Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
July-2017 Volume 16 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2017 Volume 16 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Low‑level mechanical vibration enhances osteoblastogenesis via a canonical Wnt signaling‑associated mechanism

  • Authors:
    • Heqi Gao
    • Mingming Zhai
    • Pan Wang
    • Xuhui Zhang
    • Jing Cai
    • Xiaofei Chen
    • Guanghao Shen
    • Erping Luo
    • Da Jing
  • View Affiliations / Copyright

    Affiliations: Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China, Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China, Department of Biomedical Engineering, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, P.R. China
  • Pages: 317-324
    |
    Published online on: May 19, 2017
       https://doi.org/10.3892/mmr.2017.6608
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Osteoporosis is a skeletal metabolic disease characterized by reduced bone mass and a high susceptibility to fractures, in which osteoblasts and osteoclasts are highly involved in the abnormal bone remodeling processes. Recently, low‑magnitude, high‑frequency whole‑body vibration has been demonstrated to significantly reduce osteopenia experimentally and clinically. However, the underlying mechanism regarding how osteoblastic activity is altered when bone tissues adapt to mechanical vibration remains elusive. The current study systematically investigated the effect and potential molecular signaling mechanisms in mediating the effects of mechanical vibration (0.5 gn, 45 Hz) on primary osteoblasts in vitro. The results of the present study demonstrated that low‑level mechanical stimulation promoted osteoblastic proliferation and extracellular matrix mineralization. In addition, it was also revealed that mechanical vibration induced improved cytoskeleton arrangement in primary osteoblasts. Furthermore, mechanical vibration resulted in significantly increased gene expression of alkaline phosphatase, bone morphogenetic protein 2 and osteoprotegerin, and suppressed sclerostin gene expression, as determined by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analyses. Mechanical vibration was observed to upregulate gene and protein expression levels of osteogenesis‑associated biomarkers, including osteocalcin and Runt‑related transcription factor 2. In addition, RT‑qPCR and western blotting analysis demonstrated that mechanical vibration promoted gene and protein expression of canonical Wnt signaling genes, including Wnt3a, low‑density lipoprotein receptor‑related protein 6 and β‑catenin. In conclusion, the present study demonstrated that mechanical vibration stimulates osteoblastic activities and may function through a potential canonical Wnt signaling‑associated mechanism. These findings provided novel information that improves the understanding of the molecular mechanisms involved in osteoblastic activities in response to mechanical vibration, which may facilitate the scientific application of mechanical vibration for the treatment of osteoporosis in the clinic.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Xie L, Jacobson JM, Choi ES, Busa B, Donahue LR, Miller LM, Rubin CT and Judex S: Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton. Bone. 39:1059–1066. 2006. View Article : Google Scholar : PubMed/NCBI

2 

Xie P, Tang Z, Qing F, Chen X, Zhu X, Fan Y, Yang X and Zhang X: Bone mineral density, microarchitectural and mechanical alterations of osteoporotic rat bone under long-term whole-body vibration therapy. J Mech Behav Biomed Mater. 53:341–349. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Judex S, Lei X, Han D and Rubin C: Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude. J Biomech. 40:1333–1339. 2007. View Article : Google Scholar : PubMed/NCBI

4 

Jing D, Cai J, Wu Y, Shen G, Li F, Xu Q, Xie K, Tang C, Liu J, Guo W, et al: Pulsed electromagnetic fields partially preserve bone mass, microarchitecture, and strength by promoting bone formation in hindlimb-suspended rats. J Bone Miner Res. 29:2250–2261. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Garnero P: New developments in biological markers of bone metabolism in osteoporosis. Bone. 66:46–55. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Rubin C, Turner AS, Bain S, Mallinckrodt C and McLeod K: Anabolism. Low mechanical signals strengthen long bones. Nature. 412:603–604. 2001. View Article : Google Scholar : PubMed/NCBI

7 

Rubin C, Xu G and Judex S: The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli. FASEB J. 15:2225–2229. 2001. View Article : Google Scholar : PubMed/NCBI

8 

Judex S, Donahue LR and Rubin C: Genetic predisposition to low bone mass is paralleled by an enhanced sensitivity to signals anabolic to the skeleton. FASEB J. 16:1280–1282. 2002.PubMed/NCBI

9 

Chan ME, Adler BJ, Green DE and Rubin CT: Bone structure and B-cell populations, crippled by obesity, are partially rescued by brief daily exposure to low-magnitude mechanical signals. FASEB J. 26:4855–4863. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Sehmisch S, Galal R, Kolios L, Tezval M, Dullin C, Zimmer S, Stuermer KM and Stuermer EK: Effects of low-magnitude, high-frequency mechanical stimulation in the rat osteopenia model. Osteoporos Int. 20:1999–2008. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Gilsanz V, Wren TA, Sanchez M, Dorey F, Judex S and Rubin C: Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res. 21:1464–1474. 2006. View Article : Google Scholar : PubMed/NCBI

12 

Shi HF, Cheung WH, Qin L, Leung AH and Leung KS: Low-magnitude high-frequency vibration treatment augments fracture healing in ovariectomy-induced osteoporotic bone. Bone. 46:1299–1305. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Christiansen BA and Silva MJ: The effect of varying magnitudes of whole-body vibration on several skeletal sites in mice. Ann Biomed Eng. 34:1149–1156. 2006. View Article : Google Scholar : PubMed/NCBI

14 

Rubin C, Recker R, Cullen D, Ryaby J, McCabe J and McLeod K: Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: A clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res. 19:343–351. 2004. View Article : Google Scholar : PubMed/NCBI

15 

Fritton SP, McLeod KJ and Rubin CT: Quantifying the strain history of bone: Spatial uniformity and self-similarity of low-magnitude strains. J Biomech. 33:317–325. 2000. View Article : Google Scholar : PubMed/NCBI

16 

Coughlin TR and Niebur GL: Fluid shear stress in trabecular bone marrow due to low-magnitude high-frequency vibration. J Biomech. 45:2222–2229. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Caetano-Lopes J, Canhão H and Fonseca JE: Osteoblasts and bone formation. Acta Reumatol Port. 32:103–110. 2007.PubMed/NCBI

18 

Jiang T, Zhou B, Huang L, Wu H, Huang J, Liang T, Liu H, Zheng L and Zhao J: Andrographolide exerts pro-osteogenic effect by activation of Wnt/β-catenin signaling pathway in vitro. Cell Physiol Biochem. 36:2327–2339. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS and Lian JB: Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem. 280:33132–33140. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Zhang R, Oyajobi BO, Harris SE, Chen D, Tsao C, Deng HW and Zhao M: Wnt/β-catenin signaling activates bone morphogenetic protein 2 expression in osteoblasts. Bone. 52:145–156. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD and MacDougald OA: Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci USA. 102:3324–3339. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Wang B, Jin H, Zhu M, Li J, Zhao L, Zhang Y, Tang D, Xiao G, Xing L, Boyce BF and Chen D: Chondrocyte beta-catenin signaling regulates postnatal bone remodeling through modulation of osteoclast formation in a murine model. Arthritis Rheumatol. 66:107–120. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Li C, Wang W, Xie L, Luo X, Cao X and Wan M: Lipoprotein receptor-related protein 6 is required for parathyroid hormone-induced Sost suppression. Ann NYAcad Sci. 1364:62–73. 2016. View Article : Google Scholar

24 

Wang Y, Li YP, Paulson C, Shao JZ, Zhang X, Wu M and Chen W: Wnt and the Wnt signaling pathway in bone development and disease. Front Biosci (Landmark Ed). 19:379–407. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Xu C, Wang J, Zhu T, Shen Y, Tang X, Fang L and Xu Y: Cross-talking between PPAR and WNT signaling and its regulation in mesenchymal stem cell differentiation. Curr Stem Cell Res Ther. 11:247–254. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Weivoda MM, Ruan M, Hachfeld CM, Pederson L, Howe A, Davey RA, Zajac JD, Kobayashi Y, Williams BO, Westendorf JJ, et al: Wnt signaling inhibits osteoclast differentiation by activating canonical and noncanonical cAMP/PKA pathways. J Bone Miner Res. 31:65–75. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Wong GL and Cohn DV: Target cells in bone for parathormone and calcitonin are different: Enrichment for each cell type by sequential digestion of mouse calvaria and selective adhesion to polymeric surfaces. Proc Natl Acad Sci USA. 72:3167–3171. 1975. View Article : Google Scholar : PubMed/NCBI

28 

Williams DC, Boder GB, Toomey RE, Paul DC, Hillman CC Jr, King KL, Van Frank RM and Johnston CC Jr: Mineralization and metabolic response in serially passaged adult rat bone cells. Calcif Tissue Int. 30:233–246. 1980. View Article : Google Scholar : PubMed/NCBI

29 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

30 

Shui C and Scutt A: Mild heat shock induces proliferation, alkaline phosphatase activity, and mineralization in human bone marrow stromal cells and Mg-63 cells in vitro. J Bone Miner Res. 16:731–741. 2001. View Article : Google Scholar : PubMed/NCBI

31 

Ciapetti G, Ambrosio L, Savarino L, Granchi D, Cenni E, Baldini N, Pagani S, Guizzardi S, Causa F and Giunti A: Osteoblast growth and function in porous poly epsilon-caprolactone matrices for bone repair: A preliminary study. Biomaterials. 24:3815–3824. 2003. View Article : Google Scholar : PubMed/NCBI

32 

Gori F, Hofbauer LC, Dunstan CR, Spelsberg TC, Khosla S and Riggs BL: The expression of osteoprotegerin and RANK ligand and the support of osteoclast formation by stromal-osteoblast lineage cells is developmentally regulated. Endocrinology. 141:4768–4776. 2000. View Article : Google Scholar : PubMed/NCBI

33 

Chow SK, Leung KS, Qin J, Guo A, Sun M, Qin L and Cheung WH: Mechanical stimulation enhanced estrogen receptor expression and callus formation in diaphyseal long bone fracture healing in ovariectomy-induced osteoporotic rats. Osteoporos Int. 27:2989–3000. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Zhang C, Lu Y, Zhang L, Liu Y, Zhou Y, Chen Y and Yu H: Influence of different intensities of vibration on proliferation and differentiation of human periodontal ligament stem cells. Arch Med Sci. 11:638–646. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Uzer G, Pongkitwitoon S, Ete Chan M and Judex S: Vibration induced osteogenic commitment of mesenchymal stem cells is enhanced by cytoskeletal remodeling but not fluid shear. J Biomech. 46:2296–2302. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Sato N, Kubo K, Yamada M, Hori N, Suzuki T, Maeda H and Ogawa T: Osteoblast mechanoresponses on Ti with different surface topographies. J Dent Res. 88:812–816. 2009. View Article : Google Scholar : PubMed/NCBI

37 

Thompson WR, Rubin CT and Rubin J: Mechanical regulation of signaling pathways in bone. Gene. 503:179–193. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Huang H, Kamm RD and Lee RT: Cell mechanics and mechanotransduction: Pathways, probes, and physiology. Am J Physiol Cell Physiol. 287:C1–C11. 2004. View Article : Google Scholar : PubMed/NCBI

39 

Klein-Nulend J, Bacabac RG and Bakker AD: Mechanical loading and how it affects bone cells: The role of the osteocyte cytoskeleton in maintaining our skeleton. Eur Cell Mater. 24:278–291. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Tanaka SM, Li J, Duncan RL, Yokota H, Burr DB and Turner CH: Effects of broad frequency vibration on cultured osteoblasts. J Biomech. 36:73–80. 2003. View Article : Google Scholar : PubMed/NCBI

41 

Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, et al: Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 89:765–771. 1997. View Article : Google Scholar : PubMed/NCBI

42 

Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM and Wang EA: Novel regulators of bone formation: Molecular clones and activities. Science. 242:1528–1534. 1988. View Article : Google Scholar : PubMed/NCBI

43 

Hofbauer LC and Schoppet M: Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA. 292:490–495. 2004. View Article : Google Scholar : PubMed/NCBI

44 

Bonewald LF: The amazing osteocyte. J Bone Miner Res. 26:229–238. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Burgers TA and Williams BO: Regulation of Wnt/β-catenin signaling within and from osteocytes. Bone. 54:244–249. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Bellido T, Saini V and Pajevic PD: Effects of PTH on osteocyte function. Bone. 54:250–257. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Ellies DL, Viviano B, McCarthy J, Rey JP, Itasaki N, Saunders S and Krumlauf R: Bone density ligand, Sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. J Bone Miner Res. 21:1738–1749. 2006. View Article : Google Scholar : PubMed/NCBI

48 

Santos A, Bakker AD, Zandieh-Doulabi B, Semeins CM and Klein-Nulend J: Pulsating fluid flow modulates gene expression of proteins involved in Wnt signaling pathways in osteocytes. J Orthop Res. 27:1280–1287. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Macsai CE, Foster BK and Xian CJ: Roles of Wnt signalling in bone growth, remodelling, skeletal disorders and fracture repair. J Cell Physiol. 215:578–587. 2008. View Article : Google Scholar : PubMed/NCBI

50 

Zhang R, Oyajobi BO, Harris SE, Chen D, Tsao C, Deng HW and Zhao M: Wnt/β-catenin signaling activates bone morphogenetic protein 2 expression in osteoblasts. Bone. 52:145–156. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS and Lian JB: Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem. 280:33132–3340. 2005. View Article : Google Scholar : PubMed/NCBI

52 

Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD and MacDougald OA: Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci USA. 102:3324–3329. 2005. View Article : Google Scholar : PubMed/NCBI

53 

Wang B, Jin H, Zhu M, Li J, Zhao L, Zhang Y, Tang D, Xiao G, Xing L, Boyce BF and Chen D: Chondrocyte β-catenin signaling regulates postnatal bone remodeling through modulation of osteoclast formation in a murine model. Arthritis Rheumatol. 66:107–120. 2014. View Article : Google Scholar : PubMed/NCBI

54 

Rawadi G, Vayssière B, Dunn F, Baron R and Roman-Roman S: BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J Bone Miner Res. 18:1842–1853. 2003. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Gao H, Zhai M, Wang P, Zhang X, Cai J, Chen X, Shen G, Luo E and Jing D: Low‑level mechanical vibration enhances osteoblastogenesis via a canonical Wnt signaling‑associated mechanism. Mol Med Rep 16: 317-324, 2017.
APA
Gao, H., Zhai, M., Wang, P., Zhang, X., Cai, J., Chen, X. ... Jing, D. (2017). Low‑level mechanical vibration enhances osteoblastogenesis via a canonical Wnt signaling‑associated mechanism. Molecular Medicine Reports, 16, 317-324. https://doi.org/10.3892/mmr.2017.6608
MLA
Gao, H., Zhai, M., Wang, P., Zhang, X., Cai, J., Chen, X., Shen, G., Luo, E., Jing, D."Low‑level mechanical vibration enhances osteoblastogenesis via a canonical Wnt signaling‑associated mechanism". Molecular Medicine Reports 16.1 (2017): 317-324.
Chicago
Gao, H., Zhai, M., Wang, P., Zhang, X., Cai, J., Chen, X., Shen, G., Luo, E., Jing, D."Low‑level mechanical vibration enhances osteoblastogenesis via a canonical Wnt signaling‑associated mechanism". Molecular Medicine Reports 16, no. 1 (2017): 317-324. https://doi.org/10.3892/mmr.2017.6608
Copy and paste a formatted citation
x
Spandidos Publications style
Gao H, Zhai M, Wang P, Zhang X, Cai J, Chen X, Shen G, Luo E and Jing D: Low‑level mechanical vibration enhances osteoblastogenesis via a canonical Wnt signaling‑associated mechanism. Mol Med Rep 16: 317-324, 2017.
APA
Gao, H., Zhai, M., Wang, P., Zhang, X., Cai, J., Chen, X. ... Jing, D. (2017). Low‑level mechanical vibration enhances osteoblastogenesis via a canonical Wnt signaling‑associated mechanism. Molecular Medicine Reports, 16, 317-324. https://doi.org/10.3892/mmr.2017.6608
MLA
Gao, H., Zhai, M., Wang, P., Zhang, X., Cai, J., Chen, X., Shen, G., Luo, E., Jing, D."Low‑level mechanical vibration enhances osteoblastogenesis via a canonical Wnt signaling‑associated mechanism". Molecular Medicine Reports 16.1 (2017): 317-324.
Chicago
Gao, H., Zhai, M., Wang, P., Zhang, X., Cai, J., Chen, X., Shen, G., Luo, E., Jing, D."Low‑level mechanical vibration enhances osteoblastogenesis via a canonical Wnt signaling‑associated mechanism". Molecular Medicine Reports 16, no. 1 (2017): 317-324. https://doi.org/10.3892/mmr.2017.6608
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team