Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
November-2017 Volume 16 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2017 Volume 16 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Puerarin promotes the viability and differentiation of MC3T3‑E1 cells by miR‑204‑regulated Runx2 upregulation

  • Authors:
    • Xiu‑Qin Zhan
    • Xiang‑Wei Zeng
    • Ying‑Ying Zhang
    • Qian Feng
    • Feng‑Ming Zhao
    • Ze‑Qun Jiang
    • Chao Sun
  • View Affiliations / Copyright

    Affiliations: School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China, The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
  • Pages: 6262-6268
    |
    Published online on: August 29, 2017
       https://doi.org/10.3892/mmr.2017.7386
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Puerarin has attracted increasing attention because of its beneficial effects on anti‑osteoporosis, but the molecular mechanisms underlying its actions on osteoblasts are not fully understood. The current study aimed to investigate the effect of puerarin on the cell viability and differentiation of mouse MC3T3‑E1 osteoblast‑like cells in vitro and its underlying mechanisms. The results indicated that 0.01, 0.1 and 1 mg/ml puerarin significantly promoted the viability of osteoblasts, enhanced alkaline phosphatase (ALP) activity and increased the expression of transforming growth factor‑β1, Smad2, Smad3 and Runt‑related transcription factor (Runx)2. Micro (mi)RNA target prediction programs predicted that miR‑204 may directly target Runx2. Following treatment with 0.1 mg/ml puerarin for 48 h, the expression level of miR‑204 was downregulated. Besides, miR‑204 dramatically repressed the luciferase activity of wildtype Runx2 3'‑UTR transfected cells, but not that of the mutant ones. Overexpression of miR‑204 in osteoblasts significantly decreased the protein expression of Runx2, while inhibition of miR‑204 enhanced Runx2's expression. In addition, overexpression of miR‑204 inhibited the cell viability and ALP activity of osteoblasts, while inhibition of miR‑204 had the opposite effect. The results suggested that puerarin may promote MC3T3‑E1 osteoblast‑like cell viability and differentiation, which may be related to the downregulation of miR‑204 and the following activation of Runx2.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy: Osteoporosis prevention, diagnosis, and therapy. JAMA. 285:785–795. 2001. View Article : Google Scholar : PubMed/NCBI

2 

Rachner TD, Khosla S and Hofbauer LC: Osteoporosis: Now and the future. Lancet. 377:1276–1287. 2011. View Article : Google Scholar : PubMed/NCBI

3 

An J, Yang H, Zhang Q, Liu C, Zhao J, Zhang L and Chen B: Natural products for treatment of osteoporosis: The effects and mechanisms on promoting osteoblast-mediated bone formation. Life Sci. 147:46–58. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Haxaire C, Haÿ E and Geoffroy V: Runx2 controls bone resorption through the down-regulation of the Wnt pathway in osteoblasts. Am J Pathol. 186:1598–1609. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Wysokinski D, Pawlowska E and Blasiak J: RUNX2: A master bone growth regulator that may be involved in the DNA damage response. DNA Cell Biol. 34:305–315. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Sun C, Qiu Y, Yin G, Shu H, Liu Z, Wang XH, Liu WJ and Li HB: Abnormal expression and significance of Runx2 in osteoblasts of adolescent idiopathic scoliosis patients. Zhonghua Wai Ke Za Zhi. 47:1495–1498. 2009.(In Chinese). PubMed/NCBI

7 

Li N, Luo D, Hu X, Luo W, Lei G, Wang Q, Zhu T, Gu J, Lu Y and Zheng Q: RUNX2 and osteosarcoma. Anticancer Agents Med Chem. 15:881–887. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Tiyasatkulkovit W, Charoenphandhu N, Wongdee K, Thongbunchoo J, Krishnamra N and Malaivijitnond S: Upregulation of osteoblastic differentiation marker mRNA expression in osteoblast-like UMR106 cells by puerarin and phytoestrogens from Pueraria mirifica. Phytomedicine. 19:1147–1155. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Wang C, Meng MX, Tang XL, Chen KM, Zhang L, Liu WN and Zhao YY: The proliferation, differentiation, and mineralization effects of puerarin on osteoblasts in vitro. Chin J Nat Med. 12:436–442. 2014.PubMed/NCBI

10 

Zhan XQ, Qian KQ and Sun YM: Action of puerarin on TGF-β1/Smad pathway in MC3T3-E1 cells. Chin Tradition Patent Med. 35:1121–1124. 2013.(In Chinese).

11 

Dong BS, Zhan XQ and Sun YM: Effects of Puerarin on OPG/RANKL system with culture of osteoblast in vitro. Jilin J Tratitional Chin Med. 32:388–390. 2012.(In Chinese).

12 

Suthon S, Jaroenporn S, Charoenphandhu N, Suntornsaratoon P and Malaivijitnond S: Anti-osteoporotic effects of Pueraria candollei var. mirifica on bone mineral density and histomorphometry in estrogen-deficient rats. J Nat Med. 70:225–233. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI

14 

Yates LA, Norbury CJ and Gilbert RJ: The long and short of microRNA. Cell. 153:516–519. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Wei J, Shi Y, Zheng L, Zhou B, Inose H, Wang J, Guo XE, Grosschedl R and Karsenty G: miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. J Cell Biol. 197:509–521. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Chen X, Huang Z, Chen D, Yang T and Liu G: Role of microRNA-27a in myoblast Differentiation. Cell Biol Int. 38:266–271. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Bruderer M, Richards RG, Alini M and Stoddart MJ: Role and regulation of RUNX2 in osteogenesis. Eur Cell Mater. 28:269–286. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Zhang YY, Zhou JB, Zeng XW, Zhao FM, Liu GD and Zhan XQ: Effects of puerarin on proliferation of osteoblast and Runx2-targeting miRNAs. Chin Pharmacol Bull. 32:1457–1462. 2016.(In Chinese).

19 

Lv H, Che T, Tang X, Liu L and Cheng J: Puerarin enhances proliferation and osteoblastic differentiation of human bone marrow stromal cells via a nitric oxide/cyclic guanosine monophosphate signaling pathway. Mol Med Rep. 12:2283–2290. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Sheu SY, Tsai CC, Sun JS, Chen MH, Liu MH and Sun MG: Stimulatory effect of puerarin on bone formation through co-activation of nitric oxide and bone morphogenetic protein-2/mitogen-activated protein kinases pathways in mice. Chin Med J (Engl). 125:3646–3653. 2012.PubMed/NCBI

21 

Tiyasatkulkovit W, Malaivijitnond S, Charoenphandhu N, Havill LM, Ford AL and VandeBerg JL: Pueraria mirifica extract and puerarin enhance proliferation and expression of alkaline phosphatase and type I collagen in primary baboon osteoblasts. Phytomedicine. 21:1498–1503. 2014. View Article : Google Scholar : PubMed/NCBI

22 

An JH, Ohn JH, Song JA, Yang JY, Park H, Choi HJ, Kim SW, Kim SY, Park WY and Shin CS: Changes of microRNA profile and microRNA-mRNA regulatory network in bones of ovariectomized mice. J Bone Miner Res. 29:644–656. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Cui RR, Li SJ, Liu LJ, Yi L, Liang QH, Zhu X, Liu GY, Liu Y, Wu SS, Liao XB, et al: MicroRNA-204 regulates vascular smooth muscle cell calcification in vitro and in vivo. Cardiovasc Res. 96:320–329. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Huang J, Zhao L, Xing L and Chen D: MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells. 28:357–364. 2010.PubMed/NCBI

25 

Wang Y, Chen S, Deng C, Li F, Wang Y, Hu X, Shi F and Dong N: MicroRNA-204 Targets Runx2 to Attenuate BMP-2-induced osteoblast differentiation of human aortic valve interstitial cells. J Cardiovasc Pharmacol. 66:63–71. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Wang FE, Zhang C, Maminishkis A, Dong L, Zhi C, Li R, Zhao J, Majerciak V, Gaur AB, Chen S and Miller SS: MicroRNA-204/211 alters epithelial physiology. FASEB J. 24:1552–1571. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Chen P, Wei D, Xie B, Ni J, Xuan D and Zhang J: Effect and possible mechanism of network between microRNAs and RUNX2, gene on human dental follicle cells. J Cell Biochem. 115:340–348. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Yin X, Tian W, Wang L, Wang J, Zhang S, Cao J and Yang H: Radiation quality-dependence of bystander effect in unirradiated fibroblasts is associated with TGF-β1-Smad2 pathway and miR-21 in irradiated keratinocytes. Sci Rep. 5:113732015. View Article : Google Scholar : PubMed/NCBI

29 

García R, Nistal JF, Merino D, Price NL, Fernández-Hernando C, Beaumont J, González A, Hurlé MA and Villar AV: p-SMAD2/3 and DICER promote pre-miR-21 processing during pressure overload-associated myocardial remodeling. Biochim Biophys Acta. 1852:1520–1530. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhan XQ, Zeng XW, Zhang YY, Feng Q, Zhao FM, Jiang ZQ and Sun C: Puerarin promotes the viability and differentiation of MC3T3‑E1 cells by miR‑204‑regulated Runx2 upregulation. Mol Med Rep 16: 6262-6268, 2017.
APA
Zhan, X., Zeng, X., Zhang, Y., Feng, Q., Zhao, F., Jiang, Z., & Sun, C. (2017). Puerarin promotes the viability and differentiation of MC3T3‑E1 cells by miR‑204‑regulated Runx2 upregulation. Molecular Medicine Reports, 16, 6262-6268. https://doi.org/10.3892/mmr.2017.7386
MLA
Zhan, X., Zeng, X., Zhang, Y., Feng, Q., Zhao, F., Jiang, Z., Sun, C."Puerarin promotes the viability and differentiation of MC3T3‑E1 cells by miR‑204‑regulated Runx2 upregulation". Molecular Medicine Reports 16.5 (2017): 6262-6268.
Chicago
Zhan, X., Zeng, X., Zhang, Y., Feng, Q., Zhao, F., Jiang, Z., Sun, C."Puerarin promotes the viability and differentiation of MC3T3‑E1 cells by miR‑204‑regulated Runx2 upregulation". Molecular Medicine Reports 16, no. 5 (2017): 6262-6268. https://doi.org/10.3892/mmr.2017.7386
Copy and paste a formatted citation
x
Spandidos Publications style
Zhan XQ, Zeng XW, Zhang YY, Feng Q, Zhao FM, Jiang ZQ and Sun C: Puerarin promotes the viability and differentiation of MC3T3‑E1 cells by miR‑204‑regulated Runx2 upregulation. Mol Med Rep 16: 6262-6268, 2017.
APA
Zhan, X., Zeng, X., Zhang, Y., Feng, Q., Zhao, F., Jiang, Z., & Sun, C. (2017). Puerarin promotes the viability and differentiation of MC3T3‑E1 cells by miR‑204‑regulated Runx2 upregulation. Molecular Medicine Reports, 16, 6262-6268. https://doi.org/10.3892/mmr.2017.7386
MLA
Zhan, X., Zeng, X., Zhang, Y., Feng, Q., Zhao, F., Jiang, Z., Sun, C."Puerarin promotes the viability and differentiation of MC3T3‑E1 cells by miR‑204‑regulated Runx2 upregulation". Molecular Medicine Reports 16.5 (2017): 6262-6268.
Chicago
Zhan, X., Zeng, X., Zhang, Y., Feng, Q., Zhao, F., Jiang, Z., Sun, C."Puerarin promotes the viability and differentiation of MC3T3‑E1 cells by miR‑204‑regulated Runx2 upregulation". Molecular Medicine Reports 16, no. 5 (2017): 6262-6268. https://doi.org/10.3892/mmr.2017.7386
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team