|
1
|
Foroni C, Broggini M, Generali D and Damia
G: Epithelial-mesenchymal transition and breast cancer: Role,
molecular mechanisms and clinical impact. Cancer Treat Rev.
38:689–697. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
McInnes LM, Jacobson N, Redfern A, Dowling
A, Thompson EW and Saunders CM: Clinical implications of
circulating tumor cells of breast cancer patients: Role of
epithelial-mesenchymal plasticity. Front. Oncol. 5:422015.
|
|
3
|
Wu Y, Sarkissyan M and Vadgama JV:
Epithelial-mesenchymal transition and breast cancer. J Clin Med.
5:E132016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Chalhoub N and Baker SJ: PTEN and the
PI3-kinase pathway in cancer. Annu Rev Pathol. 4:127–150. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Dirican E, Akkiprik M and Özer A: Mutation
distributions and clinical correlations of PIK3CA gene mutations in
breast cancer. Tumour Biol. 37:7033–7045. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Thorpe LM, Yuzugullu H and Zhao JJ: PI3K
in cancer: Divergent roles of isoforms, modes of activation and
therapeutic targeting. Nat Rev Cancer. 15:7–24. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Mayer IA and Arteaga CL: The PI3K/AKT
pathway as a target for cancer treatment. Annu Rev Med. 67:11–28.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Maruyama N, Miyoshi Y, Taguchi T, Tamaki
Y, Monden M and Noguchi S: Clinicopathologic analysis of breast
cancers with PIK3CA mutations in Japanese women. Clin Cancer Res.
13:408–814. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Pérez-Tenorio G, Alkhori L, Olsson B,
Waltersson MA, Nordenskjöld B, Rutqvist LE, Skoog L and Stål O:
PIK3CA mutations and PTEN loss correlate with similar prognostic
factors and are not mutually exclusive in breast cancer. Clin
Cancer Res. 13:3577–3584. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Kalinsky K, Jacks LM, Heguy A, Patil S,
Drobnjak M, Bhanot UK, Hedvat CV, Traina TA, Solit D, Gerald W and
Moynahan ME: PIK3CA mutation associates with improved outcome in
breast cancer. Clin Cancer Res. 15:5049–5059. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Li SY, Rong M, Grieu F and Iacopetta B:
PIK3CA mutations in breast cancer are associated with poor outcome.
Breast Cancer Res Treat. 96:91–95. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hennessy BT, Gonzalez-Angulo AM,
Stemke-Hale K, Gilcrease MZ, Krishnamurthy S, Lee JS, Fridlyand J,
Sahin A, Agarwal R, Joy C, et al: Characterization of a naturally
occurring breast cancer subset enriched in
epithelial-to-mesenchymal transition and stem cell characteristics.
Cancer Res. 69:4116–4124. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Cizkova M, Susini A, Vacher S,
Cizeron-Clairac G, Andrieu C, Driouch K, Fourme E, Lidereau R and
Bièche I: PIK3CA mutation impact on survival in breast cancer
patients and in ERα, PR and ERBB2-based subgroups. Breast Cancer
Res. 14:R282012. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Lee JJ, Loh K and Yap YS: PI3K/AKT/mTOR
inhibitors in breast cancer. Cancer Biol Med. 12:342–354.
2015.PubMed/NCBI
|
|
15
|
Baselga J, Campone M, Piccart M, Burris HA
III, Rugo HS, Sahmoud T, Noguchi S, Gnant M, Pritchard KI, Lebrun
F, et al: Everolimus in postmenopausal hormone-receptor-positive
advanced breast cancer. N Engl J Med. 366:520–529. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
André F, Hurvitz S, Fasolo A, Tseng LM,
Jerusalem G, Wilks S, O'Regan R, Isaacs C, Toi M, Burris H, et al:
Molecular alterations and everolimus efficacy in human epidermal
growth factor receptor 2-overexpressing metastatic breast cancers:
Combined exploratory biomarker analysis from BOLERO-1 and BOLERO-3.
J Clin Oncol. 34:2115–2124. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Hurvitz SA, Andre F, Jiang Z, Shao Z, Mano
MS, Neciosup SP, Tseng LM, Zhang Q, Shen K, Liu D, et al:
Combination of everolimus with trastuzumab plus paclitaxel as
first-line treatment for patients with HER2-positive advanced
breast cancer (BOLERO-1): A phase 3, randomised, double-blind,
multicentre trial. Lancet Oncol. 16:816–829. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
André F, O'Regan R, Ozguroglu M, Toi M, Xu
B, Jerusalem G, Masuda N, Wilks S, Arena F, Isaacs C, et al:
Everolimus for women with trastuzumab-resistant, HER2-positive,
advanced breast cancer (BOLERO-3): A randomised, double-blind,
placebo-controlled phase 3 trial. Lancet Oncol. 15:580–591. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Baselga J, Im SA, Iwata H, Clemons M, Ito
Y, Awada A, Chia S, Jagiello-Gruszfeld A, Pistilli B, Tseng LM, et
al: The phase III BELLE-2 trial. San Antonio breast cancer
symposium. Abstract S6-01, Presented December. 2015.
|
|
20
|
Aktas B, Tewes M, Fehm T, Hauch S, Kimmig
R and Kasimir-Bauer S: Stem cell and epithelial-mesenchymal
transition markers are frequently overexpressed in circulating
tumor cells of metastatic breast cancer patients. Breast Cancer
Res. 11:R462009. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Theodoropoulos PA, Polioudaki H, Agelaki
S, Kallergi G, Saridaki Z, Mavroudis D and Georgoulias V:
Circulating tumor cells with a putative stem cell phenotype in
peripheral blood of patients with breast cancer. Cancer Lett.
288:99–106. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kallergi G, Papadaki MA, Politaki E,
Mavroudis D, Georgoulias V and Agelaki S: Epithelial to mesenchymal
transition markers expressed in circulating tumour cells of early
and metastatic breast cancer patients. Breast Cancer Res.
13:R592011. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kasimir-Bauer S, Hoffmann O, Wallwiener D,
Kimmig R and Fehm T: Expression of stem cell and
epithelial-mesenchymal transition markers in primary breast cancer
patients with circulating tumor cells. Breast Cancer Res.
14:R152012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Papadaki MA, Kallergi G, Zafeiriou Z,
Manouras L, Theodoropoulos PA, Mavroudis D, Georgoulias V and
Agelaki S: Co-expression of putative stemness and
epithelial-to-mesenchymal transition markers on single circulating
tumour cells from patients with early and metastatic breast cancer.
BMC Cancer. 14:6512014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Krawczyk N, Meier-Stiegen F, Banys M,
Neubauer H, Ruckhaeberle E and Fehm T: Expression of stem cell and
epithelial-mesenchymal transition markers in circulating tumor
cells of breast cancer patients. Biomed Res Int. 2014:4157212014.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Giordano A, Gao H, Anfossi S, Cohen E,
Mego M, Lee BN, Tin S, De Laurentiis M, Parker CA, Alvarez RH, et
al: Epithelial-mesenchymal transition and stem cell markers in
patients with HER2-positive metastatic breast cancer. Mol Cancer
Ther. 11:2526–2534. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Hayes DF, Walker TM, Singh B, Vitetta ES,
Uhr JW, Gross S, Rao C, Doyle GV and Terstappen LW: Monitoring
expression of HER-2 on circulating epithelial cells in patients
with advanced breast cancer. Int J Oncol. 21:1111–1117.
2002.PubMed/NCBI
|
|
28
|
Generali D, Fox SB, Brizzi MP, Allevi G,
Bonardi S, Aguggini S, Milani M, Bersiga A, Campo L, Dionisio R, et
al: Down-regulation of phosphatidylinositol 3′-kinase/AKT/molecular
target of rapamycin metabolic pathway by primary letrozole-based
therapy in human breast cancer. Clin Cancer Res. 14:2673–2680.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
McCubrey JA, Sokolosky ML, Lehmann BD,
Taylor JR, Navolanic PM, Chappell WH, Abrams SL, Stadelman KM, Wong
EW, Misaghian N, et al: Alteration of Akt activity increases
chemotherapeutic drug and hormonal resistance in breast cancer yet
confers an achilles heel by sensitization to targeted therapy. Adv
Enzyme Regul. 48:113–135. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Droog M, Beelen K, Linn S and Zwart W:
Tamoxifen resistance: From bench to bedside. Eur J Pharmacol.
717:47–57. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Oken MM, Creech RH, Tormey DC, Horton J,
Davis TE, McFadden ET and Carbone PP: Toxicity and response
criteria of the eastern cooperative oncology group. Am J Clin
Oncol. 5:649–655. 1982. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
McCarty KS Jr, Miller LS, Cox EB, Konrath
J and McCarty KS Sr: Estrogen receptor analyses. Correlation of
biochemical and immunohistochemical methods using monoclonal
antireceptor antibodies Arch Pathol Lab Med. 109:716–721.
1985.PubMed/NCBI
|
|
33
|
Raimondi C, Gradilone A, Naso G, Vincenzi
B, Petracca A, Nicolazzo C, Palazzo A, Saltarelli R, Spremberg F,
Cortesi E and Gazzaniga P: Epithelial-mesenchymal transition and
stemness features in circulating tumor cells from breast cancer
patients. Breast Cancer Res Treat. 130:449–455. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Polioudaki H, Agelaki S, Chiotaki R,
Politaki E, Mavroudis D, Matikas A, Georgoulias V and
Theodoropoulos PA: Variable expression levels of keratin and
vimentin reveal differential EMT status of circulating tumor cells
and correlation with clinical characteristics and outcome of
patients with metastatic breast cancer. BMC Cancer. 15:3992015.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Bulfoni M, Gerratana L, Del Ben F,
Marzinotto S, Sorrentino M, Turetta M, Scoles G, Toffoletto B,
Isola M, Beltrami CA, et al: In patients with metastatic breast
cancer the identification of circulating tumor cells in
epithelial-to-mesenchymal transition is associated with a poor
prognosis. Breast Cancer Res. 18:302016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan
A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The
epithelial-mesenchymal transition generates cells with properties
of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Luo M, Brooks M and Wicha MS:
Epithelial-mesenchymal plasticity of breast cancer stem cells:
Implications for metastasis and therapeutic resistance. Curr Pharm
Des. 21:1301–1310. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Yu M, Bardia A, Wittner BS, Stott SL, Smas
ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM, et al:
Circulating breast tumor cells exhibit dynamic changes in
epithelial and mesenchymal composition. Science. 339:580–581. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Creighton CJ, Li X, Landis M, Dixon JM,
Neumeister VM, Sjolund A, Rimm DL, Wong H, Rodriguez A,
Herschkowitz JI, et al: Residual breast cancers after conventional
therapy display mesenchymal as well as tumor-initiating features.
Proc Natl Acad Sci USA. 106:13820–13825. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Mego M, Cierna Z, Janega P, Karaba M,
Minarik G, Benca J, Sedlácková T, Sieberova G, Gronesova P,
Manasova D, et al: Relationship between circulating tumor cells and
epithelial to mesenchymal transition in early breast cancer. BMC
Cancer. 15:5332015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Carmona FJ, Montemurro F, Kannan S, Rossi
V, Verma C, Baselga J and Scaltriti M: AKT signaling in
ERBB2-amplified breast cancer. Pharmacol Ther. 158:63–70. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Nahta R: Pharmacological strategies to
overcome HER2 cross-talk and Trastuzumab resistance. Curr Med Chem.
19:1065–1075. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Dillon RL, Marcotte R, Hennessy BT,
Woodgett JR, Mills GB and Muller WJ: Akt1 and Akt2 play distinct
roles in the initiation and metastatic phases of mammary tumor
progression. Cancer Res. 69:5057–5064. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wickenden JA and Watson CJ: Key signaling
nodes in mammary gland development and cancer. Signalling
downstream of PI3Kinase in mammary epithelium: A play in 3 Akts.
Breast Cancer Res. 12:2022010. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Miller TW, Forbes JT, Shah C, Wyatt SK,
Manning HC, Olivares MG, Sanchez V, Dugger TC, de Matos Granja N,
Narasanna A, et al: Inhibition of mammalian target of rapamycin is
required for optimal antitumor effect of HER2 inhibitors against
HER2-overexpressing cancer cells. Clin Cancer Res. 15:7266–7276.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Stemke-Hale K, Gonzalez-Angulo AM, Lluch
A, Neve RM, Kuo WL, Davies M, Carey M, Hu Z, Guan Y, Sahin A, et
al: An integrative genomic and proteomic analysis of PIK3CA, PTEN,
and AKT mutations in breast cancer. Cancer Res. 68:6084–6091. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Cancer Genome Atlas Network: Comprehensive
molecular portraits of human breast tumours. Nature. 490:61–70.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Hennessy BT, Smith DL, Ram PT, Lu Y and
Mills GB: Exploiting the PI3K/AKT pathway for cancer drug
discovery. Nat Rev Drug Discov. 4:988–1004. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Saal LH, Holm K, Maurer M, Memeo L, Su T,
Wang X, Yu JS, Malmström PO, Mansukhani M, Enoksson J, et al:
PIK3CA mutations correlate with hormone receptors, node metastasis,
and ERBB2 and are mutually exclusive with PTEN loss in human breast
carcinoma. Cancer Res. 65:2554–2559. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
https://www.mycancergenome.org/content/disease/breast-cancer/pik3caAccessed.
January 18–2017.
|
|
51
|
Karakas B, Bachman KE and Park BH:
Mutation of the PIK3CA oncogene in human cancers. Br J Cancer.
94:455–459. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Buttitta F, Felicioni L, Barassi F,
Martella C, Paolizzi D, Fresu G, Salvatore S, Cuccurullo F,
Mezzetti A, Campani D and Marchetti A: PIK3CA mutation and
histological type in breast carcinoma: High frequency of mutations
in lobular carcinoma. J Pathol. 208:350–355. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Bachmann KE, Argani P, Samuels Y, Silliman
N, Ptak J, Szabo S, Konishi H, Karakas B, Blair BG, Lin C, et al:
The PIK3CA gene is mutated with high frequency in human cancers.
Cancer Biol Ther. 3:772–775. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Levine DA, Bogomolniy F, Yee CJ, Lash A,
Barakat RR, Borgen PI and Boyd J: Frequent mutation of the PIK3CA
gene in ovarian and breast cancers. Clin Cancer Res. 11:2875–2878.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Campbell IG, Russell SE, Choong DY,
Montgomery KG, Ciavarella ML, Hooi CS, Cristiano BE, Pearson RB and
Phillips WA: Mutation of the PIK3CA gene in ovarian and breast
cancer. Cancer Res. 64:7678–7681. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wu G, Xing M, Mambo E, Huang X, Liu J, Guo
Z, Chatterjee A, Goldenberg D, Gollin SM, Sukumar S, et al: Somatic
mutation and gain of copy number of PIK3CA in human breast cancer.
Breast Cancer Res. 7:R609–R616. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Samuels Y, Wang Z, Bardelli A, Silliman N,
Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, et al:
High frequency of mutations of the PIK3CA gene in human cancers.
Science. 304:5542004. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lee JW, Soung YH, Kim SY, Lee HW, Park WS,
Nam SW, Kim SH, Lee JY, Yoo NJ and Lee SH: PIK3CA gene is
frequently mutated in breast carcinomas and hepatocellular
carcinomas. Oncogene. 24:1477–1480. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Tomita H, Tanaka K, Tanaka T and Hara A:
Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget.
7:11018–11032. 2016.PubMed/NCBI
|
|
60
|
Charafe-Jauffret E, Ginestier C, Iovino F,
Tarpin C, Diebel M, Esterni B, Houvenaeghel G, Extra JM, Bertucci
F, Jacquemier J, et al: Aldehyde dehydrogenase 1-positive cancer
stem cells mediate metastasis and poor clinical outcome in
inflammatory breast cancer. Clin Cancer Res. 16:45–55. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Kallergi G, Agelaki S, Kalykaki A,
Stournaras C, Mavroudis D and Georgoulias V: Phosphorylated EGFR
and PI3K/Akt signaling kinases are expressed in circulating tumor
cells of breast cancer patients. Breast Cancer Res. 10:R802008.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Schleifman EB, Desai R, Spoerke JM, Xiao
Y, Wong C, Abbas I, O'Brien C, Patel R, Sumiyoshi T, Fu L, et al:
Targeted biomarker profiling of matched primary and metastatic
estrogen receptor positive breast cancers. PLoS One. 9:e884012014.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Gonzalez-Angulo AM, Ferrer-Lozano J,
Stemke-Hale K, Sahin A, Liu S, Barrera JA, Burgues O, Lluch AM,
Chen H, Hortobagyi GN, et al: PI3K pathway mutations and PTEN
levels in primary and metastatic breast cancer. Mol Cancer Ther.
10:1093–1101. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kalinsky K, Heguy A, Bhanot UK, Patil S
and Moynahan ME: PIK3CA mutations rarely demonstrate genotypic
intratumoral heterogeneity and are selected for in breast cancer
progression. Breast Cancer Res Treat. 129:635–643. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Weigelt B, Glas AM, Wessels LF, Witteveen
AT, Peterse JL and van't Veer LJ: Gene expression profiles of
primary breast tumors maintained in distant metastases. Proc Natl
Acad Sci USA. 100:15901–15905. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Deng G, Krishnakumar S, Powell AA, Zhang
H, Mindrinos MN, Telli ML, Davis RW and Jeffrey SS: Single cell
mutational analysis of PIK3CA in circulating tumor cells and
metastases in breast cancer reveals heterogeneity, discordance, and
mutation persistence in cultured disseminated tumor cells from bone
marrow. BMC Cancer. 14:4562014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Markou A, Farkona S, Schiza C, Efstathiou
T, Kounelis S, Malamos N, Georgoulias V and Lianidou E: PIK3CA
mutational status in circulating tumor cells can change during
disease recurrence or progression in patients with breast cancer.
Clin Cancer Res. 20:5823–5834. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Mangone FR, Bobrovnitchaia IG, Salaorni S,
Manuli E and Nagai MA: PIK3CA exon 20 mutations are associated with
poor prognosis in breast cancer patients. Clinics (Sao Paulo).
67:1285–1290. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Loi S, Haibe-Kains B, Majjaj S, Lallemand
F, Durbecq V, Larsimont D, Gonzalez-Angulo AM, Pusztai L, Symmans
WF, Bardelli A, et al: PIK3CA mutations associated with gene
signature of low mTORC1 signaling and better outcomes in estrogen
receptor-positive breast cancer. Proc Natl Acad Sci USA.
107:10208–10213. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ginestier C, Hur MH, Charafe-Jauffret E,
Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG,
Liu S, et al: ALDH1 Is a marker of normal and malignant human
mammary stem cells and a predictor of poor clinical outcome. Cell
Stem Cell. 1:555–567. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Morimoto K, Kim SJ, Tanei T, Shimazu K,
Tanji Y, Taguchi T, Tamaki Y, Terada N and Noguchi S: Stem cell
marker aldehyde dehydrogenase 1-positive breast cancers are
characterized by negative estrogen receptor, positive human
epidermal growth factor receptor type 2, and high Ki67 expression.
Cancer Sci. 100:1062–1068. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu
Y, Martin-Trevino R, Shang L, McDermott SP, Landis MD, et al:
Breast cancer stem cells transition between epithelial and
mesenchymal states reflective of their normal counterparts. Stem
Cell Reports. 2:78–91. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Resetkova E, Reis-Filho JS, Jain RK, Mehta
R, Thorat MA, Nakshatri H and Badve S: Prognostic impact of ALDH1
in breast cancer: A story of stem cells and tumor microenvironment.
Breast Cancer Res Treat. 123:97–108. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zhong Y, Lin Y, Shen S, Zhou Y, Mao F,
Guan J and Sun Q: Expression of ALDH1 in breast invasive ductal
carcinoma: An independent predictor of early tumor relapse. Cancer
Cell Int. 13:602013. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhong Y, Shen S, Zhou Y, Mao F, Guan J,
Lin Y, Xu Y and Sun Q: ALDH1 is a better clinical indicator for
relapse of invasive ductal breast cancer than the
CD44+/CD24-phenotype. Med Oncol. 31:8642014. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zardavas D, Marvelde LT, Milne R, Joensuu
H, Moynahan ME, Hennessy B, Bieche I, Saal LH, Stal O, Iacopetta B,
et al: Tumor PIK3CA genotype and prognosis: A pooled analysis of
4,241 patients with early-stage breast cancer (BC). ASCO Annual
Meeting. 2015.
|
|
77
|
Mayer IA, Abramson VG, Isakoff SJ, Forero
A, Balko JM, Kuba MG, Sanders ME, Yap JT, Van den Abbeele AD, Li Y,
et al: Stand up to cancer phase Ib study of
pan-phosphoinositide-3-kinase inhibitor buparlisib with letrozole
in estrogen receptor-positive/human epidermal growth factor
receptor 2-negative metastatic breast cancer. J Clin Oncol.
32:1202–1209. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Dunlap J, Le C, Shukla A, Patterson J,
Presnell A, Heinrich MC, Corless CL and Troxell ML:
Phosphatidylinositol-3-kinase and AKT1 mutations occur early in
breast carcinoma. Breast Cancer Res Treat. 120:409–418. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Gil Ciruelos EM: Targeting the
PI3K/AKT/mTOR pathway in estrogen receptor-positive breast cancer.
Cancer Treat Rev. 40:862–871. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Campbell RA, Bhat-Nakshatri P, Patel NM,
Constantinidou D, Ali S and Nakshatri H: Phosphatidylinositol
3-kinase/AKT-mediated activation of estrogen receptor alpha: A new
model for anti-estrogen resistance. J Biol Chem. 276:9817–9824.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ackermann TF, Hörtnagl H, Wolfer DP,
Colacicco G, Sohr R, Lang F, Hellweg R and Lang UE:
Phosphatidylinositide dependent kinase deficiency increases anxiety
and decreases GABA and serotonin abundance in the amygdala. Cell
Physiol Biochem. 22:735–744. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kalkman HO: The role of the
phosphatidylinositide 3-kinase-protein kinase B pathway in
schizophrenia. Pharmacol Ther. 110:117–134. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Bendell JC, Rodon J, Burris HA, de Jonge
M, Verweij J, Birle D, Demanse D, De Buck SS, Ru QC, Peters M, et
al: Phase I, dose-escalation study of BKM120, an oral pan-Class I
PI3K inhibitor, in patients with advanced solid tumors. J Clin
Oncol. 30:282–290. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
PI3K Inhibitor Improves PFS in BELLE-2
trial. Cancer Discov. 6:115–116. 2016. View Article : Google Scholar
|
|
85
|
Bredemeier M, Edimiris P, Tewes M, Mach P,
Aktas B, Schellbach D, Wagner J, Kimmig R and Kasimir-Bauer S:
Establishment of a multimarker qPCR panel for the molecular
characterization of circulating tumor cells in blood samples of
metastatic breast cancer patients during the course of palliative
treatment. Oncotarget. 7:41677–41690. 2016.PubMed/NCBI
|