Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
September-2017 Volume 16 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2017 Volume 16 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

MicroRNA‑21 promotes neurite outgrowth by regulating PDCD4 in a rat model of spinal cord injury

  • Authors:
    • Yuqing Jiang
    • Shujie Zhao
    • Yin Ding
    • Luming Nong
    • Haibo Li
    • Gongming Gao
    • Dong Zhou
    • Nanwei Xu
  • View Affiliations / Copyright

    Affiliations: Department of Orthopedics, Nanjing Medical University Affiliated Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213000, P.R. China
    Copyright: © Jiang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 2522-2528
    |
    Published online on: June 27, 2017
       https://doi.org/10.3892/mmr.2017.6862
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Altered expression levels of microRNA‑21 (miRNA‑21) have been observed in a series of pathological processes, including cancer and central nervous system injury; however, the involvement of miRNA‑21 in the molecular pathophysiology of spinal cord injury (SCI) has not been well documented. The present study examined the expression levels of miRNA‑21 and its predicted target genes, programmed cell death 4 (PDCD4) and phosphatase and tensin homolog (PTEN), in rats using quantitative polymerase chain reaction and western blotting to further understand the role of miRNA‑21 and the mechanisms underlying repair following SCI. The present study demonstrated that compared with uninjured spinal cords, miRNA‑21 expression levels were significantly downregulated in injured spinal cords 4 and 8 h, and 1 day post‑SCI, and were significantly upregulated after 3 and 7 days. Conversely, expression levels of PDCD4 and PTEN were significantly decreased at days 3 and 7 post‑SCI compared with the control group. miRNA‑21 overexpression in monolayer‑cultured postnatal rat spinal cord neurons promoted neurite outgrowth and downregulated protein expression levels of PDCD4; however, PTEN protein expression levels were unaltered. To confirm that miRNA‑21 directly targets PDCD4, a pRL‑CMV luciferase reporter construct was used to detect miRNA‑21 interactions with the PDCD4 3'‑untranslated region. The results demonstrated that miRNA‑21 decreased luciferase activity compared with a rat PDCD4 control reporter. The results of the present study suggested that increased miRNA‑21 expression levels following SCI may promote the repair of injured spinal cords by inhibiting the expression of its target gene PDCD4.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE and Mello CC: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391:806–811. 1998. View Article : Google Scholar : PubMed/NCBI

2 

Griffiths-Jones S, Saini HK, van Dongen S and Enright AJ: miRBase: Tools for microRNA genomics. Nucleic Acids Res. 36:(Database issue). D154–D158. 2008. View Article : Google Scholar : PubMed/NCBI

3 

Baek D, Villén J, Shin C, Camargo FD, Gygi SP and Bartel DP: The impact of microRNAs on protein output. Nature. 455:64–71. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Liu Q, Fu H, Sun F, Zhang H, Tie Y, Zhu J, Xing R, Sun Z and Zheng X: miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res. 36:5391–5404. 2008. View Article : Google Scholar : PubMed/NCBI

5 

Fazekas D, Koltai M, Türei D, Módos D, Pálfy M, Dúl Z, Zsákai L, Szalay-Bekő M, Lenti K, Farkas IJ, et al: SignaLink 2-a signaling pathway resource with multi-layered regulatory networks. BMC Syst Biol. 7:72013. View Article : Google Scholar : PubMed/NCBI

6 

Kuzin A, Kundu M, Brody T and Odenwald WF: The Drosophila nerfin-1 mRNA requires multiple microRNAs to regulate its spatial and temporal translation dynamics in the developing nervous system. Dev Biol. 310:35–43. 2007. View Article : Google Scholar : PubMed/NCBI

7 

Stark A, Brennecke J, Bushati N, Russell RB and Cohen SM: Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell. 123:1133–1146. 2005. View Article : Google Scholar : PubMed/NCBI

8 

Bartel DP and Chen CZ: Micromanagers of gene expression: The potentially widespread influence of metazoan microRNAs. Nat Rev Genet. 5:396–400. 2004. View Article : Google Scholar : PubMed/NCBI

9 

Kloosterman WP and Plasterk RH: The diverse functions of microRNAs in animal development and disease. Dev Cell. 11:441–450. 2006. View Article : Google Scholar : PubMed/NCBI

10 

Chan JA, Krichevsky AM and Kosik KS: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 65:6029–6033. 2005. View Article : Google Scholar : PubMed/NCBI

11 

Lei P, Li Y, Chen X, Yang S and Zhang J: Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury. Brain Res. 1284:191–201. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Redell JB, Zhao J and Dash PK: Altered expression of miRNA-21 and its targets in the hippocampus after traumatic brain injury. J Neurosci Res. 89:212–221. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Talotta F, Cimmino A, Matarazzo MR, Casalino L, De Vita G, D'Esposito M, Di Lauro R and Verde P: An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP-1 activity in RAS transformation. Oncogene. 28:73–84. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Põlajeva J, Swartling FJ, Jiang Y, Singh U, Pietras K, Uhrbom L, Westermark B and Roswall P: miRNA-21 is developmentally regulated in mouse brain and is co-expressed with SOX2 in glioma. BMC Cancer. 12:3782012. View Article : Google Scholar : PubMed/NCBI

15 

Donnelly DJ and Popovich PG: Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol. 209:378–388. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Dou F, Huang L, Yu P, Zhu H, Wang X, Zou J, Lu P and Xu XM: Temporospatial expression and cellular localization of oligodendrocyte myelin glycoprotein (OMgp) after traumatic spinal cord injury in adult rats. J Neurotrauma. 26:2299–2311. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Method. 25:402–408. 2001. View Article : Google Scholar

18 

Montoya-Gacharna JV, Sutachan JJ, Chan WS, Sideris A, Blanck TJ and Recio-Pinto E: Preparation of adult spinal cord motor neuron cultures under serum-free conditions. Methods Mol Biol. 846:103–116. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Abe M and Bonini NM: MicroRNAs and neurodegeneration: Role and impact. Trends Cell Biol. 23:30–36. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Krichevsky AM: MicroRNA profiling: From dark matter to white matter, or identifying new players in neurobiology. ScientificWorldJournal. 7:155–166. 2007. View Article : Google Scholar : PubMed/NCBI

21 

Baptiste DC and Fehlings MG: Update on the treatment of spinal cord injury. Prog Brain Res. 161:217–233. 2007. View Article : Google Scholar : PubMed/NCBI

22 

Zai LJ, Yoo S and Wrathall JR: Increased growth factor expression and cell proliferation after contusive spinal cord injury. Brain Res. 1052:147–155. 2005. View Article : Google Scholar : PubMed/NCBI

23 

Bak M, Silahtaroglu A, Møller M, Christensen M, Rath MF, Skryabin B, Tommerup N and Kauppinen S: MicroRNA expression in the adult mouse central nervous system. RNA. 14:432–444. 2008. View Article : Google Scholar : PubMed/NCBI

24 

Medina PP and Slack FJ: Inhibiting microRNA function in vivo. Nat Methods. 6:37–38. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Bhalala OG, Pan L, Sahni V, McGuire TL, Gruner K, Tourtellotte WG and Kessler JA: microRNA-21 regulates astrocytic response following spinal cord injury. J Neurosci. 32:17935–17947. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Hu JZ, Huang JH, Zeng L, Wang G, Cao M and Lu HB: Anti-apoptotic effect of microRNA-21 after contusion spinal cord injury in rats. J Neurotrauma. 30:1349–1360. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Liu NK, Wang XF, Lu QB and Xu XM: Altered microRNA expression following traumatic spinal cord injury. Exp Neurol. 219:424–429. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Sahni V, Mukhopadhyay A, Tysseling V, Hebert A, Birch D, Mcguire TL, Stupp SI and Kessler JA: BMPR1a and BMPR1b signaling exert opposing effects on gliosis after spinal cord injury. J Neurosci. 30:1839–1855. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Liu G, Detloff MR, Miller KN, Santi L and Houlé JD: Exercise modulates microRNAs that affect the PTEN/mTOR pathway in rats after spinal cord injury. Exp Neurol. 233:447–456. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Liu XZ, Xu XM, Hu R, Du C, Zhang SX, McDonald JW, Dong HX, Wu YJ, Fan GS, Jacquin MF, et al: Neuronal and glial apoptosis after traumatic spinal cord injury. J Neurosci. 17:5395–5406. 1997.PubMed/NCBI

31 

Buller B, Liu X, Wang X, Zhang RL, Zhang L, Hozeska-Solgot A, Chopp M and Zhang ZG: MicroRNA-21 protects neurons from ischemic death. FEBS J. 277:4299–4307. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Strickland IT, Richards L, Holmes FE, Wynick D, Uney JB and Wong LF: Axotomy-induced miR-21 promotes axon growth in adult dorsal root ganglion neurons. PLoS One. 6:e234232011. View Article : Google Scholar : PubMed/NCBI

33 

Liu NK, Zhang YP, Titsworth WL, Jiang X, Han S, Lu PH, Shields CB and Xu XM: A novel role of phospholipase A2 in mediating spinal cord secondary injury. Ann Neurol. 59:606–619. 2006. View Article : Google Scholar : PubMed/NCBI

34 

Liu G, Keeler BE, Zhukareva V and Houlé JD: Cycling exercise affects the expression of apoptosis-associated microRNAs after spinal cord injury in rats. Exp Neurol. 226:200–206. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A and Lund AH: Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem. 283:1026–1033. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Boltshauser E: Spnal cord injury in the child and young adult. Neuropediatrics. 2015.(Epub ahead of print).

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Jiang Y, Zhao S, Ding Y, Nong L, Li H, Gao G, Zhou D and Xu N: MicroRNA‑21 promotes neurite outgrowth by regulating PDCD4 in a rat model of spinal cord injury. Mol Med Rep 16: 2522-2528, 2017.
APA
Jiang, Y., Zhao, S., Ding, Y., Nong, L., Li, H., Gao, G. ... Xu, N. (2017). MicroRNA‑21 promotes neurite outgrowth by regulating PDCD4 in a rat model of spinal cord injury. Molecular Medicine Reports, 16, 2522-2528. https://doi.org/10.3892/mmr.2017.6862
MLA
Jiang, Y., Zhao, S., Ding, Y., Nong, L., Li, H., Gao, G., Zhou, D., Xu, N."MicroRNA‑21 promotes neurite outgrowth by regulating PDCD4 in a rat model of spinal cord injury". Molecular Medicine Reports 16.3 (2017): 2522-2528.
Chicago
Jiang, Y., Zhao, S., Ding, Y., Nong, L., Li, H., Gao, G., Zhou, D., Xu, N."MicroRNA‑21 promotes neurite outgrowth by regulating PDCD4 in a rat model of spinal cord injury". Molecular Medicine Reports 16, no. 3 (2017): 2522-2528. https://doi.org/10.3892/mmr.2017.6862
Copy and paste a formatted citation
x
Spandidos Publications style
Jiang Y, Zhao S, Ding Y, Nong L, Li H, Gao G, Zhou D and Xu N: MicroRNA‑21 promotes neurite outgrowth by regulating PDCD4 in a rat model of spinal cord injury. Mol Med Rep 16: 2522-2528, 2017.
APA
Jiang, Y., Zhao, S., Ding, Y., Nong, L., Li, H., Gao, G. ... Xu, N. (2017). MicroRNA‑21 promotes neurite outgrowth by regulating PDCD4 in a rat model of spinal cord injury. Molecular Medicine Reports, 16, 2522-2528. https://doi.org/10.3892/mmr.2017.6862
MLA
Jiang, Y., Zhao, S., Ding, Y., Nong, L., Li, H., Gao, G., Zhou, D., Xu, N."MicroRNA‑21 promotes neurite outgrowth by regulating PDCD4 in a rat model of spinal cord injury". Molecular Medicine Reports 16.3 (2017): 2522-2528.
Chicago
Jiang, Y., Zhao, S., Ding, Y., Nong, L., Li, H., Gao, G., Zhou, D., Xu, N."MicroRNA‑21 promotes neurite outgrowth by regulating PDCD4 in a rat model of spinal cord injury". Molecular Medicine Reports 16, no. 3 (2017): 2522-2528. https://doi.org/10.3892/mmr.2017.6862
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team