Open Access

Systematic identification of human housekeeping genes possibly useful as references in gene expression studies

  • Authors:
    • Maria Caracausi
    • Allison Piovesan
    • Francesca Antonaros
    • Pierluigi Strippoli
    • Lorenza Vitale
    • Maria Chiara Pelleri
  • View Affiliations

  • Published online on: July 6, 2017     https://doi.org/10.3892/mmr.2017.6944
  • Pages: 2397-2410
  • Copyright: © Caracausi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The ideal reference, or control, gene for the study of gene expression in a given organism should be expressed at a medium‑high level for easy detection, should be expressed at a constant/stable level throughout different cell types and within the same cell type undergoing different treatments, and should maintain these features through as many different tissues of the organism. From a biological point of view, these theoretical requirements of an ideal reference gene appear to be best suited to housekeeping (HK) genes. Recent advancements in the quality and completeness of human expression microarray data and in their statistical analysis may provide new clues toward the quantitative standardization of human gene expression studies in biology and medicine, both cross‑ and within‑tissue. The systematic approach used by the present study is based on the Transcriptome Mapper tool and exploits the automated reassignment of probes to corresponding genes, intra‑ and inter‑sample normalization, elaboration and representation of gene expression values in linear form within an indexed and searchable database with a graphical interface recording quantitative levels of expression, expression variability and cross‑tissue width of expression for more than 31,000 transcripts. The present study conducted a meta‑analysis of a pool of 646 expression profile data sets from 54 different human tissues and identified actin γ 1 as the HK gene that best fits the combination of all the traditional criteria to be used as a reference gene for general use; two ribosomal protein genes, RPS18 and RPS27, and one aquaporin gene, POM121 transmembrane nucleporin C, were also identified. The present study provided a list of tissue‑ and organ‑specific genes that may be most suited for the following individual tissues/organs: Adipose tissue, bone marrow, brain, heart, kidney, liver, lung, ovary, skeletal muscle and testis; and also provides in these cases a representative, quantitative portrait of the relative, typical gene‑expression profile in the form of searchable database tables.

References

1 

Eisenberg E and Levanon EY: Human housekeeping genes, revisited. Trends Genet. 29:569–574. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Casadei R, Pelleri MC, Vitale L, Facchin F, Lenzi L, Canaider S, Strippoli P and Frabetti F: Identification of housekeeping genes suitable for gene expression analysis in the zebrafish. Gene Expr Patterns. 11:271–276. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Finnegan MC, Goepel JR, Hancock BW and Goyns MH: Investigation of the expression of housekeeping genes in non-Hodgkin's lymphoma. Leuk Lymphoma. 10:387–393. 1993. View Article : Google Scholar : PubMed/NCBI

4 

Lion T: Current recommendations for positive controls in RT-PCR assays. Leukemia. 15:1033–1037. 2001. View Article : Google Scholar : PubMed/NCBI

5 

Yue H, Eastman PS, Wang BB, Minor J, Doctolero MH, Nuttall RL, Stack R, Becker JW, Montgomery JR, Vainer M and Johnston R: An evaluation of the performance of cDNA microarrays for detecting changes in global mRNA expression. Nucleic Acids Res. 29:E41. 2001. View Article : Google Scholar : PubMed/NCBI

6 

Warrington JA, Nair A, Mahadevappa M and Tsyganskaya M: Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes. Physiol Genomics. 2:143–147. 2000.PubMed/NCBI

7 

Lee PD, Sladek R, Greenwood CM and Hudson TJ: Control genes and variability: Absence of ubiquitous reference transcripts in diverse mammalian expression studies. Genome Res. 12:292–297. 2002. View Article : Google Scholar : PubMed/NCBI

8 

Perfetti V, Manenti G and Dragani TA: Expression of housekeeping genes in Hodgkin's disease lymph nodes. Leukemia. 5:1110–1112. 1991.PubMed/NCBI

9 

Bhatia P, Taylor WR, Greenberg AH and Wright JA: Comparison of glyceraldehyde-3-phosphate dehydrogenase and 28S-ribosomal RNA gene expression as RNA loading controls for northern blot analysis of cell lines of varying malignant potential. Anal Biochem. 216:223–226. 1994. View Article : Google Scholar : PubMed/NCBI

10 

Barber RD, Harmer DW, Coleman RA and Clark BJ: GAPDH as a housekeeping gene: Analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol Genomics. 21:389–395. 2005. View Article : Google Scholar : PubMed/NCBI

11 

Zhang Y, Li D and Sun B: Do housekeeping genes exist? PLoS One. 10:e01236912015. View Article : Google Scholar : PubMed/NCBI

12 

Lenzi L, Facchin F, Piva F, Giulietti M, Pelleri MC, Frabetti F, Vitale L, Casadei R, Canaider S, Bortoluzzi S, et al: TRAM (Transcriptome Mapper): Database-driven creation and analysis of transcriptome maps from multiple sources. BMC Genomics. 12:1212011. View Article : Google Scholar : PubMed/NCBI

13 

Piovesan A, Vitale L, Pelleri MC and Strippoli P: Universal tight correlation of codon bias and pool of RNA codons (codonome): The genome is optimized to allow any distribution of gene expression values in the transcriptome from bacteria to humans. Genomics. 101:282–289. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Caracausi M, Piovesan A, Vitale L and Pelleri MC: Integrated transcriptome map highlights structural and functional aspects of the normal human heart. J Cell Physiol. 232:759–770. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Barrett T and Edgar R: Gene expression omnibus: Microarray data storage, submission, retrieval and analysis. Methods Enzymol. 411:352–369. 2006. View Article : Google Scholar : PubMed/NCBI

16 

Emig D, Salomonis N, Baumbach J, Lengauer T, Conklin BR and Albrecht M: AltAnalyze and DomainGraph: Analyzing and visualizing exon expression data. Nucleic Acids Res. 38:(Web Server issue). W755–W762. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Lenzi L, Frabetti F, Facchin F, Casadei R, Vitale L, Canaider S, Carinci P, Zannotti M and Strippoli P: UniGene Tabulator: A full parser for the UniGene format. Bioinformatics. 22:2570–2571. 2006. View Article : Google Scholar : PubMed/NCBI

18 

Piovesan A, Caracausi M, Ricci M, Strippoli P, Vitale L and Pelleri MC: Identification of minimal eukaryotic introns through GeneBase, a user-friendly tool for parsing the NCBI Gene databank. DNA Res. 22:495–503. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Butte AJ, Dzau VJ and Glueck SB: Further defining housekeeping, or ‘maintenance,’ genes Focus on ‘A compendium of gene expression in normal human tissues’. Physiol Genomics. 7:95–96. 2001.PubMed/NCBI

20 

Tu Z, Wang L, Xu M, Zhou X, Chen T and Sun F: Further understanding human disease genes by comparing with housekeeping genes and other genes. BMC Genomics. 7:312006. View Article : Google Scholar : PubMed/NCBI

21 

Pilbrow AP, Ellmers LJ, Black MA, Moravec CS, Sweet WE, Troughton RW, Richards AM, Frampton CM and Cameron VA: Genomic selection of reference genes for real-time PCR in human myocardium. BMC Med Genomics. 1:642008. View Article : Google Scholar : PubMed/NCBI

22 

Berriz GF, King OD, Bryant B, Sander C and Roth FP: Characterizing gene sets with FuncAssociate. Bioinformatics. 19:2502–2504. 2003. View Article : Google Scholar : PubMed/NCBI

23 

Lü B, Yu J, Xu J, Chen J and Lai M: A novel approach to detect differentially expressed genes from count-based digital databases by normalizing with housekeeping genes. Genomics. 94:211–216. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Krupp M, Marquardt JU, Sahin U, Galle PR, Castle J and Teufel A: RNA-Seq Atlas-a reference database for gene expression profiling in normal tissue by next-generation sequencing. Bioinformatics. 28:1184–1185. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Chen M, Xiao J, Zhang Z, Liu J, Wu J and Yu J: Identification of human HK genes and gene expression regulation study in cancer from transcriptomics data analysis. PLoS One. 8:e540822013. View Article : Google Scholar : PubMed/NCBI

26 

Costa Ade F and Franco OL: Insights into RNA transcriptome profiling of cardiac tissue in obesity and hypertension conditions. J Cell Physiol. 230:959–968. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Zhao S, Fung-Leung WP, Bittner A, Ngo K and Liu X: Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS One. 9:e786442014. View Article : Google Scholar : PubMed/NCBI

28 

Guo Y, Sheng Q, Li J, Ye F, Samuels DC and Shyr Y: Large scale comparison of gene expression levels by microarrays and RNAseq using TCGA data. PLoS One. 8:e714622013. View Article : Google Scholar : PubMed/NCBI

29 

Zhang Y, Akintola OS, Liu KJ and Sun B: Membrane gene ontology bias in sequencing and microarray obtained by housekeeping-gene analysis. Gene. 575:559–566. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Lee S, Jo M, Lee J, Koh SS and Kim S: Identification of novel universal housekeeping genes by statistical analysis of microarray data. J Biochem Mol Biol. 40:226–231. 2007.PubMed/NCBI

31 

Zhu J, He F, Song S, Wang J and Yu J: How many human genes can be defined as housekeeping with current expression data? BMC Genomics. 9:1722008. View Article : Google Scholar : PubMed/NCBI

32 

de Jonge HJ, Fehrmann RS, de Bont ES, Hofstra RM, Gerbens F, Kamps WA, de Vries EG, van der Zee AG, te Meerman GJ and ter Elst A: Evidence based selection of housekeeping genes. PLoS One. 2:e8982007. View Article : Google Scholar : PubMed/NCBI

33 

Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, et al: Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 13:397–406. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Caracausi M, Vitale L, Pelleri MC, Piovesan A, Bruno S and Strippoli P: A quantitative transcriptome reference map of the normal human brain. Neurogenetics. 15:267–287. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Casadei R, Piovesan A, Vitale L, Facchin F, Pelleri MC, Canaider S, Bianconi E, Frabetti F and Strippoli P: Genome-scale analysis of human mRNA 5′ coding sequences based on expressed sequence tag (EST) database. Genomics. 100:125–130. 2012. View Article : Google Scholar : PubMed/NCBI

36 

She X, Rohl CA, Castle JC, Kulkarni AV, Johnson JM and Chen R: Definition, conservation and epigenetics of housekeeping and tissue-enriched genes. BMC Genomics. 10:2692009. View Article : Google Scholar : PubMed/NCBI

37 

Popovici V, Goldstein DR, Antonov J, Jaggi R, Delorenzi M and Wirapati P: Selecting control genes for RT-QPCR using public microarray data. BMC Bioinformatics. 10:422009. View Article : Google Scholar : PubMed/NCBI

38 

Thomas D, Finan C, Newport MJ and Jones S: DNA entropy reveals a significant difference in complexity between housekeeping and tissue specific gene promoters. Comput Biol Chem. 58:19–24. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Chang CW, Cheng WC, Chen CR, Shu WY, Tsai ML, Huang CL and Hsu IC: Identification of human housekeeping genes and tissue-selective genes by microarray meta-analysis. PLoS One. 6:e228592011. View Article : Google Scholar : PubMed/NCBI

40 

Shaw GT, Shih ES, Chen CH and Hwang MJ: Preservation of ranking order in the expression of human Housekeeping genes. PLoS One. 6:e293142011. View Article : Google Scholar : PubMed/NCBI

41 

Caracausi M, Rigon V, Piovesan A, Strippoli P, Vitale L and Pelleri MC: A quantitative transcriptome reference map of the normal human hippocampus. Hippocampus. 26:13–26. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Cheng WC, Chang CW, Chen CR, Tsai ML, Shu WY, Li CY and Hsu IC: Identification of reference genes across physiological states for qRT-PCR through microarray meta-analysis. PLoS One. 6:e173472011. View Article : Google Scholar : PubMed/NCBI

43 

Strippoli P, Pelleri MC, Caracausi M, Vitale L, Piovesan A, Locatelli C, Mimmi MC, Berardi AC, Ricotta D, Radeghieri A, et al: An integrated route to identifying new pathogenesis-based therapeutic approaches for trisomy 21 (Down Syndrome) following the thought of Jérôme Lejeune. Sci Postprint. 1:e000102013. View Article : Google Scholar

44 

Pelleri MC, Cicchini E, Locatelli C, Vitale L, Caracausi M, Piovesan A, Rocca A, Poletti G, Seri M, Strippoli P and Cocchi G: Systematic reanalysis of partial trisomy 21 cases with or without Down syndrome suggests a small region on 21q22.13 as critical to the phenotype. Hum Mol Genet. 25:2525–2538. 2016.PubMed/NCBI

45 

Pelleri MC, Piovesan A, Caracausi M, Berardi AC, Vitale L and Strippoli P: Integrated differential transcriptome maps of acute megakaryoblastic leukemia (AMKL) in children with or without down syndrome (DS). BMC Med Genomics. 7:632014. View Article : Google Scholar : PubMed/NCBI

46 

Kwon MJ, Oh E, Lee S, Roh MR, Kim SE, Lee Y, Choi YL, In YH, Park T, Koh SS and Shin YK: Identification of novel reference genes using multiplatform expression data and their validation for quantitative gene expression analysis. PLoS One. 4:e61622009. View Article : Google Scholar : PubMed/NCBI

47 

Chiang AW, Shaw GT and Hwang MJ: Partitioning the human transcriptome using HKera, a novel classifier of housekeeping and tissue-specific genes. PLoS One. 8:e830402013. View Article : Google Scholar : PubMed/NCBI

48 

Ersahin T, Carkacioglu L, Can T, Konu O, Atalay V and Cetin-Atalay R: Identification of novel reference genes based on MeSH categories. PLoS One. 9:e933412014. View Article : Google Scholar : PubMed/NCBI

49 

Pfaffl MW, Tichopad A, Prgomet C and Neuvians TP: Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol Lett. 26:509–515. 2004. View Article : Google Scholar : PubMed/NCBI

50 

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A and Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3:RESEARCH00342002. View Article : Google Scholar : PubMed/NCBI

51 

Andersen CL, Jensen JL and Ørntoft TF: Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64:5245–5250. 2004. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2017
Volume 16 Issue 3

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Caracausi, M., Piovesan, A., Antonaros, F., Strippoli, P., Vitale, L., & Pelleri, M. (2017). Systematic identification of human housekeeping genes possibly useful as references in gene expression studies. Molecular Medicine Reports, 16, 2397-2410. https://doi.org/10.3892/mmr.2017.6944
MLA
Caracausi, M., Piovesan, A., Antonaros, F., Strippoli, P., Vitale, L., Pelleri, M."Systematic identification of human housekeeping genes possibly useful as references in gene expression studies". Molecular Medicine Reports 16.3 (2017): 2397-2410.
Chicago
Caracausi, M., Piovesan, A., Antonaros, F., Strippoli, P., Vitale, L., Pelleri, M."Systematic identification of human housekeeping genes possibly useful as references in gene expression studies". Molecular Medicine Reports 16, no. 3 (2017): 2397-2410. https://doi.org/10.3892/mmr.2017.6944