Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
July-2017 Volume 16 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2017 Volume 16 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Proliferation‑inhibiting pathways in liver regeneration (Review)

  • Authors:
    • Menggang Liu
    • Ping Chen
  • View Affiliations / Copyright

    Affiliations: Department of Hepatobiliary Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China
  • Pages: 23-35
    |
    Published online on: May 19, 2017
       https://doi.org/10.3892/mmr.2017.6613
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Liver regeneration, an orchestrated process, is the primary compensatory mechanism following liver injury caused by various factors. The process of liver regeneration consists of three stages: Initiation, proliferation and termination. Proliferation‑promoting factors, which stimulate the recovery of mitosis in quiescent hepatocytes, are essential in the initiation and proliferation steps of liver regeneration. Proliferation‑promoting factors act as the ‘motor’ of liver regeneration, whereas proliferation inhibitors arrest cell proliferation when the remnant liver reaches a suitable size. Certain proliferation inhibitors are also expressed and activated in the first two steps of liver regeneration. Anti‑proliferation factors, acting as a ‘brake’, control the speed of proliferation and determine the terminal point of liver regeneration. Furthermore, anti‑proliferation factors function as a ‘steering‑wheel’, ensuring that the regeneration process proceeds in the right direction by preventing proliferation in the wrong direction, as occurs in oncogenesis. Therefore, proliferation inhibitors to ensure safe and stable liver regeneration are as important as proliferation‑promoting factors. Cytokines, including transforming growth factor‑β and interleukin‑1, and tumor suppressor genes, including p53 and p21, are important members of the proliferation inhibitor family in liver regeneration. Certain anti‑proliferation factors are involved in the process of gene expression and protein modification. The suppression of liver regeneration led by metabolism, hormone activity and pathological performance have been reviewed previously. However, less is known regarding the proliferation inhibitors of liver regeneration and further investigations are required. Detailed information regarding the majority of known anti‑proliferation signaling pathways also remains fragmented. The present review aimed to understand the signalling pathways that inhbit proliferation in the process of liver regeneration.
View Figures

Figure 1

View References

1 

Jia C: Advances in the regulation of liver regeneration. Expert Rev Gastroenterol Hepatol. 5:105–121. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Elliott J: SOCS3 in liver regeneration and hepatocarcinoma. Mol Interv. 8:19–21. 2008. View Article : Google Scholar : PubMed/NCBI

3 

Willenbring H, Sharma AD, Vogel A, Lee AY, Rothfuss A, Wang Z, Finegold M and Grompe M: Loss of p21 permits carcinogenesis from chronically damaged liver and kidney epithelial cells despite unchecked apoptosis. Cancer cell. 14:59–67. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Nakamura T, Tomita Y, Hirai R, Yamaoka K, Kaji K and Ichihara A: Inhibitory effect of transforming growth factor-beta on DNA synthesis of adult rat hepatocytes in primary culture. Biochem Biophys Res Commun. 133:1042–1050. 1985. View Article : Google Scholar : PubMed/NCBI

5 

Russell WE, Coffey RJ Jr, Ouellette AJ and Moses HL: Type beta transforming growth factor reversibly inhibits the early proliferative response to partial hepatectomy in the rat. Proc Natl Acad Sci USA. 85:5126–5130. 1988. View Article : Google Scholar : PubMed/NCBI

6 

Liska V, Treska V, Mirka H, Kobr J, Sykora R, Skalicky T, Sutnar A, Vycital O, Bruha J, Pitule P, et al: Inhibition of transforming growth factor beta-1 augments liver regeneration after partial portal vein ligation in a porcine experimental model. Hepatogastroenterology. 59:235–240. 2012.PubMed/NCBI

7 

Karkampouna S, Goumans MJ, Ten Dijke P, Dooley S and Kruithof-de Julio M: Inhibition of TGFβ type I receptor activity facilitates liver regeneration upon acute CCl intoxication in mice. Arch Toxicol. 90:347–357. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Braun L, Mead JE, Panzica M, Mikumo R, Bell GI and Fausto N: Transforming growth factor beta mRNA increases during liver regeneration: A possible paracrine mechanism of growth regulation. Proc Natl Acad Sci USA. 85:1539–1543. 1988. View Article : Google Scholar : PubMed/NCBI

9 

Fausto N, Mead JE, Braun L, Thompson NL, Panzica M, Goyette M, Bell GI and Shank PR: Proto-oncogene expression and growth factors during liver regeneration. Symp Fundam Cancer Res. 39:69–86. 1986.PubMed/NCBI

10 

Bissell DM, Wang SS, Jarnagin WR and Roll FJ: Cell-specific expression of transforming growth factor-beta in rat liver. Evidence for autocrine regulation of hepatocyte proliferation. J Clin Invest. 96:447–455. 1995. View Article : Google Scholar : PubMed/NCBI

11 

Nishikawa Y, Wang M and Carr BI: Changes in TGF-beta receptors of rat hepatocytes during primary culture and liver regeneration: Increased expression of TGF-beta receptors associated with increased sensitivity to TGF-beta-mediated growth inhibition. J Cell Physiol. 176:612–623. 1998. View Article : Google Scholar : PubMed/NCBI

12 

Jakowlew SB, Mead JE, Danielpour D, Wu J, Roberts AB and Fausto N: Transforming growth factor-beta (TGF-beta) isoforms in rat liver regeneration: Messenger RNA expression and activation of latent TGF-beta. Cell Regul. 2:535–548. 1991.PubMed/NCBI

13 

Bottinger EP, Factor VM, Tsang ML, Weatherbee JA, Kopp JB, Qian SW, Wakefield LM, Roberts AB, Thorgeirsson SS and Sporn MB: The recombinant proregion of transforming growth factor beta1 (latency-associated peptide) inhibits active transforming growth factor beta1 in transgenic mice. Proc Natl Acad Sci USA. 93:5877–5882. 1996. View Article : Google Scholar : PubMed/NCBI

14 

Strain AJ, Frazer A, Hill DJ and Milner RD: Transforming growth factor beta inhibits DNA synthesis in hepatocytes isolated from normal and regenerating rat liver. Biochem Biophys Res Commun. 145:436–442. 1987. View Article : Google Scholar : PubMed/NCBI

15 

Miyazono K, Kusanagi K and Inoue H: Divergence and convergence of TGF-beta/BMP signaling. J Cell Physiol. 187:265–276. 2001. View Article : Google Scholar : PubMed/NCBI

16 

Attisano L and Wrana JL: Signal transduction by the TGF-beta superfamily. Science. 296:1646–1647. 2002. View Article : Google Scholar : PubMed/NCBI

17 

Pañeda C, Gorospe I, Herrera B, Nakamura T, Fabregat I and Varela-Nieto I: Liver cell proliferation requires methionine adenosyltransferase 2A mRNA up-regulation. Hepatology. 35:1381–1391. 2002. View Article : Google Scholar : PubMed/NCBI

18 

Ten Dijke P, Goumans MJ, Itoh F and Itoh S: Regulation of cell proliferation by Smad proteins. J Cell Physiol. 191:1–16. 2002. View Article : Google Scholar : PubMed/NCBI

19 

Macias-Silva M, Li W, Leu JI, Crissey MA and Taub R: Up-regulated transcriptional repressors SnoN and Ski bind Smad proteins to antagonize transforming growth factor-beta signals during liver regeneration. J Biol Chem. 277:28483–28490. 2002. View Article : Google Scholar : PubMed/NCBI

20 

Hines IN, Kremer M, Isayama F, Perry AW, Milton RJ, Black AL, Byrd CL and Wheeler MD: Impaired liver regeneration and increased oval cell numbers following T cell-mediated hepatitis. Hepatology. 46:229–241. 2007. View Article : Google Scholar : PubMed/NCBI

21 

Zhong Z, Tsukada S, Rehman H, Parsons CJ, Theruvath TP, Rippe RA, Brenner DA and Lemasters JJ: Inhibition of transforming growth factor-beta/Smad signaling improves regeneration of small-for-size rat liver grafts. Liver Transpl. 16:181–190. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Schrum LW, Bird MA, Salcher O, Burchardt ER, Grisham JW, Brenner DA, Rippe RA and Behrns KE: Autocrine expression of activated transforming growth factor-beta(1) induces apoptosis in normal rat liver. Am J Physiol Gastrointest Liver Physiol. 280:G139–G148. 2001.PubMed/NCBI

23 

Hayashi H, Sakai K, Baba H and Sakai T: Thrombospondin-1 is a novel negative regulator of liver regeneration after partial hepatectomy through transforming growth factor-beta1 activation in mice. Hepatology. 55:1562–1573. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Gohda E, Matsunaga T, Kataoka H and Yamamoto I: TGF-beta is a potent inhibitor of hepatocyte growth factor secretion by human fibroblasts. Cell Biol Int Rep. 16:917–926. 1992. View Article : Google Scholar : PubMed/NCBI

25 

Satoh M and Yamazaki M: Tumor necrosis factor stimulates DNA synthesis of mouse hepatocytes in primary culture and is suppressed by transforming growth factor beta and interleukin 6. J Cell Physiol. 150:134–139. 1992. View Article : Google Scholar : PubMed/NCBI

26 

Bouzahzah B, Fu M, Iavarone A, Factor VM, Thorgeirsson SS and Pestell RG: Transforming growth factor-beta1 recruits histone deacetylase 1 to a p130 repressor complex in transgenic mice in vivo. Cancer Res. 60:4531–4537. 2000.PubMed/NCBI

27 

Moriuchi A, Hirono S, Ido A, Ochiai T, Nakama T, Uto H, Hori T, Hayashi K and Tsubouchi H: Additive and inhibitory effects of simultaneous treatment with growth factors on DNA synthesis through MAPK pathway and G1 cyclins in rat hepatocytes. Biochem Biophys Res Commun. 280:368–373. 2001. View Article : Google Scholar : PubMed/NCBI

28 

Takiya S, Tagaya T, Takahashi K, Kawashima H, Kamiya M, Fukuzawa Y, Kobayashi S, Fukatsu A, Katoh K and Kakumu S: Role of transforming growth factor beta 1 on hepatic regeneration and apoptosis in liver diseases. J Clin Pathol. 48:1093–1097. 1995. View Article : Google Scholar : PubMed/NCBI

29 

Ueberham E, Löw R, Ueberham U, Schönig K, Bujard H and Gebhardt R: Conditional tetracycline-regulated expression of TGF-beta1 in liver of transgenic mice leads to reversible intermediary fibrosis. Hepatology. 37:1067–1078. 2003. View Article : Google Scholar : PubMed/NCBI

30 

Leu JI, Crissey MA and Taub R: Massive hepatic apoptosis associated with TGF-beta1 activation after Fas ligand treatment of IGF binding protein-1-deficient mice. J Clin Invest. 111:129–139. 2003. View Article : Google Scholar : PubMed/NCBI

31 

Samson CM, Schrum LW, Bird MA, Lange PA, Brenner DA, Rippe RA and Behrns KE: Transforming growth factor-beta1 induces hepatocyte apoptosis by a c-Jun independent mechanism. Surgery. 132:441–449. 2002. View Article : Google Scholar : PubMed/NCBI

32 

Albright CD, Salganik RI, Craciunescu CN, Mar MH and Zeisel SH: Mitochondrial and microsomal derived reactive oxygen species mediate apoptosis induced by transforming growth factor-beta1 in immortalized rat hepatocytes. J Cell Biochem. 89:254–261. 2003. View Article : Google Scholar : PubMed/NCBI

33 

Villevalois-Cam L, Rescan C, Gilot D, Ezan F, Loyer P, Desbuquois B, Guguen-Guillouzo C and Baffet G: The hepatocyte is a direct target for transforming-growth factor beta activation via the insulin-like growth factor II/mannose 6-phosphate receptor. J Hepatol. 38:156–163. 2003. View Article : Google Scholar : PubMed/NCBI

34 

Yasuda H, Mine T, Shibata H, Eto Y, Hasegawa Y, Takeuchi T, Asano S and Kojima I: Activin A: An autocrine inhibitor of initiation of DNA synthesis in rat hepatocytes. J Clin Invest. 92:1491–1496. 1993. View Article : Google Scholar : PubMed/NCBI

35 

Schwall RH, Robbins K, Jardieu P, Chang L, Lai C and Terrell TG: Activin induces cell death in hepatocytes in vivo and in vitro. Hepatology. 18:347–356. 1993. View Article : Google Scholar : PubMed/NCBI

36 

Hillier SG and Miró F: Inhibin, activin, and follistatin. Potential roles in ovarian physiology. Ann N Y Acad Sci. 687:29–38. 1993. View Article : Google Scholar : PubMed/NCBI

37 

Kogure K, Zhang YQ, Kanzaki M, Omata W, Mine T and Kojima I: Intravenous administration of follistatin: Delivery to the liver and effect on liver regeneration after partial hepatectomy. Hepatology. 24:361–366. 1996. View Article : Google Scholar : PubMed/NCBI

38 

Ichikawa T, Zhang YQ, Kogure K, Hasegawa Y, Takagi H, Mori M and Kojima I: Transforming growth factor beta and activin tonically inhibit DNA synthesis in the rat liver. Hepatology. 34:918–925. 2001. View Article : Google Scholar : PubMed/NCBI

39 

Takahashi H, Takeshita T and Yokomuro K: Suppression of liver regeneration resulting from intravenous injection of splenic glass adherent cells activated by poly I:C. Immunobiology. 176:217–227. 1988. View Article : Google Scholar : PubMed/NCBI

40 

Nakamura T, Arakaki R and Ichihara A: Interleukin-1 beta is a potent growth inhibitor of adult rat hepatocytes in primary culture. Exp Cell Res. 179:488–497. 1988. View Article : Google Scholar : PubMed/NCBI

41 

Ichihara A: Growth and differentiation of neonatal rat hepatocytes in primary culture. Nihon Sanka Fujinka Gakkai Zasshi. 41:1021–1026. 1989.(In Japanese). PubMed/NCBI

42 

Ichihara A: Mechanisms controlling growth of hepatocytes in primary culture. Dig Dis Sci. 36:489–493. 1991. View Article : Google Scholar : PubMed/NCBI

43 

Beyer HS and Theologides A: Tumor necrosis factor-alpha is a direct hepatocyte mitogen in the rat. Biochem Mol Biol Int. 29:1–4. 1993.PubMed/NCBI

44 

Okamura N, Tsukada K, Sakaguchi T, Ohtake M, Yoshida K and Muto T: Enhanced liver regeneration by FK 506 can be blocked by interleukin-1 alpha and interleukin-2. Transplant Proc. 24:413–415. 1992.PubMed/NCBI

45 

Nagata Y, Tanaka N and Orita K: Endotoxin-induced liver injury after extended hepatectomy and the role of Kupffer cells in the rat. Surg Today. 24:441–448. 1994. View Article : Google Scholar : PubMed/NCBI

46 

Boulton R, Woodman A, Calnan D, Selden C, Tam F and Hodgson H: Nonparenchymal cells from regenerating rat liver generate interleukin-1alpha and -1beta: A mechanism of negative regulation of hepatocyte proliferation. Hepatology. 26:49–58. 1997. View Article : Google Scholar : PubMed/NCBI

47 

Scotte M, Masson S, Lyoumi S, Hiron M, Ténière P, Lebreton JP and Daveau M: Cytokine gene expression in liver following minor or major hepatectomy in rat. Cytokine. 9:859–867. 1997. View Article : Google Scholar : PubMed/NCBI

48 

Uemura T, Miyazaki M, Hirai R, Matsumoto H, Ota T, Ohashi R, Shimizu N, Tsuji T, Inoue Y and Namba M: Different expression of positive and negative regulators of hepatocyte growth in growing and shrinking hepatic lobes after portal vein branch ligation in rats. Int J Mol Med. 5:173–179. 2000.PubMed/NCBI

49 

Stärkel P, Lambotte L, Sempoux C, De Saeger C, Saliez A, Maiter D and Horsmans Y: After portal branch ligation in the rat, cellular proliferation is associated with selective induction of c-Ha-ras, p53, cyclin E, and Cdk2. Gut. 49:119–130. 2001. View Article : Google Scholar : PubMed/NCBI

50 

Anderson SP, Yoon L, Richard EB, Dunn CS, Cattley RC and Corton JC: Delayed liver regeneration in peroxisome proliferator-activated receptor-alpha-null mice. Hepatology. 36:544–554. 2002. View Article : Google Scholar : PubMed/NCBI

51 

Tsutsumi R, Kamohara Y, Eguchi S, Azuma T, Fujioka H, Okudaira S, Yanaga K and Kanematsu T: Selective suppression of initial cytokine response facilitates liver regeneration after extensive hepatectomy in rats. Hepatogastroenterology. 51:701–704. 2004.PubMed/NCBI

52 

Hou Z, Yanaga K, Kamohara Y, Eguchi S, Tsutsumi R, Furui J and Kanematsu T: A new suppressive agent against interleukin-1beta and tumor necrosis factor-alpha enhances liver regeneration after partial hepatectomy in rats. Hepatol Res. 26:40–46. 2003. View Article : Google Scholar : PubMed/NCBI

53 

Zhu RZ, Xiang D, Xie C, Li JJ, Hu JJ, He HL, Yuan YS, Gao J, Han W and Yu Y: Protective effect of recombinant human IL-1Ra on CCl4-induced acute liver injury in mice. World J Gastroenterol. 16:2771–2779. 2010. View Article : Google Scholar : PubMed/NCBI

54 

Goss JA, Mangino MJ and Flye MW: Kupffer cell autoregulation of IL-1 production by PGE2 during hepatic regeneration. J Surg Res. 52:422–428. 1992. View Article : Google Scholar : PubMed/NCBI

55 

Goss JA, Mangino MJ, Callery MP and Flye MW: Prostaglandin E2 downregulates Kupffer cell production of IL-1 and IL-6 during hepatic regeneration. Am J Physiol. 264:G601–G608. 1993.PubMed/NCBI

56 

Higashitsuji H, Arii S, Furutani M, Mise M, Monden K, Fujita S, Ishiguro S, Kitao T, Nakamura T, Nakayama H, et al: Expression of cytokine genes during liver regeneration after partial hepatectomy in rats. J Surg Res. 58:267–274. 1995. View Article : Google Scholar : PubMed/NCBI

57 

Sgroi A, Gonelle-Gispert C, Morel P, Baertschiger RM, Niclauss N, Mentha G, Majno P, Serre-Beinier V and Buhler L: Interleukin-1 receptor antagonist modulates the early phase of liver regeneration after partial hepatectomy in mice. PLoS One. 6:e254422011. View Article : Google Scholar : PubMed/NCBI

58 

Zheng YB, Zhang XH, Huang ZL, Lin CS, Lai J, Gu YR, Lin BL, Xie DY, Xie SB, Peng L and Gao ZL: Amniotic-fluid-derived mesenchymal stem cells overexpressing interleukin-1 receptor antagonist improve fulminant hepatic failure. PLoS One. 7:e413922012. View Article : Google Scholar : PubMed/NCBI

59 

Franco-Gou R, Roselló-Catafau J, Casillas-Ramirez A, Massip-Salcedo M, Rimola A, Calvo N, Bartrons R and Peralta C: How ischaemic preconditioning protects small liver grafts. J Pathol. 208:62–73. 2006. View Article : Google Scholar : PubMed/NCBI

60 

Zhao Y, Meng C, Wang Y, Huang H, Liu W, Zhang JF, Zhao H, Feng B, Leung PS and Xia Y: IL-1β inhibits β-Klotho expression and FGF19 signaling in hepatocytes. Am J Physiol Endocrinol Metab. 310:E289–E300. 2016. View Article : Google Scholar : PubMed/NCBI

61 

Streetz KL, Luedde T, Manns MP and Trautwein C: Interleukin 6 and liver regeneration. Gut. 47:309–312. 2000. View Article : Google Scholar : PubMed/NCBI

62 

Sun R, Jaruga B, Kulkarni S, Sun H and Gao B: IL-6 modulates hepatocyte proliferation via induction of HGF/p21cip1: Regulation by SOCS3. Biochem Biophys Res Commun. 338:1943–1949. 2005. View Article : Google Scholar : PubMed/NCBI

63 

Kamohara Y, Sugiyama N, Mizuguchi T, Inderbitzin D, Lilja H, Middleton Y, Neuman T, Demetriou AA and Rozga J: Inhibition of signal transducer and activator transcription factor 3 in rats with acute hepatic failure. Biochem Biophys Res Commun. 273:129–135. 2000. View Article : Google Scholar : PubMed/NCBI

64 

Wustefeld T, Rakemann T, Kubicka S, Manns MP and Trautwein C: Hyperstimulation with interleukin 6 inhibits cell cycle progression after hepatectomy in mice. Hepatology. 32:514–522. 2000. View Article : Google Scholar : PubMed/NCBI

65 

Torbenson M, Yang SQ, Liu HZ, Huang J, Gage W and Diehl AM: STAT-3 overexpression and p21 up-regulation accompany impaired regeneration of fatty livers. Am J Pathol. 161:155–161. 2002. View Article : Google Scholar : PubMed/NCBI

66 

Quétier I, Brezillon N, Duriez M, Massinet H, Giang E, Ahodantin J, Lamant C, Brunelle MN, Soussan P and Kremsdorf D: Hepatitis B virus HBx protein impairs liver regeneration through enhanced expression of IL-6 in transgenic mice. J Hepatol. 59:285–291. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Kakumu S, Fukatsu A, Shinagawa T, Kurokawa S and Kusakabe A: Localisation of intrahepatic interleukin 6 in patients with acute and chronic liver disease. J Clin Pathol. 45:408–411. 1992. View Article : Google Scholar : PubMed/NCBI

68 

Napoli J, Bishop GA and McCaughan GW: Increased intrahepatic messenger RNA expression of interleukins 2, 6, and 8 in human cirrhosis. Gastroenterology. 107:789–798. 1994. View Article : Google Scholar : PubMed/NCBI

69 

Malaguarnera M, Di Fazio I, Romeo MA, Restuccia S, Laurino A and Trovato BA: Elevation of interleukin 6 levels in patients with chronic hepatitis due to hepatitis C virus. J Gastroenterol. 32:211–215. 1997. View Article : Google Scholar : PubMed/NCBI

70 

Tangkijvanich P, Vimolket T, Theamboonlers A, Kullavanijaya P, Suwangool P and Poovorawan Y: Serum interleukin-6 and interferon-gamma levels in patients with hepatitis B-associated chronic liver disease. Asian Pac J Allergy Immunol. 18:109–114. 2000.PubMed/NCBI

71 

Suh HN, Lee SH, Lee MY, Lee YJ, Lee JH and Han HJ: Role of Interleukin-6 in the control of DNA synthesis of hepatocytes: Involvement of PKC, p44/42 MAPKs, and PPARdelta. Cell Physiol Biochem. 22:673–684. 2008. View Article : Google Scholar : PubMed/NCBI

72 

Liu M, Liu H, Wang X, Chen P and Chen H: IL-6 induction of hepatocyte proliferation through the Tmub1-regulated gene pathway. Int J Mol Med. 29:1106–1112. 2012.PubMed/NCBI

73 

Campbell JS, Prichard L, Schaper F, Schmitz J, Stephenson-Famy A, Rosenfeld ME, Argast GM, Heinrich PC and Fausto N: Expression of suppressors of cytokine signaling during liver regeneration. J Clin Invest. 107:1285–1292. 2001. View Article : Google Scholar : PubMed/NCBI

74 

Sakuda S, Tamura S, Yamada A, Miyagawa Ji, Yamamoto K, Kiso S, Ito N, Imanaka K, Wada A, Naka T, et al: Activation of signal transducer and activator transcription 3 and expression of suppressor of cytokine signal 1 during liver regeneration in rats. J Hepatol. 36:378–384. 2002. View Article : Google Scholar : PubMed/NCBI

75 

Luedde T, Wuestefeld T and Trautwein C: A new player in the team: SOCS-3 socks it to cytokine signaling in the regenerating liver. Hepatology. 34:1254–1256. 2001. View Article : Google Scholar : PubMed/NCBI

76 

Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G and Schaper F: Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 374:1–20. 2003. View Article : Google Scholar : PubMed/NCBI

77 

Riehle KJ, Campbell JS, McMahan RS, Johnson MM, Beyer RP, Bammler TK and Fausto N: Regulation of liver regeneration and hepatocarcinogenesis by suppressor of cytokine signaling 3. J Exp Med. 205:91–103. 2008. View Article : Google Scholar : PubMed/NCBI

78 

Seki E, Kondo Y, Iimuro Y, Naka T, Son G, Kishimoto T, Fujimoto J, Tsutsui H and Nakanishi K: Demonstration of cooperative contribution of MET- and EGFR-mediated STAT3 phosphorylation to liver regeneration by exogenous suppressor of cytokine signalings. J Hepatol. 48:237–245. 2008. View Article : Google Scholar : PubMed/NCBI

79 

Brand S, Dambacher J, Beigel F, Zitzmann K, Heeg MH, Weiss TS, Prüfer T, Olszak T, Steib CJ, Storr M, et al: IL-22-mediated liver cell regeneration is abrogated by SOCS-1/3 overexpression in vitro. Am J Physiol Gastrointest Liver Physiol. 292:G1019–G1028. 2007. View Article : Google Scholar : PubMed/NCBI

80 

Yang XP, Schaper F, Teubner A, Lammert F, Heinrich PC, Matern S and Siewert E: Interleukin-6 plays a crucial role in the hepatic expression of SOCS3 during acute inflammatory processes in vivo. J Hepatol. 43:704–710. 2005. View Article : Google Scholar : PubMed/NCBI

81 

Aydemir TB, Chang SM, Guthrie GJ, Maki AB, Ryu MS, Karabiyik A and Cousins RJ: Zinc transporter ZIP14 functions in hepatic zinc, iron and glucose homeostasis during the innate immune response (endotoxemia). PLoS One. 7:e486792012. View Article : Google Scholar : PubMed/NCBI

82 

Gui Y, Yeganeh M, Ramanathan S, Leblanc C, Pomerleau V, Ferbeyre G, Saucier C and Ilangumaran S: SOCS1 controls liver regeneration by regulating HGF signaling in hepatocytes. J Hepatol. 55:1300–1308. 2011. View Article : Google Scholar : PubMed/NCBI

83 

Sun R, Park O, Horiguchi N, Kulkarni S, Jeong WI, Sun HY, Radaeva S and Gao B: STAT1 contributes to dsRNA inhibition of liver regeneration after partial hepatectomy in mice. Hepatology. 44:955–966. 2006. View Article : Google Scholar : PubMed/NCBI

84 

Yin S, Wang H, Bertola A, Feng D, Xu MJ, Wang Y and Gao B: Activation of invariant natural killer T cells impedes liver regeneration by way of both IFN-γ- and IL-4-dependent mechanisms. Hepatology. 60:1356–1366. 2014. View Article : Google Scholar : PubMed/NCBI

85 

Cosgrove BD, Cheng C, Pritchard JR, Stolz DB, Lauffenburger DA and Griffith LG: An inducible autocrine cascade regulates rat hepatocyte proliferation and apoptosis responses to tumor necrosis factor-alpha. Hepatology. 48:276–288. 2008. View Article : Google Scholar : PubMed/NCBI

86 

Theocharis SE, Margeli AP and Tsokos MG: Alpha 2b-interferon inhibits rat liver regeneration after partial hepatectomy without affecting thymidine kinase activity. J Lab Clin Med. 125:588–596. 1995.PubMed/NCBI

87 

Theocharis SE, Margeli AP, Skaltsas SD, Skopelitou AS, Mykoniatis MG and Kittas CN: Effect of interferon-alpha2b administration on rat liver regeneration after partial hepatectomy. Dig Dis Sci. 42:1981–1986. 1997. View Article : Google Scholar : PubMed/NCBI

88 

Ogiso T, Nagaki M, Takai S, Tsukada Y, Mukai T, Kimura K and Moriwaki H: Granulocyte colony-stimulating factor impairs liver regeneration in mice through the up-regulation of interleukin-1beta. J Hepatol. 47:816–825. 2007. View Article : Google Scholar : PubMed/NCBI

89 

Vaquero J, Campbell JS, Haque J, McMahan RS, Riehle KJ, Bauer RL and Fausto N: Toll-Like Receptor 4 and myeloid differentiation factor 88 provide mechanistic insights into the cause and effects of interleukin-6 activation in mouse liver regeneration. Hepatology. 54:597–608. 2011. View Article : Google Scholar : PubMed/NCBI

90 

Thompson NL, Mead JE, Braun L, Goyette M, Shank PR and Fausto N: Sequential protooncogene expression during rat liver regeneration. Cancer Res. 46:3111–3117. 1986.PubMed/NCBI

91 

Drazan KE, Shen XD, Csete ME, Zhang WW, Roth JA, Busuttil RW and Shaked A: In vivo adenoviral-mediated human p53 tumor suppressor gene transfer and expression in rat liver after resection. Surgery. 116:197–204. 1994.PubMed/NCBI

92 

Lennartsson P, Stenius U and Högberg J: p53 expression and TGF-alpha-induced replication of hepatocytes isolated from rats exposed to the carcinogen diethylnitrosamine. Cell Biol Toxicol. 15:31–39. 1999. View Article : Google Scholar : PubMed/NCBI

93 

Inoue Y, Tomiya T, Yanase M, Arai M, Ikeda H, Tejima K, Ogata I, Kimura S, Omata M and Fujiwara K: p53 May positively regulate hepatocyte proliferation in rats. Hepatology. 36:336–344. 2002. View Article : Google Scholar : PubMed/NCBI

94 

Tsuji K and Ogawa K: Recovery from ultraviolet-induced growth arrest of primary rat hepatocytes by p53 antisense oligonucleotide treatment. Mol Carcinog. 9:167–174. 1994. View Article : Google Scholar : PubMed/NCBI

95 

Arora V, Iversen PL and Ebadi M: Manipulation of metallothionein expression in the regenerating rat liver using antisense oligonucleotides. Biochem Biophys Res Commun. 246:711–718. 1998. View Article : Google Scholar : PubMed/NCBI

96 

Arora V and Iversen PL: Antisense oligonucleotides targeted to the p53 gene modulate liver regeneration in vivo. Drug Metab Dispos. 28:131–138. 2000.PubMed/NCBI

97 

Kurinna S, Stratton SA, Coban Z, Schumacher JM, Grompe M, Duncan AW and Barton MC: p53 regulates a mitotic transcription program and determines ploidy in normal mouse liver. Hepatology. 57:2004–2013. 2013. View Article : Google Scholar : PubMed/NCBI

98 

Zhang L, Liu L, He Z, Li G, Liu J, Song Z, Jin H, Rudolph KL, Yang H, Mao Y, et al: Inhibition of wild-type p53-induced phosphatase 1 promotes liver regeneration in mice by direct activation of mammalian target of rapamycin. Hepatology. 61:2030–2041. 2015. View Article : Google Scholar : PubMed/NCBI

99 

Ohlson LC, Koroxenidou L and Hällström IP: Inhibition of in vivo rat liver regeneration by 2-acetylaminofluorene affects the regulation of cell cycle-related proteins. Hepatology. 27:691–696. 1998. View Article : Google Scholar : PubMed/NCBI

100 

Stepniak E, Ricci R, Eferl R, Sumara G, Sumara I, Rath M, Hui L and Wagner EF: c-Jun/AP-1 controls liver regeneration by repressing p53/p21 and p38 MAPK activity. Genes Dev. 20:2306–2314. 2006. View Article : Google Scholar : PubMed/NCBI

101 

Li CC, Chu HY, Yang CW, Chou CK and Tsai TF: Aurora-A overexpression in mouse liver causes p53-dependent premitotic arrest during liver regeneration. Mol Cancer Res. 7:678–688. 2009. View Article : Google Scholar : PubMed/NCBI

102 

Fan X, Jiang Y, Wang Y, Tan H, Zeng H, Wang Y, Chen P, Qu A, Gonzalez FJ, Huang M and Bi H: Wuzhi tablet (Schisandra Sphenanthera extract) protects against acetaminophen-induced hepatotoxicity by inhibition of CYP-mediated bioactivation and regulation of NRF2-ARE and p53/p21 pathways. Drug Metab Dispos. 42:1982–1990. 2014. View Article : Google Scholar : PubMed/NCBI

103 

Wang Y, Jiang Y, Fan X, Tan H, Zeng H, Wang Y, Chen P, Huang M and Bi H: Hepato-protective effect of resveratrol against acetaminophen-induced liver injury is associated with inhibition of CYP-mediated bioactivation and regulation of SIRT1-p53 signaling pathways. Toxicol Lett. 236:82–89. 2015. View Article : Google Scholar : PubMed/NCBI

104 

Zeng H, Li D, Qin X, Chen P, Tan H, Zeng X, Li X, Fan X, Jiang Y, Zhou Y, et al: Hepatoprotective effects of schisandra sphenanthera extract against lithocholic acid-induced cholestasis in male mice are associated with activation of the pregnane X receptor pathway and promotion of liver regeneration. Drug Metab Dispos. 44:337–342. 2016. View Article : Google Scholar : PubMed/NCBI

105 

Shih TY and Weeks MO: Oncogenes and cancer: The p21 ras genes. Cancer Invest. 2:109–123. 1984. View Article : Google Scholar : PubMed/NCBI

106 

el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW and Vogelstein B: WAF1, a potential mediator of p53 tumor suppression. Cell. 75:817–825. 1993. View Article : Google Scholar : PubMed/NCBI

107 

Harper JW, Adami GR, Wei N, Keyomarsi K and Elledge SJ: The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 75:805–816. 1993. View Article : Google Scholar : PubMed/NCBI

108 

Albrecht JH, Poon RY, Ahonen CL, Rieland BM, Deng C and Crary GS: Involvement of p21 and p27 in the regulation of CDK activity and cell cycle progression in the regenerating liver. Oncogene. 16:2141–2150. 1998. View Article : Google Scholar : PubMed/NCBI

109 

Sasaki Y, Hayashi N, Morita Y, Ito T, Kasahara A, Fusamoto H, Sato N, Tohyama M and Kamada T: Cellular analysis of c-Ha-ras gene expression in rat liver after CCl4 administration. Hepatology. 10:494–500. 1989. View Article : Google Scholar : PubMed/NCBI

110 

Hui TT, Mizuguchi T, Sugiyama N, Avital I, Rozga J and Demetriou AA: Immediate early genes and p21 regulation in liver of rats with acute hepatic failure. Am J Surg. 183:457–463. 2002. View Article : Google Scholar : PubMed/NCBI

111 

Nango R, Terada C and Tsukamoto I: Jun N-terminal kinase activation and upregulation of p53 and p21(WAF1/CIP1) in selenite-induced apoptosis of regenerating liver. Eur J Pharmacol. 471:1–8. 2003. View Article : Google Scholar : PubMed/NCBI

112 

Chang ML, Chen TH, Chang MY and Yeh CT: Cell cycle perturbation in the hepatocytes of HCV core transgenic mice following common bile duct ligation is associated with enhanced p21 expression. J Med Virol. 81:467–472. 2009. View Article : Google Scholar : PubMed/NCBI

113 

Weymann A, Hartman E, Gazit V, Wang C, Glauber M, Turmelle Y and Rudnick DA: p21 is required for dextrose-mediated inhibition of mouse liver regeneration. Hepatology. 50:207–215. 2009. View Article : Google Scholar : PubMed/NCBI

114 

Lehmann K, Tschuor C, Rickenbacher A, Jang JH, Oberkofler CE, Tschopp O, Schultze SM, Raptis DA, Weber A, Graf R, et al: Liver failure after extended hepatectomy in mice is mediated by a p21-dependent barrier to liver regeneration. Gastroenterology. 143:1609–1619.e4. 2012. View Article : Google Scholar : PubMed/NCBI

115 

Buitrago-Molina LE, Marhenke S, Longerich T, Sharma AD, Boukouris AE, Geffers R, Guigas B, Manns MP and Vogel A: The degree of liver injury determines the role of p21 in liver regeneration and hepatocarcinogenesis in mice. Hepatology. 58:1143–1152. 2013. View Article : Google Scholar : PubMed/NCBI

116 

Albrecht JH, Meyer AH and Hu MY: Regulation of cyclin-dependent kinase inhibitor p21(WAF1/Cip1/Sdi1) gene expression in hepatic regeneration. Hepatology. 25:557–563. 1997. View Article : Google Scholar : PubMed/NCBI

117 

Serfas MS, Goufman E, Feuerman MH, Gartel AL and Tyner AL: p53-independent induction of p21WAF1/CIP1 expression in pericentral hepatocytes following carbon tetrachloride intoxication. Cell Growth Differ. 8:951–961. 1997.PubMed/NCBI

118 

Wu H, Wade M, Krall L, Grisham J, Xiong Y and Van Dyke T: Targeted in vivo expression of the cyclin-dependent kinase inhibitor p21 halts hepatocyte cell-cycle progression, postnatal liver development and regeneration. Genes Dev. 10:245–260. 1996. View Article : Google Scholar : PubMed/NCBI

119 

Jaime M, Pujol MJ, Serratosa J, Pantoja C, Canela N, Casanovas O, Serrano M, Agell N and Bachs O: The p21(Cip1) protein, a cyclin inhibitor, regulates the levels and the intracellular localization of CDC25A in mice regenerating livers. Hepatology. 35:1063–1071. 2002. View Article : Google Scholar : PubMed/NCBI

120 

Trautwein C, Will M, Kubicka S, Rakemann T, Flemming P and Manns MP: 2-acetaminofluorene blocks cell cycle progression after hepatectomy by p21 induction and lack of cyclin E expression. Oncogene. 18:6443–6453. 1999. View Article : Google Scholar : PubMed/NCBI

121 

Fan X, Chen P, Tan H, Zeng H, Jiang Y, Wang Y, Wang Y, Hou X, Bi H and Huang M: Dynamic and coordinated regulation of KEAP1-NRF2-ARE and p53/p21 signaling pathways is associated with acetaminophen injury responsive liver regeneration. Drug Metab Dispos. 42:1532–1539. 2014. View Article : Google Scholar : PubMed/NCBI

122 

Timchenko NA, Harris TE, Wilde M, Bilyeu TA, Burgess-Beusse BL, Finegold MJ and Darlington GJ: CCAAT/enhancer binding protein alpha regulates p21 protein and hepatocyte proliferation in newborn mice. Mol Cell Biol. 17:7353–7361. 1997. View Article : Google Scholar : PubMed/NCBI

123 

Vail ME, Chaisson ML, Thompson J and Fausto N: Bcl-2 expression delays hepatocyte cell cycle progression during liver regeneration. Oncogene. 21:1548–1555. 2002. View Article : Google Scholar : PubMed/NCBI

124 

Chen S, Zheng J, Hao Q, Yang S, Wang J, Chen H, Chen L, Zhou Y, Yu C, Jiao B and Cai Z: p53-insensitive PUMA down-regulation is essential in the early phase of liver regeneration after partial hepatectomy in mice. J Hepatol. 52:864–871. 2010. View Article : Google Scholar : PubMed/NCBI

125 

Bailly-Maitre B, Bard-Chapeau E, Luciano F, Droin N, Bruey JM, Faustin B, Kress C, Zapata JM and Reed JC: Mice lacking bi-1 gene show accelerated liver regeneration. Cancer Res. 67:1442–1450. 2007. View Article : Google Scholar : PubMed/NCBI

126 

Wyllie AH: Apoptosis and carcinogenesis. Eur J Cell Biol. 73:189–197. 1997.PubMed/NCBI

127 

Kiba T, Saito S, Numata K and Sekihara H: Fas (APO-1/CD95) mRNA is down-regulated in liver regeneration after hepatectomy in rats. J Gastroenterol. 35:34–38. 2000. View Article : Google Scholar : PubMed/NCBI

128 

Hu W, Fan C, Jiang P, Ma Z, Yan X, Di S, Jiang S, Li T, Cheng Y and Yang Y: Emerging role of N-myc downstream-regulated gene 2 (NDRG2) in cancer. Oncotarget. 7:209–223. 2016.PubMed/NCBI

129 

Yang JD, Li Y, Wu L, Zhang Z, Han T, Guo H, Jiang N, Tao K, Ti Z, Liu X, et al: NDRG2 in rat liver regeneration: Role in proliferation and apoptosis. Wound Repair Regen. 18:524–531. 2010. View Article : Google Scholar : PubMed/NCBI

130 

Mischoulon D, Rana B, Bucher NL and Farmer SR: Growth-dependent inhibition of CCAAT enhancer-binding protein (C/EBP alpha) gene expression during hepatocyte proliferation in the regenerating liver and in culture. Mol Cell Biol. 12:2553–2560. 1992. View Article : Google Scholar : PubMed/NCBI

131 

Iakova P, Awad SS and Timchenko NA: Aging reduces proliferative capacities of liver by switching pathways of C/EBPalpha growth arrest. Cell. 113:495–506. 2003. View Article : Google Scholar : PubMed/NCBI

132 

Pauta M, Rotllan N, Fernández-Hernando A, Langhi C, Ribera J, Lu M, Boix L, Bruix J, Jimenez W, Suárez Y, et al: Akt-mediated foxo1 inhibition is required for liver regeneration. Hepatology. 63:1660–1674. 2016. View Article : Google Scholar : PubMed/NCBI

133 

Chen X, Zhao Y, Wang F, Bei Y, Xiao J and Yang C: MicroRNAs in liver regeneration. Cell Physiol Biochem. 37:615–628. 2015. View Article : Google Scholar : PubMed/NCBI

134 

Revuelta-Cervantes J, Mayoral R, Miranda S, González-Rodríguez A, Fernández M, Martín-Sanz P and Valverde AM: Protein tyrosine phosphatase 1B (PTP1B) deficiency accelerates hepatic regeneration in mice. Am J Pathol. 178:1591–1604. 2011. View Article : Google Scholar : PubMed/NCBI

135 

Hong L, Cai Y, Jiang M, Zhou D and Chen L: The Hippo signaling pathway in liver regeneration and tumorigenesis. Acta Biochim Biophys Sin (Shanghai). 47:46–52. 2015. View Article : Google Scholar : PubMed/NCBI

136 

Grijalva JL, Huizenga M, Mueller K, Rodriguez S, Brazzo J, Camargo F, Sadri-Vakili G and Vakili K: Dynamic alterations in Hippo signaling pathway and YAP activation during liver regeneration. Am J Physiol Gastrointest Liver Physiol. 307:G196–G204. 2014. View Article : Google Scholar : PubMed/NCBI

137 

Pondugula SR, Flannery PC, Apte U, Babu JR, Geetha T, Rege SD, Chen T and Abbott KL: Mg2+/Mn2+-dependent phosphatase 1A is involved in regulating pregnane X receptor-mediated cytochrome p450 3A4 gene expression. Drug Metab Dispos. 43:385–391. 2015. View Article : Google Scholar : PubMed/NCBI

138 

Keeton AB, Xu J, Franklin JL and Messina JL: Regulation of Gene33 expression by insulin requires MEK-ERK activation. Biochim Biophys Acta. 1679:248–255. 2004. View Article : Google Scholar : PubMed/NCBI

139 

Ballaro C, Ceccarelli S, Tiveron C, Tatangelo L, Salvatore AM, Segatto O and Alemà S: Targeted expression of RALT in mouse skin inhibits epidermal growth factor receptor signalling and generates a Waved-like phenotype. EMBO Rep. 6:755–761. 2005. View Article : Google Scholar : PubMed/NCBI

140 

Reschke M, Ferby I, Stepniak E, Seitzer N, Horst D, Wagner EF and Ullrich A: Mitogen-inducible gene-6 is a negative regulator of epidermal growth factor receptor signaling in hepatocytes and human hepatocellular carcinoma. Hepatology. 51:1383–1390. 2010. View Article : Google Scholar : PubMed/NCBI

141 

Leffert HL and Weinstein DB: Growth control of differentiated fetal rat hepatocytes in primary monolayer culture. IX. Specific inhibition of DNA synthesis initiation by very low density lipoprotein and possible significance to the problem of liver regeneration. J Cell Biol. 70:20–32. 1976. View Article : Google Scholar : PubMed/NCBI

142 

Chanda S and Mehendale HM: Nutritional impact on the final outcome of liver injury inflicted by model hepatotoxicants: Effect of glucose loading. FASEB J. 9:240–245. 1995.PubMed/NCBI

143 

Vazquez-Chantada M, Ariz U, Varela-Rey M, Embade N, Martínez-Lopez N, Fernández-Ramos D, Gómez-Santos L, Lamas S, Lu SC, Martínez-Chantar ML and Mato JM: Evidence for LKB1/AMP-activated protein kinase/endothelial nitric oxide synthase cascade regulated by hepatocyte growth factor, S-adenosylmethionine, and nitric oxide in hepatocyte proliferation. Hepatology. 49:608–617. 2009. View Article : Google Scholar : PubMed/NCBI

144 

Varela-Rey M, Beraza N, Lu SC, Mato JM and Martinez-Chantar ML: Role of AMP-activated protein kinase in the control of hepatocyte priming and proliferation during liver regeneration. Exp Biol Med (Maywood). 236:402–408. 2011. View Article : Google Scholar : PubMed/NCBI

145 

Garcia-Rodriguez JL, Barbier-Torres L, Fernández-Álvarez S, Gutiérrez-de Juan V, Monte MJ, Halilbasic E, Herranz D, Álvarez L, Aspichueta P, Marín JJ, et al: SIRT1 controls liver regeneration by regulating bile acid metabolism through farnesoid X receptor and mammalian target of rapamycin signaling. Hepatology. 59:1972–1983. 2014. View Article : Google Scholar : PubMed/NCBI

146 

Leffert HL: Growth control of differentiated fetal rat hepatocytes in primary monolayer culture. VII. Hormonal control of DNA synthesis and its possible significance to the problem of liver regeneration. J Cell Biol. 62:792–801. 1974. View Article : Google Scholar : PubMed/NCBI

147 

Houck KA, Cruise JL and Michalopoulos G: Norepinephrine modulates the growth-inhibitory effect of transforming growth factor-beta in primary rat hepatocyte cultures. J Cell Physiol. 135:551–555. 1988. View Article : Google Scholar : PubMed/NCBI

148 

Barbason H, Bouzahzah B, Herens C, Marchandise J, Sulon J and Van Cantfort J: Circadian synchronization of liver regeneration in adult rats: The role played by adrenal hormones. Cell Tissue Kinet. 22:451–460. 1989.PubMed/NCBI

149 

Spector MS, Auer KL, Jarvis WD, Ishac EJ, Gao B, Kunos G and Dent P: Differential regulation of the mitogen-activated protein and stress-activated protein kinase cascades by adrenergic agonists in quiescent and regenerating adult rat hepatocytes. Mol Cell Biol. 17:3556–3565. 1997. View Article : Google Scholar : PubMed/NCBI

150 

Krasil'nikov MA, Bogdanova NN and Adler VV: Inhibition of proliferation of normal and neoplastic liver cells under conditions of prolonged hormonal stimulation. Biokhimiia. 54:656–661. 1989.(In Russian). PubMed/NCBI

151 

Nagy P, Kiss A, Schnur J and Thorgeirsson SS: Dexamethasone inhibits the proliferation of hepatocytes and oval cells but not bile duct cells in rat liver. Hepatology. 28:423–429. 1998. View Article : Google Scholar : PubMed/NCBI

152 

Yager JD, Zurlo J, Sewall CH, Lucier GW and He H: Growth stimulation followed by growth inhibition in livers of female rats treated with ethinyl estradiol. Carcinogenesis. 15:2117–2123. 1994. View Article : Google Scholar : PubMed/NCBI

153 

Kokudo N, Kothary PC, Eckhauser FE, Nakamura T and Raper SE: Inhibition of DNA synthesis by somatostatin in rat hepatocytes stimulated by hepatocyte growth factor or epidermal growth factor. Am J Surg. 163:169–173. 1992. View Article : Google Scholar : PubMed/NCBI

154 

Corpechot C, Barbu V, Wendum D, Chignard N, Housset C, Poupon R and Rosmorduc O: Hepatocyte growth factor and c-Met inhibition by hepatic cell hypoxia: A potential mechanism for liver regeneration failure in experimental cirrhosis. Am J Pathol. 160:613–620. 2002. View Article : Google Scholar : PubMed/NCBI

155 

Kuo WL, Yu MC, Lee JF, Tsai CN, Chen TC and Chen MF: Imatinib mesylate improves liver regeneration and attenuates liver fibrogenesis in CCL4-treated mice. J Gastrointest Surg. 16:361–369. 2012. View Article : Google Scholar : PubMed/NCBI

156 

Akerman PA, Cote PM, Yang SQ, McClain C, Nelson S, Bagby G and Diehl AM: Long-term ethanol consumption alters the hepatic response to the regenerative effects of tumor necrosis factor-alpha. Hepatology. 17:1066–1073. 1993. View Article : Google Scholar : PubMed/NCBI

157 

Lumpkin CK Jr, Moore TL, Tarpley MD, Taylor JM, Badger TM and McClung JK: Acute ethanol and selected growth suppressor transcripts in regenerating rat liver. Alcohol. 12:357–362. 1995. View Article : Google Scholar : PubMed/NCBI

158 

Chen J, Ishac EJ, Dent P, Kunos G and Gao B: Effects of ethanol on mitogen-activated protein kinase and stress-activated protein kinase cascades in normal and regenerating liver. Biochem J. 334:669–676. 1998. View Article : Google Scholar : PubMed/NCBI

159 

Zhang MN, Gong Y and Minuk GY: The effects of acute ethanol exposure on inhibitors of hepatic regenerative activity in the rat. Mol Cell Biochem. 207:109–114. 2000. View Article : Google Scholar : PubMed/NCBI

160 

Silverman AL, Smith MR, Sasaki D, Mutchnick MG and Diehl AM: Altered levels of prothymosin immunoreactive peptide, a growth-related gene product, during liver regeneration after chronic ethanol feeding. Alcohol Clin Exp Res. 18:616–619. 1994. View Article : Google Scholar : PubMed/NCBI

161 

Koteish A, Yang S, Lin H, Huang J and Diehl AM: Ethanol induces redox-sensitive cell-cycle inhibitors and inhibits liver regeneration after partial hepatectomy. Alcohol Clin Exp Res. 26:1710–1718. 2002. View Article : Google Scholar : PubMed/NCBI

162 

Yang SQ, Lin HZ, Mandal AK, Huang J and Diehl AM: Disrupted signaling and inhibited regeneration in obese mice with fatty livers: Implications for nonalcoholic fatty liver disease pathophysiology. Hepatology. 34:694–706. 2001. View Article : Google Scholar : PubMed/NCBI

163 

Koch KS and Leffert HL: Increased sodium ion influx is necessary to initiate rat hepatocyte proliferation. Cell. 18:153–163. 1979. View Article : Google Scholar : PubMed/NCBI

164 

Ramalho FS, Ramalho LN, Castro-E-Silva Júnior O, Zucoloto S and Corrêa FM: Angiotensin-converting enzyme inhibition by lisinopril enhances liver regeneration in rats. Braz J Med Biol Res. 34:125–127. 2001. View Article : Google Scholar : PubMed/NCBI

165 

LeBoeuf RA, Laishes BA and Hoekstra WG: Effects of selenium on cell proliferation in rat liver and mammalian cells as indicated by cytokinetic and biochemical analysis. Cancer Res. 45:5496–5504. 1985.PubMed/NCBI

166 

Theocharis SE, Margeli AP, Spiliopoulou C, Skaltsas S, Kittas C and Koutselinis A: Hepatic stimulator substance administration enhances regenerative capacity of hepatocytes in cadmium-pretreated partially hepatectomized rats. Dig Dis Sci. 41:1475–1480. 1996. View Article : Google Scholar : PubMed/NCBI

167 

Yamaguchi M and Kanayama Y: Calcium-binding protein regucalcin inhibits deoxyribonucleic acid synthesis in the nuclei of regenerating rat liver. Mol Cell Biochem. 162:121–126. 1996. View Article : Google Scholar : PubMed/NCBI

168 

Yamamoto Y, Ono T, Dhar DK, Yamanoi A, Tachibana M, Tanaka T and Nagasue N: Role of peroxisome proliferator-activated receptor-gamma (PPARgamma) during liver regeneration in rats. J Gastroenterol Hepatol. 23:930–937. 2008. View Article : Google Scholar : PubMed/NCBI

169 

Kwon HJ, Won YS, Yoon YD, Yoon WK, Nam KH, Choi IP, Kim DY and Kim HC: Vitamin D3 up-regulated protein 1 deficiency accelerates liver regeneration after partial hepatectomy in mice. J Hepatol. 54:1168–1176. 2011. View Article : Google Scholar : PubMed/NCBI

170 

Liu M, Yuan T, Liu H and Chen P: CCAAT/enhancer-binding protein β regulates interleukin-6-induced transmembrane and ubiquitin-like domain containing 1 gene expression in hepatocytes. Mol Med Rep. 10:2177–2183. 2014.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu M and Chen P: Proliferation‑inhibiting pathways in liver regeneration (Review). Mol Med Rep 16: 23-35, 2017.
APA
Liu, M., & Chen, P. (2017). Proliferation‑inhibiting pathways in liver regeneration (Review). Molecular Medicine Reports, 16, 23-35. https://doi.org/10.3892/mmr.2017.6613
MLA
Liu, M., Chen, P."Proliferation‑inhibiting pathways in liver regeneration (Review)". Molecular Medicine Reports 16.1 (2017): 23-35.
Chicago
Liu, M., Chen, P."Proliferation‑inhibiting pathways in liver regeneration (Review)". Molecular Medicine Reports 16, no. 1 (2017): 23-35. https://doi.org/10.3892/mmr.2017.6613
Copy and paste a formatted citation
x
Spandidos Publications style
Liu M and Chen P: Proliferation‑inhibiting pathways in liver regeneration (Review). Mol Med Rep 16: 23-35, 2017.
APA
Liu, M., & Chen, P. (2017). Proliferation‑inhibiting pathways in liver regeneration (Review). Molecular Medicine Reports, 16, 23-35. https://doi.org/10.3892/mmr.2017.6613
MLA
Liu, M., Chen, P."Proliferation‑inhibiting pathways in liver regeneration (Review)". Molecular Medicine Reports 16.1 (2017): 23-35.
Chicago
Liu, M., Chen, P."Proliferation‑inhibiting pathways in liver regeneration (Review)". Molecular Medicine Reports 16, no. 1 (2017): 23-35. https://doi.org/10.3892/mmr.2017.6613
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team