Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
July-2017 Volume 16 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2017 Volume 16 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Research and progress on ClC‑2 (Review)

  • Authors:
    • Hongwei Wang
    • Minghui Xu
    • Qingjie Kong
    • Peng Sun
    • Fengyun Yan
    • Wenying Tian
    • Xin Wang
  • View Affiliations / Copyright

    Affiliations: Department of Ophthalmology, People's Hospital of Jingjiang, Jingjiang, Jiangsu 214500, P.R. China, Library, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China, School of Computer Science and Information Technology, Northeast Normal University, Changchun, Jilin 130024, P.R. China, Department of Ophthalmology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China, Assets Division, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 11-22
    |
    Published online on: May 18, 2017
       https://doi.org/10.3892/mmr.2017.6600
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Chloride channel 2 (ClC-2) is one of the nine mammalian members of the ClC family. The present review discusses the molecular properties of ClC‑2, including CLCN2, ClC‑2 promoter and the structural properties of ClC‑2 protein; physiological properties; functional properties, including the regulation of cell volume. The effects of ClC‑2 on the digestive, respiratory, circulatory, nervous and optical systems are also discussed, in addition to the mechanisms involved in the regulation of ClC‑2. The review then discusses the diseases associated with ClC‑2, including degeneration of the retina, Sjögren's syndrome, age‑related cataracts, degeneration of the testes, azoospermia, lung cancer, constipation, repair of impaired intestinal mucosa barrier, leukemia, cystic fibrosis, leukoencephalopathy, epilepsy and diabetes mellitus. It was concluded that future investigations of ClC‑2 are likely to be focused on developing specific drugs, activators and inhibitors regulating the expression of ClC‑2 to treat diseases associated with ClC‑2. The determination of CLCN2 is required to prevent and treat several diseases associated with ClC‑2.
View Figures

Figure 1

View References

1 

Strange K: Of mice and worms: Novel insights into ClC-2 anion channel physiology. News Physiol Sci. 17:11–16. 2002.PubMed/NCBI

2 

Gründer S, Thiemann A, Pusch M and Jentsch TJ: Regions involved in the opening of ClC-2 chloride channel by voltage and cell volume. Nature. 360:759–762. 1992. View Article : Google Scholar : PubMed/NCBI

3 

Thiemann A, Gründer S, Pusch M and Jentsch TJ: A chloride channel widely expressed in epithelial and non-epithelial cells. Nature. 356:57–60. 1992. View Article : Google Scholar : PubMed/NCBI

4 

Furukawa T, Ogura T, Katayama Y and Hiraoka M: Characteristics of rabbit ClC-2 current expressed in Xenopus oocytes and its contribution to volume regulation. Am J Physiol. 274:C500–C512. 1998.PubMed/NCBI

5 

Bi MM, Hong S, Zhou HY, Wang HW, Wang LN and Zheng YJ: Chloride channelopathies of ClC-2. Int J Mol Sci. 15:218–249. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Middleton RE, Pheasant DJ and Miller C: Homodimeric architecture of a ClC-type chloride ion channel. Nature. 383:337–340. 1996. View Article : Google Scholar : PubMed/NCBI

7 

Hsiao SH, Parrish AR, Nahm SS, Abbott LC, McCool BA and Frye GD: Effects of early postnatal ethanol intubation on GABAergic synaptic proteins. Brain Res Dev Brain Res. 138:177–185. 2002. View Article : Google Scholar : PubMed/NCBI

8 

Zúñiga L, Niemeyer MI, Varela D, Catalán M, Cid LP and Sepulveda FV: The voltage-dependent ClC-2 chloride channel has a dual gating mechanism. J Physiol. 555:671–682. 2004. View Article : Google Scholar : PubMed/NCBI

9 

Jentsch TJ, Stein V, Weinreich F and Zdebik AA: Molecular structure and physiological function of chloride channels. Physiol Rev. 82:503–568. 2002. View Article : Google Scholar : PubMed/NCBI

10 

Jordt SE and Jentsch TJ: Molecular dissection of gating in the ClC-2 chloride channel. EMBO J. 16:1582–1592. 1997. View Article : Google Scholar : PubMed/NCBI

11 

Bösl MR, Stein V, Hübner C, Zdebik AA, Jordt SE, Mukhophadhyay AK, Davidoff MS, Holstein AF and Jentsch TJ: Male germ cells and photoreceptors, both depending on close cell-cell interactions, degenerate upon ClC-2 Cl(−) channel disruption. EMBO J. 20:1289–1299. 2001. View Article : Google Scholar : PubMed/NCBI

12 

Huber S, Braun G, Schröppel B and Horster M: Chloride channels ClC-2 and ICln mRNA expression differs in renal epithelial ontogeny. Kidney Int Suppl. 67:S149–S151. 1998. View Article : Google Scholar : PubMed/NCBI

13 

Gyömörey K, Yeger H, Ackerley C, Garami E and Bear CE: Expression of the chloride channel ClC-2 in the murine small intestine epithelium. Am J Physiol Cell Physiol. 279:C1787–C1794. 2000.PubMed/NCBI

14 

Bali M, Lipecka J, Edelman A and Fritsch J: Regulation of ClC-2 chloride channels in T84 cells by TGF-alpha. Am J Physiol Cell Physiol. 280:C1588–C1598. 2001.PubMed/NCBI

15 

Mohammad-Panah R, Gyomorey K, Rommens J, Choudhury M, Li C, Wang Y and Bear CE: ClC-2 contributes to native chloride secretion by a human intestinal cell line, Caco-2. J Biol Chem. 276:8306–8313. 2001. View Article : Google Scholar : PubMed/NCBI

16 

Catalán M, Cornejo I, Figueroa CD, Niemeyer MI, Sepúlveda FV and Cid LP: ClC-2 in guinea pig colon: mRNA. immunolabeling, and functional evidence for surface epithelium localization. Am J Physiol Gastrointest Liver Physiol. 283:G1004–G1013. 2002. View Article : Google Scholar : PubMed/NCBI

17 

Lipecka J, Bali M, Thomas A, Fanen P, Edelman A and Fritsch J: Distribution of ClC-2 chloride channel in rat and human epithelial tissues. Am J Physiol Cell Physiol. 282:C805–C816. 2002. View Article : Google Scholar : PubMed/NCBI

18 

Malinowska DH, Kupert EY, Bahinski A, Sherry AM and Cuppoletti J: Cloning: Functional expression, and characterization of a PKA-activated gastric Cl-channel. Am J Physiol. 268:C191–C200. 1995.PubMed/NCBI

19 

Sherry AM, Malinowska DH, Morris RE, Ciraolo GM and Cuppoletti J: Localization of ClC-2 Cl- channels in rabbit gastric mucosa. Am J Physiol Cell Physiol. 280:C1599–C1606. 2001.PubMed/NCBI

20 

Roman RM, Smith RL, Feranchak AP, Clayton GH, Doctor RB and Fitz JG: ClC-2 chloride channels contribute to HTC cell volume homeostasis. Am J Physiol Gastrointest Liver Physiol. 280:G344–G353. 2001.PubMed/NCBI

21 

Cid LP, Montrose-Rafizadeh C, Smith DI, Guggino WB and Cutting GR: Cloning of a putative human voltage-gated chloride channel (ClC-2) cDNA widely expressed in human tissues. Hum Mol Genet. 4:407–413. 1995. View Article : Google Scholar : PubMed/NCBI

22 

Sherry AM, Stroffekova K, Knapp LM, Kupert EY, Cuppoletti J and Malinowska DH: Characterization of the human pH- and PKA-activated ClC-2G(2 alpha) Cl- channel. Am J Physiol. 273:C384–C393. 1997.PubMed/NCBI

23 

Schwiebert EM, Cid-Soto LP, Stafford D, Carter M, Blaisdell CJ, Zeitlin PL, Guggino WB and Cutting GR: Analysis of ClC-2 channels as an alternative pathway for chloride conduction in cystic fibrosis airway cells. Proc Natl Acad Sci USA. 95:3879–3884. 1998. View Article : Google Scholar : PubMed/NCBI

24 

Blaisdell CJ, Edmonds RD, Wang XT, Guggino S and Zeitlin PL: pH-regulated chloride secretion in fetal lung epithelia. Am J Physiol Lung Cell Mol Physiol. 278:L1248–L1255. 2000.PubMed/NCBI

25 

Cuppoletti J, Tewari KP, Sherry AM, Kupert EY and Malinowska DH: ClC-2 CI- channels in human lung epithelia: Activation by arachidonic acid, amidation, and acid-activated omeprazole. Am J Physiol Cell Physiol. 281:C46–C54. 2001.PubMed/NCBI

26 

Murray CB, Morales MM, Flotte TR, McGrath-Morrow SA, Guggino WB and Zeitlin PL: ClC-2: A developmentally dependent chloride channel expressed in the fetal lung and downregulated after birth. Am J Respir Cell Mol Biol. 12:597–604. 1995. View Article : Google Scholar : PubMed/NCBI

27 

Enz R, Ross BJ and Cutting GR: Expression of the voltage-gated chloride channel ClC-2 in rod bipolar cells of the rat retina. J Neurosci. 19:9841–9847. 1999.PubMed/NCBI

28 

Park K, Arreola J, Begenisich T and Melvin JE: Comparison of voltage-activated CI- channels in rat parotid acinar cells with ClC-2 in a mammalian expression system. J Membr Biol. 163:87–95. 1998. View Article : Google Scholar : PubMed/NCBI

29 

Britton FC, Hatton WJ, Rossow CF, Duan D, Hume JR and Horowitz B: Molecular distribution of volume-regulated chloride channels (ClC-2 and ClC-3) in cardiac tissues. Am J Physiol Heart Circ Physiol. 279:H2225–H2233. 2000.PubMed/NCBI

30 

Sik A, Smith RL and Freund TF: Distribution of chloride channel-2-immunoreactive neuronal and astrocytic processes in the hippocampus. Neuroscience. 101:51–65. 2000. View Article : Google Scholar : PubMed/NCBI

31 

Srinivas SP, Maertens C, Goon LH, Goon L, Satpathy M, Yue BY, Droogmans G and Nilius B: Cell volume response to hyposmotic shock and elevated cAMP in bovine trabecular meshwork cells. Exp Eye Res. 78:15–26. 2004. View Article : Google Scholar : PubMed/NCBI

32 

Comes N, Gasull X, Gual A and Borrás T: Differential expression of the human chloride channel genes in the trabecular meshwork under stress conditions. Exp Eye Res. 80:801–813. 2005. View Article : Google Scholar : PubMed/NCBI

33 

Liang W and Zheng YJ: Effect of chloride channel inhibitor in phagocytic process of human trabecular mesh work cells. Chin J Gerontol. 30:906–908. 2010.

34 

Wang JX, Wang SM and Liu HY: Expression of ClC-2 Chloride channels in rat trabecular meshwork. Chin J Biologicals. 23:274–276. 2010.

35 

Xiong H, Li C, Garami E, Wang Y, Ramjeesingh M, Galley K and Bear CE: ClC-2 activation modulates regulatory volume decrease. J Membr Biol. 167:215–221. 1999. View Article : Google Scholar : PubMed/NCBI

36 

Worrell RT, Butt AG, Cliff WH and Frizzell RA: A volume-sensitive chloride conductance in human colonic cell line T84. Am J Physiol. 256:C1111–C1119. 1989.PubMed/NCBI

37 

Solc CK and Wine JJ: Swelling-induced and depolarization-induced Cl-channels in normal and cystic fibrosis epithelial cells. Am J Physiol. 261:C658–C674. 1991.PubMed/NCBI

38 

Jackson PS and Strange K: Single-channel properties of a volume-sensitive anion conductance. Current activation occurs by abrupt switching of closed channels to an open state. J Gen Physiol. 105:643–660. 1995. View Article : Google Scholar : PubMed/NCBI

39 

Strange K, Emma F and Jackson PS: Cellular and molecular physiology of volume-sensitive anion channels. Am J Physiol. 270:C711–C730. 1996.PubMed/NCBI

40 

Smith RL, Clayton GH, Wilcox CL, Escudero KW and Staley KJ: Differential expression of an inwardly rectifying chloride conductance in rat brain neurons: A potential mechanism for cell-specific modulation of postsynaptic inhibition. J Neurosci. 15:4057–4067. 1995.PubMed/NCBI

41 

Staley K, Smith R, Schaack J, Wilcox C and Jentsch TJ: Alteration of GABAA receptor function following gene transfer of the CLC-2 chloride channel. Neuron. 17:543–551. 1996. View Article : Google Scholar : PubMed/NCBI

42 

Chu S and Zeitlin PL: Alternative mRNA splice variants of the rat ClC-2 chloride channel gene are expressed in lung: Genomic sequence and organization of ClC-2. Nucleic Acids Res. 25:4153–4159. 1997. View Article : Google Scholar : PubMed/NCBI

43 

Chu S, Murray CB, Liu MM and Zeitlin PL: A short CIC-2 mRNA transcript is produced by exon skipping. Nucleic Acids Res. 24:3453–3457. 1996. View Article : Google Scholar : PubMed/NCBI

44 

Chu S, Blaisdell CJ, Liu MZ and Zeitlin PL: Perinatal regulation of the ClC-2 chloride channel in lung is mediated by Sp1 and Sp3. Am J Physiol. 276:L614–L624. 1999.PubMed/NCBI

45 

Dutzler R: The ClC family of chloride channels and transporters. Curr Opin Struct Biol. 16:439–446. 2006. View Article : Google Scholar : PubMed/NCBI

46 

Dutzler R: A structural perspective on ClC channel and transporter function. FEBS Lett. 581:2839–2844. 2007. View Article : Google Scholar : PubMed/NCBI

47 

Ramjeesingh M, Li C, Huan LJ, Garami E, Wang Y and Bear CE: Quaternary structure of the chloride channel ClC-2. Biochemistry. 39:13838–13847. 2000. View Article : Google Scholar : PubMed/NCBI

48 

Varela D, Niemeyer MI, Cid LP and Sepúlveda FV: Effect of an N-terminus deletion on voltage-dependent gating of the ClC-2 chloride channel. J Physiol. 544:363–372. 2002. View Article : Google Scholar : PubMed/NCBI

49 

Stölting G, Fischer M and Fahlke C: ClC-1 and ClC-2 form hetero-dimeric channels with novel protopore functions. Pflugers Arch. 466:2191–2204. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Fritsch J and Edelman A: Modulation of the hyperpolarization-activated Cl- current in human intestinal T84 epithelial cells by phosphorylation. J Physiol. 490:115–128. 1996. View Article : Google Scholar : PubMed/NCBI

51 

Flores CA, Niemeyer MI, Sepúlveda FV and Cid LP: Two splice variants derived from a Drosophila melanogaster candidate ClC gene generate ClC-2-type Cl- channels. Mol Membr Biol. 23:149–156. 2006. View Article : Google Scholar : PubMed/NCBI

52 

Qu C, Liang F, Smythe NM and Schulte BA: Identification of ClC-2 and CIC-K2 chloride channels in cultured rat type IV spiral ligament fibrocytes. J Assoc Res Otolaryngol. 8:205–219. 2007. View Article : Google Scholar : PubMed/NCBI

53 

Fritsch J and Edelman A: Osmosensitivity of the hyperpolarization-activated chloride current in human intestinal T84 cells. Am J Physiol. 272:C778–C786. 1997.PubMed/NCBI

54 

Speakem T, Kajitam H, Smith CP and Brown PD: Inward-rectifying anion channels are expressed in the epithelial cells of choroid plexus isolated from ClC-2 ‘knock-out’ mice. J Physiol. 539:385–390. 2002. View Article : Google Scholar : PubMed/NCBI

55 

Valverde MA, Mintenig GM and Sepúlveda FV: Differential effects of tamoxifen and I- on three distinguishable chloride currents activated in T84 intestinal cells. Pflugers Arch. 425:552–554. 1993. View Article : Google Scholar : PubMed/NCBI

56 

Chesnoy-Marchais D: Hyperpolarization-activated chloride channels in Aplysi a neurons. In Chloride Channels and Carriers in Nerve Muscle and Glial Cells Alvarez-Leefmans. Russell JMFJ: USA: New York Plenum Press; 14. pp. 367–382. 1990

57 

Arreola J, Park K, Melvin JE and Begenisich T: Three distinct chloride channels control anion movements in rat parotid acinar cells. J Physiol. 490:351–362. 1996. View Article : Google Scholar : PubMed/NCBI

58 

Díaz M, Valverde MA, Higgins CF, Rucăreanu C and Sepúlveda FV: Volume-activated chloride channels in HeLa cells are blocked by verapamil and dideoxyforskolin. Pflugers Arch. 422:347–353. 1993. View Article : Google Scholar : PubMed/NCBI

59 

Bond TD, Ambikapathy S, Mohammad S and Valverde MA: Osmosensitive C1- currents and their relevance to regulatory volume decrease in human intestinal T84 cells: Outwardly vs. Inwardly rectifying currents. J Physiol. 511:45–54. 1998. View Article : Google Scholar : PubMed/NCBI

60 

Furukawa T, Horikawa S, Terai T, Ogura T, Katayama Y and Hiraoka M: Molecular cloning and characterization of a novel truncated from (ClC-2 beta) of ClC-2 alpha (ClC-2G) in rabbit heart. FEBS Lett. 375:56–62. 1995. View Article : Google Scholar : PubMed/NCBI

61 

Chamberlin ME and Strange K: Anisosmotic cell volume regulation: A comparative view. Am J Physiol. 257:C159–C173. 1989.PubMed/NCBI

62 

Nehrke K, Arreola J, Nguyen HV, Pilato J, Richardson L, Okunade G, Baggs R, Shull GE and Melvin JE: Loss of hyperpolarization-activated Cl(−) current in salivary acinar cells from Clcn2 knockout mice. J Biol Chem. 277:23604–23611. 2002. View Article : Google Scholar : PubMed/NCBI

63 

Nighot MP, Nighot PK, Ma TY, Malinowska DH, Shull GE, Cuppoletti J and Blikslager AT: Genetic ablation of the ClC-2 Cl- Channel disrupts mouse gastric parietal cell acid secretion. PLoS One. 10:e01381742015. View Article : Google Scholar : PubMed/NCBI

64 

Hori K, Takahashi Y, Horikawa N, Furukawa T, Tsukada K, Takeguchi N and Sakai H: Is the ClC-2 chloride channel involved in the Cl- secretory mechanism of gastric parietal cells? FEBS Lett. 575:105–108. 2004. View Article : Google Scholar : PubMed/NCBI

65 

Liang W, Zheng WX, Sun LX and Zheng YJ: Effect of chloride channel 2 on trabecular meshwork cells under pressure stress condition. Chin J Ophthalmol Otorhinolaryngol. 12:26–29. 2012.

66 

Ugarte G, Delgado R, O'Day PM, Farjah F, Cid LP, Vergara C and Bacigalupo J: Putative ClC-2 chloride channel mediates inward rectification in Drosophila retinal photoreceptors. J Membr Biol. 207:151–160. 2005. View Article : Google Scholar : PubMed/NCBI

67 

Comes N, Abad E, Morales M, Borrás T, Gual A and Gasull X: Identification and functional characterization of ClC-2 chloride channels in trabecular meshwork cells. Exp Eye Res. 83:877–889. 2006. View Article : Google Scholar : PubMed/NCBI

68 

Murray CB, Chu S and Zeitlin PL: Gestational and tissue-specific regulation of C1C-2 chloride channel expression. Am J Physiol. 271:L829–L837. 1996.PubMed/NCBI

69 

Zhou L, Graeff RW, McCray PB Jr, Simonet WS and Whitsett JA: Keratinocyte growth factor stimulates CFTR-independent fluid secretion in the fetal lung in vitro. Am J Physiol. 271:L987–L994. 1996.PubMed/NCBI

70 

Blaisdell CJ, Morales MM, Andrade AC, Bamford P, Wasicko M and Welling P: Inhibition of CLC-2 chloride channel expression interrupts expansion of fetal lung cysts. Am J Physiol Lung Cell Mol Physiol. 286:L420–L426. 2004. View Article : Google Scholar : PubMed/NCBI

71 

Duan D, Ye L, Britton F, Horowitz B and Hume JR: A novel anionic inward rectifier in native cardiac myocytes. Circ Res. 86:E63–E71. 2000. View Article : Google Scholar : PubMed/NCBI

72 

Britton FC, Wang GL, Huang ZM, Ye L, Horowitz B, Hume JR and Duan D: Functional characterization of novel alternatively spliced ClC-2 chloride channel variants in the heart. J Biol Chem. 280:25871–25880. 2005. View Article : Google Scholar : PubMed/NCBI

73 

Huang ZM, Prasad C, Britton FC, Ye LL, Hatton WJ and Duan D: Functional role of CLC-2 chloride inward rectifier channels in cardiac sinoatrial nodal pacemaker cells. Mol Cell Cardiol. 47:121–132. 2009. View Article : Google Scholar

74 

Komukai K, Brette F and Orchard CH: Electrophysiological response of rat atrial myocytes to acidosis. Am J Physiol Heart Circ Physiol. 283:H715–H724. 2002. View Article : Google Scholar : PubMed/NCBI

75 

Komukai K, Brette F, Pascarel C and Orchard CH: Electrophysiological response of rat ventricular myocytes to acidosis. Am J Physiol Heart Circ Physiol. 283:H412–H422. 2002. View Article : Google Scholar : PubMed/NCBI

76 

Földy C, Lee SH, Morgan RJ and Soltesz I: Regulation of fast-spiking basket cell synapses by the chloride channel ClC-2. Nat Neurosci. 13:1047–1049. 2010. View Article : Google Scholar : PubMed/NCBI

77 

Cid LP, Niemeyer MI, Ramírez A and Sepúlveda FV: Splice variants of a ClC-2 chloride channel with differing functional characteristics. Am J Physiol Cell Physiol. 279:C1198–C1210. 2000.PubMed/NCBI

78 

Garcia-Olivares J, Alekov A, Boroumand MR, Begemann B, Hidalgo P and Fahlke C: Gating of human ClC-2 chloride channels and regulation by carboxy-terminal domains. J Physiol. 586:5325–5336. 2008. View Article : Google Scholar : PubMed/NCBI

79 

Eckmann L and Gillin FD: Microbes and microbial toxins: Paradigms for microbial-mucosal interactions I. Pathophysiological aspects of enteric infections with the lumen dwelling protozoan pathogen Giardia lamblia. Am J Physiol Gastrointest Liver Physiol. 280:G1–G6. 2001.PubMed/NCBI

80 

Upcroft P and Upcroft JA: Drug targets and mechanisms of resistance in the anaerobic protozoa. Clin Microbiol Rev. 14:150–164. 2001. View Article : Google Scholar : PubMed/NCBI

81 

Hawrelak J: Giardiasis: Pathophysiology and management. Altern Med Rev. 8:129–142. 2003.PubMed/NCBI

82 

Moreno-Galindo EG, Rodríguez-Elías JC, Ramírez-Herrera MA, Sánchez-Chapula JA and Navarro-Polanco RA: The principal conductance in Giardia lamblia trophozoites possesses functional properties similar to the mammalian ClC-2 current. Pflugers Arch. 466:915–924. 2014. View Article : Google Scholar : PubMed/NCBI

83 

Villaz M, Cinniger JC and Moody WJ: A voltage-gated chloride channel in ascidian embryos modulated by both the cell cycle clock and cell volume. J Physiol. 488:689–699. 1995. View Article : Google Scholar : PubMed/NCBI

84 

Okada Y: Volume expansion-sensing outward-rectifier Cl- channel: Fresh start to the molecular identity and volume sensor. Am J Physiol. 273:C755–C789. 1997.PubMed/NCBI

85 

Tilly BC, van den Berghe N, Tertoolen LG, Edixhoven MJ and de Jonge HR: Protein tyrosine phosphorylation is involved in osmoregulation of ionic conductances. J Biol Chem. 268:19919–19922. 1993.PubMed/NCBI

86 

Sorota S: Tyrosine protein kinase inhibitors prevent activation of cardiac swelling-Induced chloride current. Pflugers Arch. 431:178–185. 1995. View Article : Google Scholar : PubMed/NCBI

87 

Voets T, Manolopoulos V, Eggermont J, Ellory C, Droogmans G and Nilius B: Regulation of a swelling-activated chloride current in bovine endothelium by protein tyrosine phosphorylation and G proteins. J Physiol. 506:341–352. 1998. View Article : Google Scholar : PubMed/NCBI

88 

Lepple-Wienhues A, Szabò I, Laun T, Kaba NK, Gulbins E and Lang F: The tyrosine kinase p56lck mediates activation of swelling-induced chloride channels in lymphocytes. J Cell Biol. 141:281–286. 1998. View Article : Google Scholar : PubMed/NCBI

89 

Santos Ornellas D, Grozovsky R, Goldenberg RC, Carvalho DP, Fong P, Guggino WB and Morales M: Thyroid hormone modulates ClC-2 chloride channel gene expression in rat renal proximal tubules. J Endocrinol. 178:503–511. 2003. View Article : Google Scholar : PubMed/NCBI

90 

Nascimento DS, Reis CU, Goldenberg RC, Ortiga-Carvalho TM, Pazos-Moura CC, Guggino SE, Guggino WB and Morales MM: Estrogen modulates ClC-2 chloride channel gene expression in rat kidney. Pflugers Arch. 446:593–599. 2003. View Article : Google Scholar : PubMed/NCBI

91 

Morales MM, Nascimento DS, Capella MA, Lopes AG and Guggino WB: Arginine vasopressin regulates CFTR and ClC-2 mRNA expression in rat kidney cortex and medulla. Pflugers Arch. 443:202–211. 2001. View Article : Google Scholar : PubMed/NCBI

92 

Moeser AJ, Haskell MM, Shifflett DE, Little D, Schultz BD and Blikslager AT: ClC-2 chloride secretion mediates prostaglandin-induced recovery of barrier function in ischemia-injured porcine ileum. Gastroenterology. 127:802–815. 2004. View Article : Google Scholar : PubMed/NCBI

93 

Moeser AJ, Nighot PK, Engelke KJ, Ueno R and Blikslager AT: Recovery of mucosal barrier function in ischemic porcine ileum and colon is stimulated by a novel agonist of the ClC-2 chloride channel, lubiprostone. Am J Physiol Gastrointest Liver Physiol. 292:G647–G656. 2007. View Article : Google Scholar : PubMed/NCBI

94 

Cuppoletti J, Malinowska DH, Tewari KP, Li QJ, Sherry AM, Patchen ML and Ueno R: SPI-0211 activates T84 cell chloride transport and recombinant human ClC-2 chloride currents. Am J Physiol Cell Physiol. 287:C1173–C1183. 2004. View Article : Google Scholar : PubMed/NCBI

95 

Bao HF, Liu L, Self J, Duke BJ, Ueno R and Eaton DC: A synthetic prostone activates apical chloride channels in A6 epithelial cells. Am J Physiol Gastrointest Liver Physiol. 295:G234–G251. 2008. View Article : Google Scholar : PubMed/NCBI

96 

Bijvelds MJ, Bot AG, Escher JC and De Jonge HR: Activation of intestinal Cl- secretion by lubiprostone requires the cystic fibrosis transmembrane conductance regulator. Gastroenterology. 137:976–985. 2009. View Article : Google Scholar : PubMed/NCBI

97 

Ao M, Venkatasubramanian J, Boonkaewwan C, Ganesan N, Syed A, Benya RV and Rao MC: Lubiprostone activates Cl- secretion via cAMP signaling and increases membrane CFTR in the human colon carcinoma cell line, T84. Dig Dis Sci. 56:339–351. 2011. View Article : Google Scholar : PubMed/NCBI

98 

Norimatsu Y, Moran AR and MacDonald KD: Lubiprostone activates CFTR, but not ClC-2, via the prostaglandin receptor (EP(4)). Biochem Biophys Res Commun. 426:374–379. 2012. View Article : Google Scholar : PubMed/NCBI

99 

Jin Y, Pridgen TA and Blikslager AT: Pharmaceutical activation or genetic absence of ClC-2 alters tight junctions during experimental colitis. Inflamm Bowel Dis. 21:2747–2757. 2015. View Article : Google Scholar : PubMed/NCBI

100 

Qiu SB, Liang Y and Liu P: Effect of ClC-2 ClC-3 CFTR expression in rats affected with the myocardial ischemia reperfusion injury by Chinese native medicine compound Guangxinkang. Chin J Integrative Med Cardio-/Cerebrovascular Dis. 11:1482–1485. 2013.

101 

Dhani SU, Mohammad-Panah R, Ahmed N, Ackerley C, Ramjeesingh M and Bear CE: Evidence for a functional interaction between the ClC-2 chloride channel and the retrograde motor dynein complex. J Biol Chem. 278:16262–16270. 2003. View Article : Google Scholar : PubMed/NCBI

102 

Furukawa T, Ogura T, Zheng YJ, Tsuchiya H, Nakaya H, Katayama Y and Inagaki N: Phosphorylation and functional regulation of ClC-2 chloride channels expressed in Xenopus oocytes by M cyclin-dependent protein kinase. J Physiol. 540:883–893. 2002. View Article : Google Scholar : PubMed/NCBI

103 

Zheng YJ, Furukawa T, Ogura T, Tajimi K and Inagaki NM: M phase-specific expression and phosphorylation-dependent ubiquitination of the ClC-2 channel. J Biol Chem. 277:32268–32273. 2002. View Article : Google Scholar : PubMed/NCBI

104 

Ahmed N, Ramjeesingh M, Wong S, Varga A, Garami E and Bear CE: Chloride channel activity of ClC-2 is modified by the actin cytoskeleton. Biochem J. 352:789–794. 2000. View Article : Google Scholar : PubMed/NCBI

105 

Hinzpeter A, Lipecka J, Brouillard F, Baudoin-Legros M, Dadlez M, Edelman A and Fritsch J: Association between Hsp90 and the ClC-2 chloride channel upregulates channel function. Am J Physiol Cell Physiol. 290:C45–C56. 2006. View Article : Google Scholar : PubMed/NCBI

106 

Pérez-Rius C, Gaitán-Peñas H, Estévez R and Barrallo-Gimeno A: Identification and characterization of the zebrafish ClC-2 chloride channel orthologs. Pflugers Arch. 467:1769–1781. 2015. View Article : Google Scholar : PubMed/NCBI

107 

Chu S, Blaisdell CJ, Bamford P and Ferro TJ: Interferon-gamma regulates ClC-2 chloride channel in lung epithelial cells. Biochem Biophys Res Commun. 324:31–39. 2004. View Article : Google Scholar : PubMed/NCBI

108 

Palmada M, Dieter M, Boehmer C, Waldegger S and Lang F: Serum and glucocorticoid inducible kinases functionally regulate ClC-2 channels. Biochem Biophys Res Commun. 321:1001–1006. 2004. View Article : Google Scholar : PubMed/NCBI

109 

Hosseinzadeh Z, Bhavsar SK and Lang F: Downregulation of ClC-2 by JAK2. Cell Physiol Biochem. 29:737–742. 2012. View Article : Google Scholar : PubMed/NCBI

110 

Lang F, Föller M, Lang K, Lang P, Ritter M, Vereninov A, Szabo I, Huber SM and Gulbins E: Cell volume regulatory ion channels in cell proliferation and cell death. Methods Enzymol. 428:209–225. 2007. View Article : Google Scholar : PubMed/NCBI

111 

Warsi J, Elvira B, Hosseinzadeh Z, Shumilina E and Lang F: Downregulation of chloride channel ClC-2 by Janus kinase 3. J Membr Biol. 247:387–393. 2014. View Article : Google Scholar : PubMed/NCBI

112 

Klaus F, Laufer J, Czarkowski K, Strutz-Seebohm N, Seebohm G and Lang F: PIKfyve-dependent regulation of the Cl- channel ClC-2. Biochem Biophys Res Commun. 381:407–411. 2009. View Article : Google Scholar : PubMed/NCBI

113 

Park K, Begenisich T and Melvin JE: Protein kinase A activation phosphorylates the rat ClC-2 Cl- channel but does not change activity. J Membr Biol. 182:31–37. 2001. View Article : Google Scholar : PubMed/NCBI

114 

Warsi J, Hosseinzadeh Z, Elvira B, Bissinger R, Shumilina E and Lang F: Regulation of ClC-2 activity by SPAK and OSR1. Kidney Blood Press Res. 39:378–387. 2014. View Article : Google Scholar : PubMed/NCBI

115 

Vij N and Zeitlin PL: Regulation of the ClC-2 lung epithelial chloride channel by glycosylation of SP1. Am J Respir Cell Mol Biol. 34:754–759. 2006. View Article : Google Scholar : PubMed/NCBI

116 

Holmes KW, Hales R, Chu S, Maxwell MJ, Mogayzel PJ Jr and Zeitlin PL: Modulation of Sp1 and Sp3 in lung epithelial cells regulates ClC-2 chloride channel expression. Am J Respir Cell Mol Biol. 29:499–505. 2003. View Article : Google Scholar : PubMed/NCBI

117 

Cuppoletti J, Chakrabarti J, Tewari KP and Malinowska DH: Differentiation between human ClC-2 and CFTR Cl- channels with pharmacological agents. Am J Physiol Cell Physiol. 307:C479–C492. 2014. View Article : Google Scholar : PubMed/NCBI

118 

Thompson CH, Olivetti PR, Fuller MD, Freeman CS, McMaster D, French RJ, Pohl J, Kubanek J and McCarty NA: Isolation and characterization of a high affinity peptide inhibitor of ClC-2 chloride channels. J Biol Chem. 284:26051–26062. 2009. View Article : Google Scholar : PubMed/NCBI

119 

Zhao B, Quan H, Ma T, Tian Y, Cai Q and Li H: 4,4′-Diisothiocyanostilbene-2,2′-disulfonic Acid (DIDS) ameliorates ischemia-hypoxia-induced white matter damage in neonatal rats through inhibition of the voltage-gated chloride channel ClC-2. Int J Mol Sci. 16:10457–10469. 2015. View Article : Google Scholar : PubMed/NCBI

120 

Liang W and Zheng YJ: Effect of interfered ClC-2 gene expression on cell cycle of human trabecular mesh work cells. Chin J Gerontol. 30:1070–1072. 2010.

121 

Thompson CH, Fields DM, Olivetti PR, Fuller MD, Zhang ZR, Kubanek J and McCarty NA: Inhibition of ClC-2 chloride channels by a peptide component or components of scorpion venom. J Membr Biol. 208:65–76. 2005. View Article : Google Scholar : PubMed/NCBI

122 

Baglole CJ, Sigalet DL and Meddings JB: Alpha1-adrenoceptors down-regulate ClC-2 chloride channels in epithelial cells from the acutely denervated jejunum. Eur J Pharmacol. 565:202–206. 2007. View Article : Google Scholar : PubMed/NCBI

123 

Huber SM, Duranton C, Henke G, Van De Sand C, Heussler V, Shumilina E, Sandu CD, Tanneur V, Brand V, Kasinathan RS, et al: Plasmodium induces swelling-activated ClC-2 anion channels in the host erythrocyte. J Biol Chem. 279:41444–41452. 2004. View Article : Google Scholar : PubMed/NCBI

124 

Stölting G, Teodorescu G, Begemann B, Schubert J, Nabbout R, Toliat MR, Sander T, Nürnberg P, Lerche H and Fahlke C: Regulation of ClC-2 gating by intracellular ATP. Pflugers Arch. 465:1423–1437. 2013. View Article : Google Scholar : PubMed/NCBI

125 

Dhani SU, Kim Chiaw P, Huan LJ and Bear CE: ATP depletion inhibits the endocytosis of ClC-2. J Cell Physiol. 214:273–280. 2008. View Article : Google Scholar : PubMed/NCBI

126 

Madison DV, Malenka RC and Nicoll RA: Phorbol esters block a voltage-sensitive chloride current in hippocampal pyramidal cells. Nature. 321:695–697. 1986. View Article : Google Scholar : PubMed/NCBI

127 

Staley K: The role of an inwardly rectifying chloride conductance in postsynaptic inhibition. J Neurophysiol. 72:273–284. 1994.PubMed/NCBI

128 

Rinke I, Artmann J and Stein V: ClC-2 voltage-gated channels constitute part of the background conductance and assist chloride extrusion. J Neurosci. 30:4776–4786. 2010. View Article : Google Scholar : PubMed/NCBI

129 

Schriever AM, Friedrich T, Pusch M and Jentsch TJ: CLC chloride channels in Caenorhabditis elegans. J Biol Chem. 274:34238–34244. 1999. View Article : Google Scholar : PubMed/NCBI

130 

Nehrke K, Begenisich T, Pilato J and Melvin JE: Into ion channel and transporter function. Caenorhabditis elegans ClC-type chloride channels: Novel variants and functional expression. Am J Physiol Cell Physiol. 279:C2052–C2066. 2000.PubMed/NCBI

131 

Denton J, Nehrke K, Rutledge E, Morrison R and Strange K: Alternative splicing of N- and C-termini of a C. Elegans ClC channel alters gating and sensitivity to external Cl- and H+. J Physiol. 555:97–114. 2004. View Article : Google Scholar : PubMed/NCBI

132 

Zhang M, Chung SH, Fang-Yen C, Craig C, Kerr RA, Suzuki H, Samuel AD, Mazur E and Schafer WR: A self-regulating feed-forward circuit controlling C. Elegans egg-laying behavior. Curr Biol. 18:1445–1455. 2008. View Article : Google Scholar : PubMed/NCBI

133 

Desai C and Horvitz HR: Caenorhabditis elegans mutants defective in the functioning of the motor neurons responsible for egg laying. Genetics. 121:703–721. 1989.PubMed/NCBI

134 

Lickteig KM, Duerr JS, Frisby DL, Hall DH, Rand JB and Miller DM III: Regulation of neurotransmitter vesicles by the homeodomain protein UNC-4 and its transcriptional corepressor UNC-37/groucho in Caenorhabditis elegans cholinergic motor neurons. J Neurosci. 21:2001–2014. 2001.PubMed/NCBI

135 

Nathoo AN, Moeller RA, Westlund BA and Hart AC: Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proc Natl Acad Sci USA. 98:14000–14005. 2001. View Article : Google Scholar : PubMed/NCBI

136 

Kim K and Li C: Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. J Comp Neuro. 475:540–550. 2004. View Article : Google Scholar

137 

Branicky R, Miyazaki H, Strange K and Schafer WR: The voltage-gated anion channels encoded by clh-3 regulate egg laying in C. Elegans by modulating motor neuron excitability. J Neurosci. 34:764–775. 2014. View Article : Google Scholar : PubMed/NCBI

138 

Niemeyer MI, Cid LP, Yusef YR, Briones R and Sepúlveda FV: Voltage-dependent and -independent titration of specific residues accounts for complex gating of a ClC chloride by extracellular protons. J Physiol. 587:1387–1400. 2009. View Article : Google Scholar : PubMed/NCBI

139 

Sánchez-Rodríguez JE, De Santiago-Castillo JA and Arreola J: Permeant anions contribute to voltage dependence of ClC-2 chloride channel by interacting with the protopore gate. J Physiol. 588:2545–2556. 2010. View Article : Google Scholar : PubMed/NCBI

140 

Hinzpeter A, Fritsch J, Borot F, Trudel S, Vieu DL, Brouillard F, Baudouin-Legros M, Clain J, Edelman A and Ollero M: Membrane cholesterol content modulates ClC-2 gating and sensitivity to oxidative stress. J Biol Chem. 282:2423–2432. 2007. View Article : Google Scholar : PubMed/NCBI

141 

Cornejo I, Niemeyer MI, Zúñiga L, Yusef YR, Sepúlveda FV and Cid LP: Rapid recycling of ClC-2 chloride channels between plasma membrane and endosomes: Role of a tyrosine endocytosis motif in surface retrieval. J Cell Physio. 221:650–657. 2009. View Article : Google Scholar

142 

Light DB, Schwiebert EM, Karlson KH and Stanton BA: Atrial natriuretic peptide inhibits a cation channel in renal inner medullary collecting duct cells. Science. 243:393–395. 1999.

143 

Masilamani S, Kim GH, Mitchell C, Wade JB and Knepper MA: Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J Clin Invest. 104:R19–R23. 1999. View Article : Google Scholar : PubMed/NCBI

144 

Ewart HS and Klip A: Hormonal regulation of the Na(+)-K(+)-ATPase: Mechanisms underlying rapid and sustained changes in pump activity. Am J Physiol. 269:C295–C311. 1995.PubMed/NCBI

145 

Morales MM, Brucoli HCP, Malnic G and Lopes AG: Role of thyroid hormones in renal tubule acidification. Mol Cell Biochem. 154:17–21. 1996. View Article : Google Scholar : PubMed/NCBI

146 

Katz AI, Emmanouel DS and Lindheimer MD: Thyroid hormone and the kidney. Nephron. 15:223–249. 1975. View Article : Google Scholar : PubMed/NCBI

147 

Shirota T, Shinoda T, Yamada T and Aizawa T: Alteration of renal function in hyperthyroidism: Increased tubular secretion of creatinine and decreased distal tubule delivery of chloride. Metabolism. 41:402–405. 1992. View Article : Google Scholar : PubMed/NCBI

148 

Liu XM, Bai Y and Guo ZS: Study on urinary function and metabolism of water and electrolytes in primary hypothyroidism. Zhonghua Nei Ke Za Zhi. 29:299–302.318. 1990.(In Chinese). PubMed/NCBI

149 

Capasso G, De Tommaso G, Pica A, Anastasio P, Capasso J, Kinne R and De Santo NG: Effects of thyroid hormones on heart and kidney functions. Miner Electrolyte Metab. 25:57–74. 1999. View Article : Google Scholar

150 

Weir RJ, Briggs E, Mack A, Naismith L, Taylor L and Wilson E: Blood pressure in women taking oral contraceptives. Br Med J. 1:533–535. 1974. View Article : Google Scholar : PubMed/NCBI

151 

Meade TW, Haines AP, North WR, Chakrabarti R, Howarth DJ and Stirling Y: Haemostatic, lipid, and blood-pressure profiles of women on oral contraceptives containing 50 microgram or 30 microgram oestrogen. Lancet. 2:948–951. 1977. View Article : Google Scholar : PubMed/NCBI

152 

Seeger H, Armbruster FP, Mueck AO and Lippert TH: The effect of estradiol on urodilatin production in postmenopausal women. Arch Gynecol Obstet. 262:65–68. 1998. View Article : Google Scholar : PubMed/NCBI

153 

Brunette MG and Leclerc M: Effect of estrogen on calcium and sodium transport by the nephron luminal membranes. J Endocrinol. 170:441–450. 2001. View Article : Google Scholar : PubMed/NCBI

154 

Ueno R, Osama H, Habe T, Engelke K and Patchen M: Oral SPI-0211 increases intestinal fluid secretion and chloride concentration without altering serum electrolyte levels (Abstract). Gastroenterology. 126:A–298. 2004.

155 

Johanson JF, Gargano M, Hollan PC, Patchen ML and Ueno R: Phase III efficacy and safety of RU-0211, a novel chloride channel activator, for the treatment of constipation. Gastroenterology. 124:A482003. View Article : Google Scholar

156 

Johanson JF, Gargano MA, Holland PC, Patchen ML and Ueno R: Phase III randomized withdrawal study of RU-0211 a novel chloride channel activator for the treatment of constipation (Abstract). Gastroenterology. 126:A–100. 2004.

157 

Lacy BE and Levy LC: Lubiprostone: A chloride channel activator. J Clin Gastroenterol. 41:345–351. 2007. View Article : Google Scholar : PubMed/NCBI

158 

Shisheva A, Sbrissa D and Lkonomov O: Cloning, characterization, and expression of a novel Zn2+-binding FYVE finger-containing phosphoinositide kinase in insulin-sensitive cells. Mol Cell Biol. 19:623–634. 1999. View Article : Google Scholar : PubMed/NCBI

159 

Morris DL and Rui L: Recent advances in understanding leptin signaling and leptin resistance. Am J Physiol Endocrinol Metab. 297:E1247–E1259. 2009. View Article : Google Scholar : PubMed/NCBI

160 

Brooks AJ and Waters MJ: The growth hormone receptor: Mechanism of activation and clinical implications. Nat Rev Endocrinol. 6:515–525. 2010. View Article : Google Scholar : PubMed/NCBI

161 

Spivak JL: Narrative review: Thrombocytosis, polycythemia vera, and JAK2 mutations: The phenotypic mimicry of chronic myeloproliferation. Ann Intern Med. 152:300–306. 2010. View Article : Google Scholar : PubMed/NCBI

162 

Lopez AF, Hercus TR, Ekert P, Littler DR, Guthridge M, Thomas D, Ramshaw HS, Stomski F, Perugini M, D'Andrea R, et al: Molecular basis of cytokine receptor activation. IUBMB Life. 62:509–518. 2010. View Article : Google Scholar : PubMed/NCBI

163 

Tefferi A, Skoda R and Vardiman JW: Myeloproliferative neoplasms: Contemporary diagnosis using histology and genetics. Nat Rev Clin Oncol. 6:627–637. 2009. View Article : Google Scholar : PubMed/NCBI

164 

Baskin R, Majumder A and Sayeski PP: The recent medicinal chemistry development of Jak2 tyrosine kinase small molecule inhibitors. Curr Med Chem. 17:4551–4558. 2010. View Article : Google Scholar : PubMed/NCBI

165 

Ho K, Valdez F, Garcia R and Tirado CA: JAK2 Translocations in hematological malignancies: Review of the literature. J Assoc Genet Technol. 36:107–109. 2010.PubMed/NCBI

166 

Oh ST and Gotlib J: JAK2 V617F and beyond: Role of genetics and aberrant signaling in the pathogenesis of myeloproliferative neoplasms. Expert Rev Hematol. 3:323–337. 2010. View Article : Google Scholar : PubMed/NCBI

167 

Tefferi A: Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 24:1128–1138. 2010. View Article : Google Scholar : PubMed/NCBI

168 

Pardanani A, Vannucchi AM, Passamonti F, Cervantes F, Barbui T and Tefferi A: JAK inhibitor therapy for myelofibrosis: Critical assessment of value and limitations. Leukemia. 25:218–225. 2011. View Article : Google Scholar : PubMed/NCBI

169 

Santos FP and Verstovsek S: JAK2 inhibitors: What's the true therapeutic potential? Blood Rev. 25:53–63. 2011. View Article : Google Scholar : PubMed/NCBI

170 

Mahfouz RA, Hoteit R, Salem Z, Bazarbachi A, Mugharbel A, Farhat F, Ziyadeh A, Ibrahim A and Taher A: JAK2 V617F gene mutation in the laboratory work-up of myeloproliferative disorders: Experience of a major referral center in Lebanon. Genet Test Mol Biomarkers. 15:263–265. 2011. View Article : Google Scholar : PubMed/NCBI

171 

Gatsios P, Terstegen L, Schliess F, Häussinger D, Kerr IM, Heinrich PC and Graeve L: Activation of the Janus kinase/signal transducer and activator of transcription pathway by osmotic shock. J Biol Chem. 273:22962–22968. 1998. View Article : Google Scholar : PubMed/NCBI

172 

Garnovskaya MN, Mukhin YV, Vlasova TM and Raymond JR: Hypertonicity activates Na+/H+ exchange through Janus kinase 2 and calmodulin. J Biol Chem. 278:16908–16915. 2003. View Article : Google Scholar : PubMed/NCBI

173 

Uckun FM, Vassilev A, Dibirdik I and Tibbles H: Targeting JAK3 tyrosine kinase-linked signal transduction pathways with rationally-designed inhibitors. Anticancer Agents Med Chem. 7:612–623. 2007. View Article : Google Scholar : PubMed/NCBI

174 

de Totero D, Meazza R, Capaia M, Fabbi M, Azzarone B, Balleari E, Gobbi M, Cutrona G, Ferrarini M and Ferrini S: The opposite effects of IL-15 and IL-21 on CLL B cells correlate with differential activation of the JAK/STAT and ERK1/2 pathways. Blood. 111:517–524. 2008. View Article : Google Scholar : PubMed/NCBI

175 

Fainstein N, Vaknin I, Einstein O, Zisman P, Ben Sasson SZ, Baniyash M and Ben-Hur T: Neural precursor cells inhibit multiple inflammatory signals. Mol Cell Neurosci. 39:335–341. 2008. View Article : Google Scholar : PubMed/NCBI

176 

Nakayama J, Yamamoto M, Hayashi K, Satoh H, Bundo K, Kubo M, Goitsuka R, Farrar MA and Kitamura D: BLNK suppresses pre-B-cell leukemogenesis through inhibition of JAK3. Blood. 113:1483–1492. 2009. View Article : Google Scholar : PubMed/NCBI

177 

Kim BH, Oh SR, Yin CH, Lee S, Kim EA, Kim MS, Sandoval C, Jayabose S, Bach EA, Lee HK and Baeg GH: MS-1020 is a novel small molecule that selectively inhibits JAK3 activity. Br J Haematol. 148:132–143. 2010. View Article : Google Scholar : PubMed/NCBI

178 

Walters DK, Mercher T, Gu TL, O'Hare T, Tyner JW, Loriaux M, Goss VL, Lee KA, Eide CA, Wong MJ, et al: Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell. 10:65–75. 2006. View Article : Google Scholar : PubMed/NCBI

179 

Malinge S, Ragu C, Della-Valle V, Pisani D, Constantinescu SN, Perez C, Villeval JL, Reinhardt D, Landman-Parker J, Michaux L, et al: Activating mutations in human acute megakaryoblastic leukemia. Blood. 112:4220–4226. 2008. View Article : Google Scholar : PubMed/NCBI

180 

Haan C, Rolvering C, Raulf F, Kapp M, Drückes P, Thoma G, Behrmann I and Zerwes HG: Jak1 has a dominant role over Jak3 in signal transduction through γc-containing cytokine receptors. Chem Biol. 18:314–323. 2011. View Article : Google Scholar : PubMed/NCBI

181 

Karin M: Too many transcription factors: Positive and negative interactions. New Biol. 2:126–131. 1990.PubMed/NCBI

182 

Latchman DS: Transcription factors: An overview. Int J Biochem Cell Biol. 29:1305–1312. 1997. View Article : Google Scholar : PubMed/NCBI

183 

Nandoskar P, Wang Y, Wei R, Liu Y, Zhao P, Lu M, Huang J, Thomas P, Trousdale MD and Ding C: Changes of chloride channels in the lacrimal glands of a rabbit model of Sjögren syndrome. Cornea. 31:273–279. 2012. View Article : Google Scholar : PubMed/NCBI

184 

Ding C, Parsa L, Nandoskar P, Zhao P, Wu K and Wang Y: Duct system of the rabbit lacrimal gland: Structural characteristics and role in lacrimal secretion. Invest Ophthalmol Vis Sci. 51:2960–2967. 2010. View Article : Google Scholar : PubMed/NCBI

185 

Ouyang WB: Correlation between ClC-2 chloride channel and age related cataract Master's thesis. Dalian Med Univ Dalian. 2013.

186 

Li HB, Han DM, Zhong B, Fan EZ and Liu ZY: Expressions of chloride channel ClC-2 and ClC-3 in human nasal polyps. J Clin Otorhinolaryngol. 17:266–277. 2003.

187 

Edwards MM, de Evsikova Marín C, Collin GB, Gifford E, Wu J, Hicks WL, Whiting C, Varvel NH, Maphis N, Lamb BT, et al: Photoreceptor degeneration, azoospermia, leukoencephalopathy, and abnormal RPE cellfunction in mice expressing an early stop mutation in CLCN2. Invest Ophthalmol Vis Sci. 51:3264–3272. 2010. View Article : Google Scholar : PubMed/NCBI

188 

Xu ZN, Zheng XY, Zhao W, Xin H and Han ZG: Expression and significance of chloride channel ClC-2 in nonsmall-cell lung cancer. Chin J Lab Diagn. 16:60–62. 2012.

189 

Diener M, Bertog M, Fromm M and Scharrer E: Segmental heterogeneity of swelling-induced Cl- transport in rat small intestine. Pflugers Arch. 432:293–300. 1996. View Article : Google Scholar : PubMed/NCBI

190 

Joo NS, Clarke LL, Han BH, Forte LR and Kim HD: Cloning of ClC-2 chloride channel from murine duodenum and its presence in CFTR knockout mice. Biochim Biophys Acta. 1446:431–437. 1999. View Article : Google Scholar : PubMed/NCBI

191 

Catalán MA, Flores CA, González-Begne M, Zhang Y, Sepúlveda FV and Melvin JE: Severe defects in absorptive ion transport in distal colons of mice that lack ClC-2 channels. Gastroenterology. 142:346–354. 2012. View Article : Google Scholar : PubMed/NCBI

192 

Lacy BE and Chey WD: Lubiprostone: Chronic constipation and irritable bowel syndrome with constipation. Expert Opin Pharmacother. 10:143–152. 2009. View Article : Google Scholar : PubMed/NCBI

193 

Crowell MD, Harris LA, DiBaise JK and Olden KW: Activation of type-2 chloride channels: A novel therapeutic target for the treatment of chronic constipation. Curr Opin Invest Drugs. 8:66–70. 2007.

194 

Chen ZY, Wang YG, Yang P, Huang WG, Zhou YS and Feng XS: Relationship between ClC-2 and intestinal mucosal barrier in rats with obstructive jaundice. World Chin J Digestology. 19:2829–2834. 2011.

195 

Jiang B, Hattori N, Liu B, Kitagawa K and Inagaki C: Expression of swelling- and/or pH-regulated chloride channels (ClC-2,3,4 and 5) in human leukemic and normal immune cells. Life Sci. 70:1383–1394. 2002. View Article : Google Scholar : PubMed/NCBI

196 

Blaisdell CJ, Howard TD, Stern A, Bamford P, Bleecker ER and Stine OC: CLC-2 single nucleotide polymorphisms (SNPs) as potential modifiers of cystic fibrosis disease severity. BMC Med Genet. 5:262004. View Article : Google Scholar : PubMed/NCBI

197 

Cuppoletti J, Tewari KP, Sherry AM, Kupert EY and Malinowska DH: Human ClC-2- chloride channels can be activated Potential for therapy in cystic fibrosis. Faseb J. 15:A8472001.

198 

Zdebik AA, Cuffe JE, Bertog M, Korbmacher C and Jentsch TJ: Additional disruption of the ClC-2 Cl(−) channel does not exacerbate the cystic fibrosis phenotype of cystic fibrosis transmembrane conductance regulator mouse models. J Biol Chem. 279:22276–22283. 2004. View Article : Google Scholar : PubMed/NCBI

199 

Jeworutzki E, López-Hernández T, Capdevila-Nortes X, Sirisi S, Bengtsson L, Montolio M, Zifarelli G, Arnedo T, Müller CS, Schulte U, et al: GlialCAM, a protein defective in a leukodystrophy, serves as a ClC-2 Cl(−) channel auxiliary subunit. Neuron. 73:951–961. 2012. View Article : Google Scholar : PubMed/NCBI

200 

Jeworutzki E, Lagostena L, Elorza-Vidal X, López-Hernández T, Estévez R and Pusch M: GlialCAM a CLC-2 Cl(−) channel subunit activates the slow gate of CLC chloride channels. Biophys J. 107:1105–1116. 2014. View Article : Google Scholar : PubMed/NCBI

201 

Hoegg-Beiler MB, Sirisi S, Orozco IJ, Ferrer I, Hohensee S, Auberson M, Gödde K, Vilches C, de Heredia ML, Nunes V, et al: Disrupting MLC1 and GlialCAM and ClC-2 interactions in leukodystrophy entails glial chloride channel dysfunction. Nat Commun. 5:34752014. View Article : Google Scholar : PubMed/NCBI

202 

Scheper GC, van Berkel CG, Leisle L, de Groot KE, Errami A, Jentsch TJ and Van der Knaap MS: Analysis of CLCN2 as candidate gene for megalencephalic leukoencephalopathy with subcortical cysts. Genet Test Mol Biomarkers. 14:255–257. 2010. View Article : Google Scholar : PubMed/NCBI

203 

Gulácsi A, Lee CR, Sik A, Viitanen T, Kaila K, Tepper JM and Freund TF: Cell type-specific differences in chloride-regulatory mechanisms and GABA(A) receptor-mediated inhibition in rat substantia nigra. J Neurosci. 23:8237–8246. 2003.PubMed/NCBI

204 

Ferroni S, Marchini C, Nobile M and Rapisarda C: Characterization of an inwardly rectifying chloride conductance expressed by cultured rat cortical astrocytes. Glia. 21:217–227. 1997. View Article : Google Scholar : PubMed/NCBI

205 

Nobile M, Pusch M, Rapisarda C and Ferroni S: Single-channel analysis of a ClC-2-like chloride conductance in cultured rat cortical astrocytes. FEBS Lett. 479:10–14. 2000. View Article : Google Scholar : PubMed/NCBI

206 

Makara JK, Petheö GL, Tóth A and Spät A: pH-sensitive inwardly rectifying chloride current in cultured rat cortical astrocytes. Glia. 34:52–58. 2001. View Article : Google Scholar : PubMed/NCBI

207 

Makara JK, Rappert A, Matthias K, Steinhäuser C, Spät A and Kettenmann H: Astrocytes from mouse brain slices express ClC-2-mediated Cl- currents regulated during development and after injury. Mol Cell Neurosci. 23:521–530. 2003. View Article : Google Scholar : PubMed/NCBI

208 

Niemeyer MI, Yusef YR, Cornejo I, Flores CA, Sepúlveda FV and Cid LP: Functional evaluation of human ClC-2 chloride channel mutations associated with idiopathic generalized epilepsies. Physiol Genomics. 19:74–83. 2004. View Article : Google Scholar : PubMed/NCBI

209 

Sander T, Schulz H, Saar K, Gennaro E, Riggio MC, Bianchi A, Zara F, Luna D, Bulteau C, Kaminska A, et al: Genome search for susceptibility loci of common idiopathic generalised epilepsies. Hum Mol Genet. 9:1465–1472. 2000. View Article : Google Scholar : PubMed/NCBI

210 

Haug K, Warnstedt M, Alekov AK, Sander T, Ramirez A, Poser B, Maljevic S, Hebeisen S, Kubisch C, Rebstock J, et al: Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nat Genet. 33:527–532. 2003. View Article : Google Scholar : PubMed/NCBI

211 

Blanz J, Schweizer M, Auberson M, Maier H, Muenscher A, Hübner CA and Jentsch TJ: Leukoencephalopathy upon disruption of the chloride channel ClC-2. J Neurosci. 27:6581–6589. 2007. View Article : Google Scholar : PubMed/NCBI

212 

Ge YX, Liu Y, Tang HY, Liu XG and Wang X: ClC-2 contributes to tonic inhibition mediated by α5 subunit-containing GABA(A) receptor in experimental temporal lobe epilepsy. Neuroscience. 186:120–127. 2011. View Article : Google Scholar : PubMed/NCBI

213 

Pan F, Guo R, Cheng W, Chai L, Wang W, Cao C and Li S: High glucose inhibits ClC-2 chloride channels and attenuates cell migration of rat keratinocytes. Drug Des Devel Ther. 9:4779–4791. 2015.PubMed/NCBI

214 

Borchers AT, Naguwa SM, Keen CL and Gershwin ME: Immunopathogenesis of Sjögren's syndrome. Clin Rev Allergy Immunol. 25:89–104. 2003. View Article : Google Scholar : PubMed/NCBI

215 

Nocturne G and Mariette X: Advances in understanding the pathogenesis of primary Sjogren's syndrome. Nat Rev Rheumatol. 9:544–556. 2013. View Article : Google Scholar : PubMed/NCBI

216 

Guo Z, Song D, Azzarolo AM, Schechter JE, Warren DW, Wood RL, Mircheff AK and Kaslow HR: Autologous lacrimal lymphoid mixed-cell reactions induce dacryoadenitis in rabbits. Exp Eye Res. 71:23–31. 2000. View Article : Google Scholar : PubMed/NCBI

217 

Zhu Z, Stevenson D, Schechter JE, Mircheff AK, Atkinson R and Trousdale MD: Lacrimal histopathology and ocular surface disease in a rabbit model of autoimmune dacryoadenitis. Cornea. 22:25–32. 2003. View Article : Google Scholar : PubMed/NCBI

218 

Thomas PB, Zhu Z, Selvam S, Samant DM, Stevenson D, Mircheff AK, Schechter JE, Song SW and Trousdale MD: Autoimmune dacryoadenitis and keratoconjunctivitis induced in rabbits by subcutaneous injection of autologous lymphocytes activated ex vivo against lacrimal antigens. J Autoimmun. 31:116–122. 2008. View Article : Google Scholar : PubMed/NCBI

219 

Chan HC, Ruan YC, He Q, Chen MH, Chen H, Xu WM, Chen WY, Xie C, Zhang XH and Zhou Z: The cystic fibrosis transmembrane conductance regulator in reproductive health and disease. J Physiol. 587:2187–2195. 2009. View Article : Google Scholar : PubMed/NCBI

220 

Yeung CH, Barfield JP and Cooper TG: Chloride channels in physiological volume regulation of human spermatozoa. Biol Reprod. 73:1057–1063. 2005. View Article : Google Scholar : PubMed/NCBI

221 

Anderson MP, Sheppard DN, Berger HA and Welsh M: Chloride channels in the apical membrane of normal and cystic fibrosis airway and intestinal epithelia. Am J Physiol. 263:L1–L14. 1992.PubMed/NCBI

222 

O'Sullivan BP and Freedman SD: Cystic fibrosis. Lancet. 373:1891–1904. 2009. View Article : Google Scholar : PubMed/NCBI

223 

Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, et al: Identification of the cystic fibrosis gene: Cloning and characterization of complementary. Science. 245:1066–1073. 1989. View Article : Google Scholar : PubMed/NCBI

224 

Van der Knaap MS, Barth PG, Stroink H, van Nieuwenhuizen O, Arts WF, Hoogenraa F and Valk J: Leukoencephalopathy with swelling and a discrepantly mild clinical course in eight children. Ann Neurol. 37:324–334. 1995. View Article : Google Scholar : PubMed/NCBI

225 

Hauser WA, Annegers JF and Rocca WA: Descriptive epidemiology of epilepsy: Contributions of population-based studies from Rochester, Minnesota. Mayo Clin Proc. 71:576–586. 1996. View Article : Google Scholar : PubMed/NCBI

226 

Ji ZY: Research progress of chloride channel ClC- 2. J Kunm Med Univ. 30:68–72. 2009.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang H, Xu M, Kong Q, Sun P, Yan F, Tian W and Wang X: Research and progress on ClC‑2 (Review). Mol Med Rep 16: 11-22, 2017.
APA
Wang, H., Xu, M., Kong, Q., Sun, P., Yan, F., Tian, W., & Wang, X. (2017). Research and progress on ClC‑2 (Review). Molecular Medicine Reports, 16, 11-22. https://doi.org/10.3892/mmr.2017.6600
MLA
Wang, H., Xu, M., Kong, Q., Sun, P., Yan, F., Tian, W., Wang, X."Research and progress on ClC‑2 (Review)". Molecular Medicine Reports 16.1 (2017): 11-22.
Chicago
Wang, H., Xu, M., Kong, Q., Sun, P., Yan, F., Tian, W., Wang, X."Research and progress on ClC‑2 (Review)". Molecular Medicine Reports 16, no. 1 (2017): 11-22. https://doi.org/10.3892/mmr.2017.6600
Copy and paste a formatted citation
x
Spandidos Publications style
Wang H, Xu M, Kong Q, Sun P, Yan F, Tian W and Wang X: Research and progress on ClC‑2 (Review). Mol Med Rep 16: 11-22, 2017.
APA
Wang, H., Xu, M., Kong, Q., Sun, P., Yan, F., Tian, W., & Wang, X. (2017). Research and progress on ClC‑2 (Review). Molecular Medicine Reports, 16, 11-22. https://doi.org/10.3892/mmr.2017.6600
MLA
Wang, H., Xu, M., Kong, Q., Sun, P., Yan, F., Tian, W., Wang, X."Research and progress on ClC‑2 (Review)". Molecular Medicine Reports 16.1 (2017): 11-22.
Chicago
Wang, H., Xu, M., Kong, Q., Sun, P., Yan, F., Tian, W., Wang, X."Research and progress on ClC‑2 (Review)". Molecular Medicine Reports 16, no. 1 (2017): 11-22. https://doi.org/10.3892/mmr.2017.6600
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team