|
1
|
Haack KK, Engler CW, Papoutsi E, Pipinos
II, Patel KP and Zucker IH: Parallel changes in neuronal AT1R and
GRK5 expression following exercise training in heart failure.
Hypertension. 60:354–361. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Rajani R, Rimington H and Chambers JB:
Treadmill exercise in apparently asymptomatic patients with
moderate or severe aortic stenosis: Relationship between cardiac
index and revealed symptoms. Heart. 96:689–695. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Lou H, Danelisen I and Singal PK:
Involvement of mitogen-activated protein kinases in
adriamycin-induced cardiomyopathy. Am J Physiol Heart Circ Physiol.
288:H1925–H1930. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Haudek SB, Cheng J, Du J, Wang Y,
Hermosillo-Rodriguez J, Trial J, Taffet GE and Entman ML: Monocytic
fibroblast precursors mediate fibrosis in angiotensin-II-induced
cardiac hypertrophy. J Mol Cell Cardiol. 49:499–507. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Fenning A, Harrison G, Dwyer D, Rose'Meyer
R and Brown L: Cardiac adaptation to endurance exercise in rats.
Mol Cell Biochem. 251:51–59. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wisløff U, Helgerud J, Kemi OJ and
Ellingsen O: Intensity-controlled treadmill running in rats: VO(2
max) and cardiac hypertrophy. Am J Physiol Heart Circ Physiol.
280:H1301–H1310. 2001.PubMed/NCBI
|
|
7
|
Xin LI: Effect of moderate-intensity
endurance exercise on the expression of cardiac signaling pathway.
East China Normal Univ. 2011.
|
|
8
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kohli S, Ahuja S and Rani V: Transcription
factors in heart: Promising therapeutic targets in cardiac
hypertrophy. Curr Cardiol Rev. 7:262–271. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Belardinelli R: Exercise training in
chronic heart failure: How to harmonize oxidative stress,
sympathetic outflow, and angiotensin II. Circulation.
115:3042–3044. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhang GX, Ohmori K, Nagai Y, Fujisawa Y,
Nishiyama A, Abe Y and Kimura S: Role of AT1 receptor in
isoproterenol-induced cardiac hypertrophy and oxidative stress in
mice. J Mol Cell Cardiol. 42:804–811. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Jugdutt BI and Sawicki G: AT1 receptor
blockade alters metabolic, functional and structural proteins after
reperfused myocardial infarction: Detection using proteomics. Mol
Cell Biochem. 263:179–188. 2004. View Article : Google Scholar
|
|
13
|
Bai H, Wu LL, Xing DQ, Liu J and Zhao YL:
Angiotensin II induced upregulation of G alpha q/11, phospholipase
C beta 3 and extracellular signal-regulated kinase 1/2 via
angiotensin II type 1 receptor. Chin Med J (Engl). 117:88–93.
2004.PubMed/NCBI
|
|
14
|
Anavekar NS and Solomon SD: Angiotensin II
receptor blockade and ventricular remodelling. J Renin Angiotensin
Aldosterone Syst. 6:43–48. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Jiang XY, Gao GD, Du XJ, Zhou J, Wang XF
and Lin YX: The signalling of AT2 and the influence on the collagen
metabolism of AT2 receptor in adult rat cardiac fibroblasts. Acta
Cardiol. 62:429–438. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Fatini C, Guazzelli R, Manetti P,
Battaglini B, Gensini F, Vono R, Toncelli L, Zilli P, Capalbo A,
Abbate R, et al: RAS genes influence exercise-induced left
ventricular hypertrophy: An elite athletes study. Med Sci Sports
Exerc. 32:1868–1872. 2000. View Article : Google Scholar : PubMed/NCBI
|