J,
Schönhaar K, Morias Y, Bosschaerts T, Van den Bossche J, Dorny P,
Sauer A, Sticht C, et al: The CD20 homolog Ms4a8a integrates pro-
and anti-inflammatory signals in novel M2-like macrophages and is
expressed in parasite infection. Eur J Immunol. 42:2971–2982. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Paulus P, Holfeld J, Urbschat A, Mutlak H,
Ockelmann PA, Tacke S, Zacharowski K, Reissig C, Stay D and
Scheller B: Prednisolone as preservation additive prevents from
ischemia reperfusion injury in a rat model of orthotopic lung
transplantation. PLoS One. 8:e732982013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Duvel A, Frank C, Schnapper A, Schuberth
HJ and Sipka A: Classically or alternatively activated bovine
monocyte-derived macrophages in vitro do not resemble
CD163/Calprotectin biased macrophage populations in the teat.
Innate Immun. 18:886–896. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zizzo G and Cohen PL: IL-17 stimulates
differentiation of human anti-inflammatory macrophages and
phagocytosis of apoptotic neutrophils in response to IL-10 and
glucocorticoids. J Immunol. 190:5237–5246. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Fujimura T, Kambayashi Y, Furudate S,
Kakizaki A and Aiba S: A possible mechanism in the recruitment of
eosinophils and Th2 cells through CD163(+) M2 macrophages in the
lesional skin of eosinophilic cellulitis. Eur J Dermatol.
24:180–185. 2014.PubMed/NCBI
|
|
21
|
Onofre G, Koláčková M, Jankovičová K and
Krejsek J: Scavenger receptor CD163 and its biological functions.
Acta Medica (Hradec Kralove). 52:57–61. 2009. View Article : Google Scholar
|
|
22
|
Sulahian TH, Pioli PA, Wardwell K and
Guyre PM: Cross-linking of FcgammaR triggers shedding of the
hemoglobin-haptoglobin scavenger receptor CD163. J Leukoc Biol.
76:271–277. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kneidl J, Loffler B, Erat MC, Kalinka J,
Peters G, Roth J and Barczyk K: Soluble CD163 promotes recognition,
phagocytosis and killing of Staphylococcus aureus via binding of
specific fibronectin peptides. Cell Microbiol. 14:914–936. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Knudsen TB, Gustafson P, Kronborg G,
Kristiansen TB, Moestrup SK, Nielsen JO, Gomes V, Aaby P, Lisse I,
Møller HJ and Eugen-Olsen J: Predictive value of soluble
haemoglobin scavenger receptor CD163 serum levels for survival in
verified tuberculosis patients. Clin Microbiol Infect. 11:730–735.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Madsen M, Møller HJ, Nielsen MJ, Jacobsen
C, Graversen JH, van den Berg T and Moestrup SK: Molecular
characterization of the haptoglobin.hemoglobin receptor CD163.
Ligand binding properties of the scavenger receptor cysteine-rich
domain region. J Biol Chem. 279:51561–51567. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Maniecki MB, Etzerodt A, Moestrup SK,
Møller HJ and Graversen JH: Comparative assessment of the
recognition of domain-specific CD163 monoclonal antibodies in human
monocytes explains wide discrepancy in reported levels of cellular
surface CD163 expression. Immunobiology. 216:882–890. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Etzerodt A, Rasmussen MR, Svendsen P,
Chalaris A, Schwarz J, Galea I, Møller HJ and Moestrup SK:
Structural basis for inflammation-driven shedding of CD163
ectodomain and tumor necrosis factor-α in macrophages. J Biol Chem.
289:778–788. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Subramanian K, Du R, Tan NS, Ho B and Ding
JL: CD163 and IgG codefend against cytotoxic hemoglobin via
autocrine and paracrine mechanisms. J Immunol. 190:5267–5278. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Møller HJ, Nielsen MJ, Maniecki MB, Madsen
M and Moestrup SK: Soluble macrophage-derived CD163: A homogenous
ectodomain protein with a dissociable haptoglobin-hemoglobin
binding. Immunobiology. 215:406–412. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Craig DG, Lee P, Pryde EA, Hayes PC and
Simpson KJ: Serum neopterin and soluble CD163 as markers of
macrophage activation in paracetamol (acetaminophen)-induced human
acute liver injury. Aliment Pharmacol Ther. 38:1395–1404. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Hintz KA, Rassias AJ, Wardwell K, Moss ML,
Morganelli PM, Pioli PA, Givan AL, Wallace PK, Yeager MP and Guyre
PM: Endotoxin induces rapid metalloproteinase-mediated shedding
followed by up-regulation of the monocyte hemoglobin scavenger
receptor CD163. J Leukoc Biol. 72:711–717. 2002.PubMed/NCBI
|
|
32
|
Salagianni M, Galani IE, Lundberg AM,
Davos CH, Varela A, Gavriil A, Lyytikäinen LP, Lehtimäki T, Sigala
F, Folkersen L, et al: Toll-like receptor 7 protects from
atherosclerosis by constraining ‘inflammatory’ macrophage
activation. Circulation. 126:952–962. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Kowal K, Moniuszko M and Bodzenta-Lukaszyk
A: The effect of inhaled corticosteroids on the concentration of
soluble CD163 in induced sputum of allergic asthma patients. J
Investig Allergol Clin Immunol. 24:49–55. 2014.PubMed/NCBI
|
|
34
|
Goldstein JI, Goldstein KA, Wardwell K,
Fahrner SL, Goonan KE, Cheney MD, Yeager MP and Guyre PM: Increase
in plasma and surface CD163 levels in patients undergoing coronary
artery bypass graft surgery. Atherosclerosis. 170:325–332. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Hogger P and Sorg C: Soluble CD163
inhibits phorbol ester-induced lymphocyte proliferation. Biochem
Biophys Res Commun. 288:841–843. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Funding M, Vorum H, Nexø E, Moestrup SK,
Ehlers N and Møller HJ: Soluble CD163 and interleukin-6 are
increased in aqueous humour from patients with endothelial
rejection of corneal grafts. Acta Ophthalmol Scand. 83:234–239.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Jude C, Dejica D, Samasca G, Balacescu L
and Balacescu O: Soluble CD163 serum levels are elevated and
correlated with IL-12 and CXCL10 in patients with long-standing
rheumatoid arthritis. Rheumatol Int. 33:1031–1037. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kneidl J, Mysore V, Geraci J, Tuchscherr
L, Löffler B, Holzinger D, Roth J and Barczyk-Kahlert K: Soluble
CD163 masks fibronectin-binding protein A-mediated inflammatory
activation of Staphylococcus aureus infected monocytes. Cell
Microbiol. 16:364–377. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kusi KA, Gyan BA, Goka BQ, Dodoo D,
Obeng-Adjei G, Troye-Blomberg M, Akanmori BD and Adjimani JP:
Levels of soluble CD163 and severity of malaria in children in
Ghana. Clin Vaccine Immunol. 15:1456–1460. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Andersen ES, Rødgaard-Hansen S, Moessner
B, Christensen PB, Møller HJ and Weis N: Macrophage-related serum
biomarkers soluble CD163 (sCD163) and soluble mannose receptor
(sMR) to differentiate mild liver fibrosis from cirrhosis in
patients with chronic hepatitis C: A pilot study. Eur J Clin
Microbiol Infect Dis. 33:117–122. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Gaini S, Pedersen SS, Koldkaer OG,
Pedersen C, Moestrup SK and Møller HJ: New immunological serum
markers in bacteraemia: Anti-inflammatory soluble CD163, but not
proinflammatory high mobility group-box 1 protein, is related to
prognosis. Clin Exp Immunol. 151:423–431. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ayarci AO, Yilmaz E, Sigirli D, Budak F,
Göral G and Oral HB: Diagnostic value of serum concentrations of
high-mobility group-box protein 1 and soluble hemoglobin scavenger
receptor in brucellosis. Microbiol Immunol. 57:150–158. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Knudsen TB, Larsen K, Kristiansen TB,
Møller HJ, Tvede M, Eugen-Olsen J and Kronborg G: Diagnostic value
of soluble CD163 serum levels in patients suspected of meningitis:
Comparison with CRP and procalcitonin. Scand J Infect Dis.
39:542–553. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Costa-Hurtado M, Olvera A,
Martinez-Moliner V, Galofré-Milà N, Martínez P, Dominguez J and
Aragon V: Changes in macrophage phenotype after infection of pigs
with Haemophilus parasuis strains with different levels of
virulence. Infect Immun. 81:2327–2333. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Carrol ED, Mankhambo LA, Jeffers G, Parker
D, Guiver M, Newland P and Banda DL: IPD Study Group, Molyneux EM,
Heyderman RS: The diagnostic and prognostic accuracy of five
markers of serious bacterial infection in Malawian children with
signs of severe infection. PLoS One. 4:e66212009. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Cui Y, Zhang YC, Rong QF and Zhu Y:
Changes and significance of soluble CD163 in sepsis and severe
sepsis in children. Zhonghua Er Ke Za Zhi. 50:653–656. 2012.(In
Chinese). PubMed/NCBI
|
|
47
|
Su L, Feng L, Liu C, Jiang Z, Li M, Xiao
K, Yan P, Jia Y, Feng D and Xie L: Diagnostic value of urine sCD163
levels for sepsis and relevant acute kidney injury: A prospective
study. BMC Nephrol. 13:1232012. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Kjaergaard AG, Rodgaard-Hansen S, Dige A,
Krog J, Møller HJ and Tønnesen E: Monocyte expression and soluble
levels of the haemoglobin receptor (CD163/sCD163) and the mannose
receptor (MR/sMR) in septic and critically ill non-septic ICU
patients. PLoS One. 9:e923312014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Gronbaek H, Sandahl TD, Mortensen C,
Vilstrup H, Møller HJ and Møller S: Soluble CD163, a marker of
Kupffer cell activation, is related to portal hypertension in
patients with liver cirrhosis. Aliment Pharmacol Ther. 36:173–180.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Yang YY, Huang YT, Tsai TH, Hou MC, Lee
FY, Lee SD and Lin HC: Kupffer cell depletion attenuates
leptin-mediated methoxamine-stimulated portal perfusion pressure
and thromboxane A2 release in a rodent model of NASH-cirrhosis.
Clin Sci (Lond). 123:669–680. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Bover LC, Cardo-Vila M, Kuniyasu A, Sun J,
Rangel R, Takeya M, Aggarwal BB, Arap W and Pasqualini R: A
previously unrecognized protein-protein interaction between TWEAK
and CD163: Potential biological implications. J Immunol.
178:8183–8194. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Waidmann O, Brunner F, Herrmann E, Zeuzem
S, Piiper A and Kronenberger B: Macrophage activation is a
prognostic parameter for variceal bleeding and overall survival in
patients with liver cirrhosis. J Hepatol. 58:956–961. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yang YY, Hou MC, Lin MW, Chen PH, Liao WC,
Chu CJ and Lin HC: Combined platelet count with sCD163 and genetic
variants optimizes esophageal varices prediction in cirrhotic
patients. J Gastroenterol Hepatol. 28:112–121. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kazankov K, Barrera F, Møller HJ, Bibby
BM, Vilstrup H, George J and Grønbaek H: Soluble CD163, a
macrophage activation marker, is independently associated with
fibrosis in patients with chronic viral hepatitis B and C.
Hepatology. 60:521–530. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ye H, Wang LY, Zhao J and Wang K:
Increased CD163 expression is associated with acute-on-chronic
hepatitis B liver failure. World J Gastroenterol. 19:2818–2825.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Møller HJ, Grønbaek H, Schiødt FV,
Holland-Fischer P, Schilsky M, Munoz S, Hassanein T and Lee WM:
U.S. Acute Liver Failure Study Group: Soluble CD163 from activated
macrophages predicts mortality in acute liver failure. J Hepatol.
47:671–676. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Parkner T, Sorensen LP, Nielsen AR,
Fischer CP, Bibby BM, Nielsen S, Pedersen BK and Møller HJ: Soluble
CD163: A biomarker linking macrophages and insulin resistance.
Diabetologia. 55:1856–1862. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zanni MV, Burdo TH, Makimura H, Williams
KC and Grinspoon SK: Relationship between monocyte/macrophage
activation marker soluble CD163 and insulin resistance in obese and
normal-weight subjects. Clin Endocrinol (Oxf). 77:385–390. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Diaz-López A, Chacón MR, Bulló M,
Maymó-Masip E, Martínez-González MA, Estruch R, Vendrell J, Basora
J, Díez-Espino J, Covas MI and Salas-Salvadó J: Serum sTWEAK
concentrations and risk of developing type 2 diabetes in a high
cardiovascular risk population: A nested case-control study. J Clin
Endocrinol Metab. 98:3482–3490. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Møller HJ, Frikke-Schmidt R, Moestrup SK,
Nordestgaard BG and Tybjaerg-Hansen A: Serum soluble CD163 predicts
risk of type 2 diabetes in the general population. Clin Chem.
57:291–297. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Llauradó G, González-Clemente JM,
Maymó-Masip E, Subías D, Vendrell J and Chacón MR: Serum levels of
TWEAK and scavenger receptor CD163 in type 1 diabetes mellitus:
Relationship with cardiovascular risk factors. A case-control
study. PLoS One. 7:e439192012. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Fernandez-Boyanapalli R, Goleva E,
Kolakowski C, Min E, Day B, Leung DY, Riches DW, Bratton DL and
Sutherland ER: Obesity impairs apoptotic cell clearance in asthma.
J Allergy Clin Immunol. 131:1041–1047, 1047.e1-e3. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Shakeri-Manesch S, Zeyda M, Huber J,
Ludvik B, Prager G and Stulnig TM: Diminished upregulation of
visceral adipose heme oxygenase-1 correlates with waist-to-hip
ratio and insulin resistance. Int J Obes (Lond). 33:1257–1264.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Al-Daghri NM, Al-Attas OS, Bindahman LS,
Alokail MS, Alkharfy KM, Draz HM, Yakout S, McTernan PG, Sabico S
and Chrousos GP: Soluble CD163 is associated with body mass index
and blood pressure in hypertensive obese Saudi patients. Eur J Clin
Invest. 42:1221–1226. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kračmerová J, Rossmeislová L, Kováčová Z,
Klimčáková E, Polák J, Tencerová M, Mališová L, Štich V, Langin D
and Šiklová M: Soluble CD163 is associated with CD163 mRNA
expression in adipose tissue and with insulin sensitivity in
steady-state condition but not in response to calorie restriction.
J Clin Endocrinol Metab. 99:E528–E535. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Fjeldborg K, Christiansen T, Bennetzen M,
Møller JH, Pedersen SB and Richelsen B: The macrophage-specific
serum marker, soluble CD163, is increased in obesity and reduced
after dietary-induced weight loss. Obesity (Silver Spring).
21:2437–2443. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Longenecker CT, Jiang Y, Yun CH, Debanne
S, Funderburg NT, Lederman MM, Storer N, Labbato DE, Bezerra HG and
McComsey GA: Perivascular fat, inflammation, and cardiovascular
risk in HIV-infected patients on antiretroviral therapy. Int J
Cardiol. 168:4039–4045. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Knudsen A, Møller HJ, Katzenstein TL,
Gerstoft J, Obel N, Kronborg G, Benfield T, Kjaer A and Lebech AM:
Soluble CD163 does not predict first-time myocardial infarction in
patients infected with human immunodeficiency virus: A nested
case-control study. BMC Infect Dis. 13:2302013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Levy AP, Purushothaman KR, Levy NS,
Purushothaman M, Strauss M, Asleh R, Marsh S, Cohen O, Moestrup SK,
Moller HJ, et al: Downregulation of the hemoglobin scavenger
receptor in individuals with diabetes and the Hp 2–2 genotype:
Implications for the response to intraplaque hemorrhage and plaque
vulnerability. Circ Res. 101:106–110. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kowal-Bielecka O, Bielecki M, Guiducci S,
Trzcinska-Butkiewicz B, Michalska-Jakubus M, Matucci-Cerinic M,
Brzosko M, Krasowska D, Chyczewski L and Kowal K: High serum
sCD163/sTWEAK ratio is associated with lower risk of digital ulcers
but more severe skin disease in patients with systemic sclerosis.
Arthritis Res Ther. 15:R692013. View
Article : Google Scholar : PubMed/NCBI
|
|
71
|
Shaked I, Hanna DB, Gleißner C, Marsh B,
Plants J, Tracy D, Anastos K, Cohen M, Golub ET, Karim R, et al:
Macrophage inflammatory markers are associated with subclinical
carotid artery disease in women with human immunodeficiency virus
or hepatitis C virus infection. Arterioscler Thromb Vasc Biol.
34:1085–1092. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Urbonaviciene G, Martin-Ventura JL,
Lindholt JS, Urbonavicius S, Moreno JA, Egido J and Blanco-Colio
LM: Impact of soluble TWEAK and CD163/TWEAK ratio on long-term
cardiovascular mortality in patients with peripheral arterial
disease. Atherosclerosis. 219:892–899. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Moreno JA, Dejouvencel T, Labreuche J,
Smadja DM, Dussiot M, Martin-Ventura JL, Egido J, Gaussem P,
Emmerich J, Michel JB, et al: Peripheral artery disease is
associated with a high CD163/TWEAK plasma ratio. Arterioscler
Thromb Vasc Biol. 30:1253–1262. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Moreno JA, Ortega-Gómez A, Delbosc S,
Beaufort N, Sorbets E, Louedec L, Esposito-Farèse M, Tubach F,
Nicoletti A, Steg PG, et al: In vitro and in vivo evidence for the
role of elastase shedding of CD163 in human atherothrombosis. Eur
Heart J. 33:252–263. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Nakayama W, Jinnin M, Makino K, Kajihara
I, Makino T, Fukushima S, Inoue Y and Ihn H: Serum levels of
soluble CD163 in patients with systemic sclerosis. Rheumatol Int.
32:403–407. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Greisen SR, Møller HJ, Stengaard-Pedersen
K, Hetland ML, Hørslev-Petersen K, Jørgensen A, Hvid M and Deleuran
B: Soluble macrophage-derived CD163 is a marker of disease activity
and progression in early rheumatoid arthritis. Clin Exp Rheumatol.
29:689–692. 2011.PubMed/NCBI
|
|
77
|
De Rycke L, Baeten D, Foell D, Kruithof E,
Veys EM, Roth J and De Keyser F: Differential expression and
response to anti-TNFalpha treatment of infiltrating versus resident
tissue macrophage subsets in autoimmune arthritis. J Pathol.
206:17–27. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zizzo G, Guerrieri J, Dittman LM, Merri JT
and Cohen PL: Circulating levels of soluble MER in lupus reflect
M2c activation of monocytes/macrophages, autoantibody specificities
and disease activity. Arthritis Res Ther. 15:R2122013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Nakayama W, Jinnin M, Makino K, Kajihara
I, Makino T, Fukushima S, Sakai K, Inoue Y and Ihn H: CD163
expression is increased in the involved skin and sera of patients
with systemic lupus erythematosus. Eur J Dermatol. 22:512–517.
2012.PubMed/NCBI
|
|
80
|
Waidmann O, Köberle V, Bettinger D, Trojan
J, Zeuzem S, Schultheiß M, Kronenberger B and Piiper A: Diagnostic
and prognostic significance of cell death and macrophage activation
markers in patients with hepatocellular carcinoma. J Hepatol.
59:769–779. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Lim R, Lappas M, Riley C, Borregaard N,
Moller HJ, Ahmed N and Rice GE: Investigation of human cationic
antimicrobial protein-18 (hCAP-18), lactoferrin and CD163 as
potential biomarkers for ovarian cancer. J Ovarian Res. 6:52013.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
No JH, Moon JM, Kim K and Kim YB:
Prognostic significance of serum soluble CD163 level in patients
with epithelial ovarian cancer. Gynecol Obstet Invest. 75:263–267.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Sugaya M, Miyagaki T, Ohmatsu H, Suga H,
Kai H, Kamata M, Fujita H, Asano Y, Tada Y, Kadono T, et al:
Association of the numbers of CD163(+) cells in lesional skin and
serum levels of soluble CD163 with disease progression of cutaneous
T cell lymphoma. J Dermatol Sci. 68:45–51. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Andersen MN, Abildgaard N, Maniecki MB,
Møller HJ and Andersen NF: Monocyte/macrophage-derived soluble
CD163: A novel biomarker in multiple myeloma. Eur J Haematol.
93:41–47. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Dai C, Yao X, Gordon EM, Barochia A,
Cuento RA, Kaler M, Meyer KS, Keeran KJ, Nugent GZ, Jeffries KR, et
al: A CCL24-dependent pathway augments eosinophilic airway
inflammation in house dust mite-challenged Cd163 mice. Mucosal
Immunol. 9:702–717. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Akahori H, Karmali V, Polavarapu R, Lyle
AN, Weiss D, Shin E, Husain A, Naqvi N, Van Dam R, Habib A, et al:
CD163 interacts with TWEAK to regulate tissue regeneration after
ischaemic injury. Nat Commun. 6:77922015. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Etzerodt A, Kjolby M, Nielsen MJ, Maniecki
M, Svendsen P and Moestrup SK: Plasma clearance of hemoglobin and
haptoglobin in mice and effect of CD163 gene targeting disruption.
Antioxid Redox Signal. 18:2254–2263. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Draijer C, Robbe P, Boorsma CE, Hylkema MN
and Melgert BN: Characterization of macrophage phenotypes in three
murine models of house-dust-mite-induced asthma. Mediators Inflamm.
2013:6320492013. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Liu YC, Zou XB, Chai YF and Yao YM:
Macrophage polarization in inflammatory diseases. Int J Biol Sci.
10:520–529. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Byrne AJ, Mathie SA, Gregory LG and Lloyd
CM: Pulmonary macrophages: Key players in the innate defence of the
airways. Thorax. 70:1189–1196. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Kunz LI, Lapperre TS, Snoeck-Stroband JB,
Budulac SE, Timens W, van Wijngaarden S, Schrumpf JA, Rabe KF,
Postma DS, Sterk PJ, et al: Smoking status and anti-inflammatory
macrophages in bronchoalveolar lavage and induced sputum in COPD.
Respir Res. 12:342011. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zhang X, Zhong W, Meng Q, Lin Q, Fang C,
Huang X, Li C, Huang Y and Tan J: Ambient PM2.5 exposure
exacerbates severity of allergic asthma in previously sensitized
mice. J Asthma. 52:785–794. 2015.PubMed/NCBI
|
|
93
|
Martinez-Nunez RT, Louafi F and
Sanchez-Elsner T: The interleukin 13 (IL-13) pathway in human
macrophages is modulated by microRNA-155 via direct targeting of
interleukin 13 receptor alpha1 (IL13Ralpha1). J Biol Chem.
286:1786–1794. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Moreira AP, Cavassani KA, Hullinger R,
Rosada RS, Fong DJ, Murray L, Hesson DP and Hogaboam CM: Serum
amyloid P attenuates M2 macrophage activation and protects against
fungal spore-induced allergic airway disease. J Allergy Clin
Immunol. 126:712–721.e7. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Han H, Headley MB, Xu W, Comeau MR, Zhou B
and Ziegler SF: Thymic stromal lymphopoietin amplifies the
differentiation of alternatively activated macrophages. J Immunol.
190:904–912. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Hamzaoui A, Ammar J and Hamzaoui K:
Regulatory T cells in induced sputum of asthmatic children:
Association with inflammatory cytokines. Multidiscip Respir Med.
5:22–30. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Siddiqui S, Secor ER Jr and Silbart LK:
Broncho-alveolar macrophages express chemokines associated with
leukocyte migration in a mouse model of asthma. Cell Immunol.
281:159–169. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Abdullah M, Kahler D, Vock C, Reiling N,
Kugler C, Drömann D, Rupp J, Hauber HP, Fehrenbach H, Zabel P, et
al: Pulmonary haptoglobin and CD163 are functional immunoregulatory
elements in the human lung. Respiration. 83:61–73. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Axelsson J, Møller HJ, Witasp A, Qureshi
AR, Carrero JJ, Heimbürger O, Bárány P, Alvestrand A, Lindholm B,
Moestrup SK and Stenvinkel P: Changes in fat mass correlate with
changes in soluble sCD163, a marker of mature macrophages, in
patients with CKD. Am J Kidney Dis. 48:916–925. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Staples KJ, Hinks TS, Ward JA, Gunn V,
Smith C and Djukanović R: Phenotypic characterization of lung
macrophages in asthmatic patients: Overexpression of CCL17. J
Allergy Clin Immunol. 130:1404–1412.e7. 2012. View Article : Google Scholar : PubMed/NCBI
|