|
1
|
Wu J and Belmonte JC Izpisua: Dynamic
pluripotent stem cell states and their applications. Cell Stem
Cell. 17:509–525. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Smith AG: Embryo-derived stem cells: Of
mice and men. Annu Rev Cell Dev Biol. 17:435–462. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Thomson JA, Itskovitz-Eldor J, Shapiro SS,
Waknitz MA, Swiergiel JJ, Marshall VS and Jones JM: Embryonic stem
cell lines derived from human blastocysts. Science. 282:1145–1147.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Martin GR: Isolation of a pluripotent cell
line from early mouse embryos cultured in medium conditioned by
teratocarcinoma stem cells. Proc Natl Acad Sci USA. 78:7634–7638.
1981; View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Yousefi M, Hajihoseini V, Jung W,
Hosseinpour B, Rassouli H, Lee B, Baharvand H, Lee K and Salekdeh
GH: Embryonic stem cell interactomics: The beginning of a long road
to biological function. Stem Cell Rev. 8:1138–1154. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wang L and Chen YG: Signaling control of
differentiation of embryonic stem cells toward mesendoderm. J Mol
Biol. 428:1409–1422. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Martello G and Smith A: The nature of
embryonic stem cells. Annu Rev Cell Dev Biol. 30:647–675. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Das S and Levasseur D: Transcriptional
regulatory mechanisms that govern embryonic stem cell fate. Methods
Mol Biol. 1029:191–203. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Nichols J, Zevnik B, Anastassiadis K, Niwa
H, Klewe-Nebenius D, Chambers I, Schöler H and Smith A: Formation
of pluripotent stem cells in the mammalian embryo depends on the
POU transcription factor Oct4. Cell. 95:379–391. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Niwa H, Miyazaki J and Smith AG:
Quantitative expression of Oct-3/4 defines differentiation,
dedifferentiation or self-renewal of ES cells. Nat Genet.
24:372–376. 2000. View
Article : Google Scholar : PubMed/NCBI
|
|
11
|
Takahashi K and Yamanaka S: Induction of
pluripotent stem cells from mouse embryonic and adult fibroblast
cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wu T, Wang H, He J, Kang L, Jiang Y, Liu
J, Zhang Y, Kou Z, Liu L, Zhang X and Gao S: Reprogramming of
trophoblast stem cells into pluripotent stem cells by Oct4. Stem
Cells. 29:755–763. 2011. View
Article : Google Scholar : PubMed/NCBI
|
|
13
|
Tsai SY, Bouwman BA, Ang YS, Kim SJ, Lee
DF, Lemischka IR and Rendl M: Single transcription factor
reprogramming of hair follicle dermal papilla cells to induced
pluripotent stem cells. Stem Cells. 29:964–971. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Simandi Z, Horvath A, Wright LC,
Cuaranta-Monroy I, De Luca I, Karolyi K, Sauer S, Deleuze JF, Gudas
LJ, Cowley SM and Nagy L: OCT4 Acts as an integrator of
pluripotency and signal-induced differentiation. Mol Cell.
63:647–661. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kareta MS, Sage J and Wernig M: Crosstalk
between stem cell and cell cycle machineries. Curr Opin Cell Biol.
37:68–74. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bretones G, Delgado MD and León J: Myc and
cell cycle control. Biochim Biophys Acta. 1849:506–516. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zhang X, Neganova I, Przyborski S, Yang C,
Cooke M, Atkinson SP, Anyfantis G, Fenyk S, Keith WN, Hoare SF, et
al: A role for NANOG in G1 to S transition in human embryonic stem
cells through direct binding of CDK6 and CDC25A. J Cell Biol.
184:67–82. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
White J, Stead E, Faast R, Conn S,
Cartwright P and Dalton S: Developmental activation of the Rb-E2F
pathway and establishment of cell cycle-regulated cyclin-dependent
kinase activity during embryonic stem cell differentiation. Mol
Biol Cell. 16:2018–2027. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Stead E, White J, Faast R, Conn S,
Goldstone S, Rathjen J, Dhingra U, Rathjen P, Walker D and Dalton
S: Pluripotent cell division cycles are driven by ectopic Cdk2,
cyclin A/E and E2F activities. Oncogene. 21:8320–8333. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Singh AM and Dalton S: The cell cycle and
Myc intersect with mechanisms that regulate pluripotency and
reprogramming. Cell Stem Cell. 5:141–149. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ohtsuka S and Dalton S: Molecular and
biological properties of pluripotent embryonic stem cells. Gene
Ther. 15:74–81. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Becker KA, Ghule PN, Therrien JA, Lian JB,
Stein JL, van Wijnen AJ and Stein GS: Self-renewal of human
embryonic stem cells is supported by a shortened G1 cell cycle
phase. J Cell Physiol. 209:883–893. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
McLenachan S, Menchón C, Raya A, Consiglio
A and Edel MJ: Cyclin A1 is essential for setting the pluripotent
state and reducing tumorigenicity of induced pluripotent stem
cells. Stem Cells Dev. 21:2891–2899. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Sela Y, Molotski N, Golan S,
Itskovitz-Eldor J and Soen Y: Human embryonic stem cells exhibit
increased propensity to differentiate during the G1 phase prior to
phosphorylation of retinoblastoma protein. Stem Cells.
30:1097–1108. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Calder A, Roth-Albin I, Bhatia S, Pilquil
C, Lee JH, Bhatia M, Levadoux-Martin M, McNicol J, Russell J,
Collins T and Draper JS: Lengthened G1 phase indicates
differentiation status in human embryonic stem cells. Stem Cells
Dev. 22:279–295. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Filipczyk AA, Laslett AL, Mummery C and
Pera MF: Differentiation is coupled to changes in the cell cycle
regulatory apparatus of human embryonic stem cells. Stem Cell Res.
1:45–60. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Coronado D, Godet M, Bourillot PY,
Tapponnier Y, Bernat A, Petit M, Afanassieff M, Markossian S,
Malashicheva A, Iacone R, et al: A short G1 phase is an intrinsic
determinant of naïve embryonic stem cell pluripotency. Stem Cell
Res. 10:118–131. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Pauklin S and Vallier L: The cell-cycle
state of stem cells determines cell fate propensity. Cell.
155:135–147. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Delacroix L, Moutier E, Altobelli G,
Legras S, Poch O, Choukrallah MA, Bertin I, Jost B and Davidson I:
Cell-specific interaction of retinoic acid receptors with target
genes in mouse embryonic fibroblasts and embryonic stem cells. Mol
Cell Biol. 30:231–244. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Jirmanova L, Afanassieff M, Gobert-Gosse
S, Markossian S and Savatier P: Differential contributions of ERK
and PI3-kinase to the regulation of cyclin D1 expression and to the
control of the G1/S transition in mouse embryonic stem cells.
Oncogene. 21:5515–5528. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Jain AK, Allton K, Iacovino M, Mahen E,
Milczarek RJ, Zwaka TP, Kyba M and Barton MC: p53 regulates cell
cycle and microRNAs to promote differentiation of human embryonic
stem cells. PLoS Biol. 10:e10012682012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Giuliano CJ, Kerley-Hamilton JS, Bee T,
Freemantle SJ, Manickaratnam R, Dmitrovsky E and Spinella MJ:
Retinoic acid represses a cassette of candidate pluripotency
chromosome 12p genes during induced loss of human embryonal
carcinoma tumorigenicity. Biochim Biophys Acta. 1731:48–56. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Liu YY, Tachiki KH and Brent GA: A
targeted thyroid hormone receptor alpha gene dominant-negative
mutation (P398H) selectively impairs gene expression in
differentiated embryonic stem cells. Endocrinology. 143:2664–2672.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Van Oudenhove JJ, Grandy RA, Ghule PN, Del
Rio R, Lian JB, Stein JL, Zaidi SK and Stein GS: Lineage-specific
early differentiation of human embryonic stem cells requires a G2
cell cycle pause. Stem Cells. 34:1765–1775. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Gonzales KA and Liang H: Transcriptomic
profiling of human embryonic stem cells upon cell cycle
manipulation during pluripotent state dissolution. Genom Data.
6:118–119. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Gonzales KA, Liang H, Lim YS, Chan YS, Yeo
JC, Tan CP, Gao B, Le B, Tan ZY, Low KY, et al: Deterministic
restriction on pluripotent state dissolution by cell-cycle
pathways. Cell. 162:564–579. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Islam MS, Stemig ME, Takahashi Y and Hui
SK: Radiation response of mesenchymal stem cells derived from bone
marrow and human pluripotent stem cells. J Radiat Res. 56:269–277.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Rebuzzini P, Pignalosa D, Mazzini G, Di
Liberto R, Coppola A, Terranova N, Magni P, Redi CA, Zuccotti M and
Garagna S: Mouse embryonic stem cells that survive γ-rays exposure
maintain pluripotent differentiation potential and genome
stability. J Cell Physiol. 227:1242–1249. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Rebuzzini P, Fassina L, Mulas F, Bellazzi
R, Redi CA, Di Liberto R, Magenes G, Adjaye J, Zuccotti M and
Garagna S: Mouse embryonic stem cells irradiated with γ-rays
differentiate into cardiomyocytes but with altered contractile
properties. Mutat Res. 756:37–45. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Fluckiger AC, Marcy G, Marchand M, Négre
D, Cosset FL, Mitalipov S, Wolf D, Savatier P and Dehay C: Cell
cycle features of primate embryonic stem cells. Stem Cells.
24:547–556. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Becker KA, Stein JL, Lian JB, van Wijnen
AJ and Stein GS: Establishment of histone gene regulation and cell
cycle checkpoint control in human embryonic stem cells. J Cell
Physiol. 210:517–526. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Pauklin S, Madrigal P, Bertero A and
Vallier L: Initiation of stem cell differentiation involves cell
cycle-dependent regulation of developmental genes by Cyclin D.
Genes Dev. 30:421–433. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhao A, Yang L, Ma K, Sun M, Li L, Huang
J, Li Y, Zhang C, Li H and Fu X: Overexpression of cyclin D1
induces the reprogramming of differentiated epidermal cells into
stem cell-like cells. Cell Cycle. 15:644–653. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Su C: Survivin in survival of
hepatocellular carcinoma. Cancer Lett. 379:184–190. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Bai M, Yuan M, Liao H, Chen J, Xie B, Yan
D, Xi X, Xu X, Zhang Z and Feng Y: OCT4 pseudogene 5 upregulates
OCT4 expression to promote proliferation by competing with miR-145
in endometrial carcinoma. Oncol Rep. 33:1745–1752. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Han SM, Han SH, Coh YR, Jang G, Ra J Chan,
Kang SK, Lee HW and Youn HY: Enhanced proliferation and
differentiation of Oct4- and Sox2-overexpressing human adipose
tissue mesenchymal stem cells. Exp Mol Med. 46:e1012014. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Card DA, Hebbar PB, Li L, Trotter KW,
Komatsu Y, Mishina Y and Archer TK: Oct4/Sox2-regulated miR-302
targets cyclin D1 in human embryonic stem cells. Mol Cell Biol.
28:6426–6438. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lin SL and Ying SY: Mechanism and method
for generating tumor-free iPS cells using intronic microRNA miR-302
induction. Methods Mol Biol. 936:295–312. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Sun LT, Yamaguchi S, Hirano K, Ichisaka T,
Kuroda T and Tada T: Nanog co-regulated by Nodal/Smad2 and Oct4 is
required for pluripotency in developing mouse epiblast. Dev Biol.
392:182–192. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Li P, Ma X, Adams IR and Yuan P: A tight
control of Rif1 by Oct4 and Smad3 is critical for mouse embryonic
stem cell stability. Cell Death Dis. 6:e15882015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Neganova I, Vilella F, Atkinson SP, Lloret
M, Passos JF, von Zglinicki T, O'Connor JE, Burks D, Jones R,
Armstrong L and Lako M: An important role for CDK2 in G1 to S
checkpoint activation and DNA damage response in human embryonic
stem cells. Stem Cells. 29:651–659. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Bárta T, Vinarský V, Holubcová Z,
Dolezalová D, Verner J, Pospísilová S, Dvorák P and Hampl A: Human
embryonic stem cells are capable of executing G1/S checkpoint
activation. Stem Cells. 28:1143–1152. 2010.PubMed/NCBI
|
|
53
|
Deshpande AM, Dai YS, Kim Y, Kim J, Kimlin
L, Gao K and Wong DT: Cdk2ap1 is required for epigenetic silencing
of Oct4 during murine embryonic stem cell differentiation. J Biol
Chem. 284:6043–6047. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kallas A, Pook M, Trei A and Maimets T:
Assessment of the potential of CDK2 inhibitor NU6140 to influence
the expression of pluripotency markers NANOG, OCT4, and SOX2 in
2102Ep and H9 cells. Int J Cell Biol. 2014:2806382014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ouyang J, Yu W, Liu J, Zhang N, Florens L,
Chen J, Liu H, Washburn M, Pei D and Xie T: Cyclin-dependent
kinase-mediated Sox2 phosphorylation enhances the ability of Sox2
to establish the pluripotent state. J Biol Chem. 290:22782–22794.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Koo BS, Lee SH, Kim JM, Huang S, Kim SH,
Rho YS, Bae WJ, Kang HJ, Kim YS, Moon JH and Lim YC: Oct4 is a
critical regulator of stemness in head and neck squamous carcinoma
cells. Oncogene. 34:2317–2324. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Conklin JF, Baker J and Sage J: The RB
family is required for the self-renewal and survival of human
embryonic stem cells. Nat Commun. 3:12442012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Tsai SY, Opavsky R, Sharma N, Wu L, Naidu
S, Nolan E, Feria-Arias E, Timmers C, Opavska J, de Bruin A, et al:
Mouse development with a single E2F activator. Nature.
454:1137–1141. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Kareta MS, Gorges LL, Hafeez S, Benayoun
BA, Marro S, Zmoos AF, Cecchini MJ, Spacek D, Batista LF, O'Brien
M, et al: Inhibition of pluripotency networks by the Rb tumor
suppressor restricts reprogramming and tumorigenesis. Cell Stem
Cell. 16:39–50. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Vilas JM, Ferreirós A, Carneiro C, Morey
L, Da Silva-Álvarez S, Fernandes T, Abad M, Di Croce L,
García-Caballero T, Serrano M, et al: Transcriptional regulation of
Sox2 by the retinoblastoma family of pocket proteins. Oncotarget.
6:2992–3002. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Kelleher FC and O'Sullivan H: FOXM1 in
sarcoma: Role in cell cycle, pluripotency genes and stem cell
pathways. Oncotarget. 7:42792–42804. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wierstra I and Alves J: Transcription
factor FOXM1c is repressed by RB and activated by cyclin D1/Cdk4.
Biol Chem. 387:949–962. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Chong JL, Wenzel PL, Sáenz-Robles MT, Nair
V, Ferrey A, Hagan JP, Gomez YM, Sharma N, Chen HZ, Ouseph M, et
al: E2f1-3 switch from activators in progenitor cells to repressors
in differentiating cells. Nature. 462:930–934. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Schoeftner S, Scarola M, Comisso E,
Schneider C and Benetti R: An Oct4-pRb axis, controlled by MiR-335,
integrates stem cell self-renewal and cell cycle control. Stem
Cells. 31:717–728. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Doonan JH and Morris NR: The bimG gene of
Aspergillus nidulans, required for completion of anaphase, encodes
a homolog of mammalian phosphoprotein phosphatase 1. Cell.
57:987–996. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kanai D, Ueda A, Akagi T, Yokota T and
Koide H: Oct3/4 directly regulates expression of E2F3a in mouse
embryonic stem cells. Biochem Biophys Res Commun. 459:374–378.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Suzuki DE, Nakahata AM and Okamoto OK:
Knockdown of E2F2 inhibits tumorigenicity, but preserves stemness
of human embryonic stem cells. Stem Cells Dev. 23:1266–1274. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kalaszczynska I, Geng Y, Iino T, Mizuno S,
Choi Y, Kondratiuk I, Silver DP, Wolgemuth DJ, Akashi K and
Sicinski P: Cyclin A is redundant in fibroblasts but essential in
hematopoietic and embryonic stem cells. Cell. 138:352–365. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Neganova I, Tilgner K, Buskin A,
Paraskevopoulou I, Atkinson SP, Peberdy D, Passos JF and Lako M:
CDK1 plays an important role in the maintenance of pluripotency and
genomic stability in human pluripotent stem cells. Cell Death Dis.
5:e15082014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Van Hoof D, Muñoz J, Braam SR, Pinkse MW,
Linding R, Heck AJ, Mummery CL and Krijgsveld J: Phosphorylation
dynamics during early differentiation of human embryonic stem
cells. Cell Stem Cell. 5:214–226. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Li L, Wang J, Hou J, Wu Z, Zhuang Y, Lu M,
Zhang Y, Zhou X, Li Z, Xiao W and Zhang W: Cdk1 interplays with
Oct4 to repress differentiation of embryonic stem cells into
trophectoderm. FEBS Lett. 586:4100–4107. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhao R, Deibler RW, Lerou PH, Ballabeni A,
Heffner GC, Cahan P, Unternaehrer JJ, Kirschner MW and Daley GQ: A
nontranscriptional role for Oct4 in the regulation of mitotic
entry. Proc Natl Acad Sci USA. 111:15768–15773. 2014; View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Huskey NE, Guo T, Evason KJ, Momcilovic O,
Pardo D, Creasman KJ, Judson RL, Blelloch R, Oakes SA, Hebrok M and
Goga A: CDK1 inhibition targets the p53-NOXA-MCL1 axis, selectively
kills embryonic stem cells, and prevents teratoma formation. Stem
Cell Reports. 4:374–389. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Lee SH, Oh SY, Do SI, Lee HJ, Kang HJ, Rho
YS, Bae WJ and Lim YC: SOX2 regulates self-renewal and
tumorigenicity of stem-like cells of head and neck squamous cell
carcinoma. Br J Cancer. 111:2122–2130. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Tompkins DH, Besnard V, Lange AW, Keiser
AR, Wert SE, Bruno MD and Whitsett JA: Sox2 activates cell
proliferation and differentiation in the respiratory epithelium. Am
J Respir Cell Mol Biol. 45:101–110. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Hou Z, Zhao W, Zhou J, Shen L, Zhan P, Xu
C, Chang C, Bi H, Zou J4, Yao X, et al: A long noncoding RNA Sox2ot
regulates lung cancer cell proliferation and is a prognostic
indicator of poor survival. Int J Biochem Cell Biol. 53:380–388.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Kaufmann LT and Niehrs C: Gadd45a and
Gadd45g regulate neural development and exit from pluripotency in
Xenopus. Mech Dev. 128:401–411. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Barreto G, Schäfer A, Marhold J, Stach D,
Swaminathan SK, Handa V, Döderlein G, Maltry N, Wu W, Lyko F and
Niehrs C: Gadd45a promotes epigenetic gene activation by
repair-mediated DNA demethylation. Nature. 445:671–675. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Schäfer A, Schomacher L, Barreto G,
Döderlein G and Niehrs C: Gemcitabine functions epigenetically by
inhibiting repair mediated DNA demethylation. PLoS One.
5:e140602010. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Awe JP, Crespo AV, Li Y, Kiledjian M and
Byrne JA: BAY11 enhances OCT4 synthetic mRNA expression in adult
human skin cells. Stem Cell Res Ther. 4:152013. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Jung M, Peterson H, Chavez L, Kahlem P,
Lehrach H, Vilo J and Adjaye J: A data integration approach to
mapping OCT4 gene regulatory networks operative in embryonic stem
cells and embryonal carcinoma cells. PLoS One. 5:e107092010.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Mushtaq M, Gaza HV and Kashuba EV: Role of
the RB-interacting proteins in stem cell biology. Adv Cancer Res.
131:133–157. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zheng L, Flesken-Nikitin A, Chen PL and
Lee WH: Deficiency of Retinoblastoma gene in mouse embryonic stem
cells leads to genetic instability. Cancer Res. 62:2498–2502.
2002.PubMed/NCBI
|
|
84
|
Eguchi T, Takaki T, Itadani H and Kotani
H: RB silencing compromises the DNA damage-induced G2/M checkpoint
and causes deregulated expression of the ECT2 oncogene. Oncogene.
26:509–520. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
van Harn T, Foijer F, van Vugt M, Banerjee
R, Yang F, Oostra A, Joenje H and te Riele H: Loss of Rb proteins
causes genomic instability in the absence of mitogenic signaling.
Genes Dev. 24:1377–1388. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Karantza V, Maroo A, Fay D and Sedivy JM:
Overproduction of Rb protein after the G1/S boundary causes G2
arrest. Mol Cell Biol. 13:6640–6652. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Sage J and Straight AF: RB's original CIN?
Genes Dev. 24:1329–1333. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Kagey MH, Newman JJ, Bilodeau S, Zhan Y,
Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine
SS, et al: Mediator and cohesin connect gene expression and
chromatin architecture. Nature. 467:430–435. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Hu G, Kim J, Xu Q, Leng Y, Orkin SH and
Elledge SJ: A genome-wide RNAi screen identifies a new
transcriptional module required for self-renewal. Genes Dev.
23:837–848. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Ding L, Paszkowski-Rogacz M, Nitzsche A,
Slabicki MM, Heninger AK, de Vries I, Kittler R, Junqueira M,
Shevchenko A, Schulz H, et al: A genome-scale RNAi screen for Oct4
modulators defines a role of the Paf1 complex for embryonic stem
cell identity. Cell Stem Cell. 4:403–415. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Fazzio TG and Panning B: Condensin
complexes regulate mitotic progression and interphase chromatin
structure in embryonic stem cells. J Cell Biol. 188:491–503. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Solozobova V, Rolletschek A and Blattner
C: Nuclear accumulation and activation of p53 in embryonic stem
cells after DNA damage. BMC Cell Biol. 10:462009. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Dumitru R, Gama V, Fagan BM, Bower JJ,
Swahari V, Pevny LH and Deshmukh M: Human embryonic stem cells have
constitutively active Bax at the Golgi and are primed to undergo
rapid apoptosis. Mol Cell. 46:573–583. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Song H, Chung SK and Xu Y: Modeling
disease in human ESCs using an efficient BAC-based homologous
recombination system. Cell Stem Cell. 6:80–89. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Maimets T, Neganova I, Armstrong L and
Lako M: Activation of p53 by nutlin leads to rapid differentiation
of human embryonic stem cells. Oncogene. 27:5277–5287. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Hadjal Y, Hadadeh O, Yazidi CE, Barruet E
and Binétruy B: A p38MAPK-p53 cascade regulates mesodermal
differentiation and neurogenesis of embryonic stem cells. Cell
Death Dis. 4:e7372013. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Heo SH, Cha Y and Park KS: Hydroxyurea
induces a hypersensitive apoptotic response in mouse embryonic stem
cells through p38-dependent acetylation of p53. Stem Cells Dev.
23:2435–2442. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Lee KH, Li M, Michalowski AM, Zhang X,
Liao H, Chen L, Xu Y, Wu X and Huang J: A genomewide study
identifies the Wnt signaling pathway as a major target of p53 in
murine embryonic stem cells. Proc Natl Acad Sci USA. 107:69–74.
2010; View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Abdelalim EM and Tooyama I: Knockdown of
p53 suppresses Nanog expression in embryonic stem cells. Biochem
Biophys Res Commun. 443:652–657. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Akdemir KC, Jain AK, Allton K, Aronow B,
Xu X, Cooney AJ, Li W and Barton MC: Genome-wide profiling reveals
stimulus-specific functions of p53 during differentiation and DNA
damage of human embryonic stem cells. Nucleic Acids Res.
42:205–223. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Zhen HY, Zhou J, Wu HN, Yao C, Zhang T, Wu
T, Quan CS and Li YL: Lidamycin regulates p53 expression by
repressing Oct4 transcription. Biochem Biophys Res Commun.
447:224–230. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Ng WL, Chen G, Wang M, Wang H, Story M,
Shay JW, Zhang X, Wang J, Amin AR, Hu B, et al: OCT4 as a target of
miR-34a stimulates p63 but inhibits p53 to promote human cell
transformation. Cell Death Dis. 5:e10242014. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Chen T, Du J and Lu G: Cell growth arrest
and apoptosis induced by Oct4 or Nanog knockdown in mouse embryonic
stem cells: A possible role of Trp53. Mol Biol Rep. 39:1855–1861.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zhang ZN, Chung SK, Xu Z and Xu Y: Oct4
maintains the pluripotency of human embryonic stem cells by
inactivating p53 through Sirt1-mediated deacetylation. Stem Cells.
32:157–165. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Yu KR, Yang SR, Jung JW, Kim H, Ko K, Han
DW, Park SB, Choi SW, Kang SK, Schöler H and Kang KS: CD49f
enhances multipotency and maintains stemness through the direct
regulation of OCT4 and SOX2. Stem Cells. 30:876–887. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Itahana Y, Zhang J, Göke J, Vardy LA, Han
R, Iwamoto K, Cukuroglu E, Robson P, Pouladi MA, Colman A and
Itahana K: Histone modifications and p53 binding poise the p21
promoter for activation in human embryonic stem cells. Sci Rep.
6:281122016. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Suvorova II, Grigorash BB, Chuykin IA,
Pospelova TV and Pospelov VA: G1 checkpoint is compromised in mouse
ESCs due to functional uncoupling of p53-p21Waf1 signaling. Cell
Cycle. 15:52–63. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Filion TM, Qiao M, Ghule PN, Mandeville M,
van Wijnen AJ, Stein JL, Lian JB, Altieri DC and Stein GS: Survival
responses of human embryonic stem cells to DNA damage. J Cell
Physiol. 220:586–592. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Zhu H, Hu S and Baker J: JMJD5 regulates
cell cycle and pluripotency in human embryonic stem cells. Stem
Cells. 32:2098–2110. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Niculescu AB III, Chen X, Smeets M, Hengst
L, Prives C and Reed SI: Effects of p21(Cip1/Waf1) at both the G1/S
and the G2/M cell cycle transitions: pRb is a critical determinant
in blocking DNA replication and in preventing endoreduplication.
Mol Cell Biol. 18:629–643. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Karimian A, Ahmadi Y and Yousefi B:
Multiple functions of p21 in cell cycle, apoptosis and
transcriptional regulation after DNA damage. DNA Repair (Amst).
42:63–71. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Chan WH, Houng WL, Lin CA, Lee CH, Li PW,
Hsieh JT, Shen JL, Yeh HI and Chang WH: Impact of dihydrolipoic
acid on mouse embryonic stem cells and related regulatory
mechanisms. Environ Toxicol. 28:87–97. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Tahmasebi S, Alain T, Rajasekhar VK, Zhang
JP, Prager-Khoutorsky M, Khoutorsky A, Dogan Y, Gkogkas CG,
Petroulakis E, Sylvestre A, et al: Multifaceted regulation of
somatic cell reprogramming by mRNA translational control. Cell Stem
Cell. 14:606–616. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Zhen HY, He QH, Li Y, Zhou J, Yao C, Liu
YN and Ma LJ: Lidamycin induces neural differentiation of mouse
embryonic carcinoma cells through down-regulation of transcription
factor Oct4. Biochem Biophys Res Commun. 421:44–50. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Tsai CC, Su PF, Huang YF, Yew TL and Hung
SC: Oct4 and Nanog directly regulate Dnmt1 to maintain self-renewal
and undifferentiated state in mesenchymal stem cells. Mol Cell.
47:169–182. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Lee J, Go Y, Kang I, Han YM and Kim J:
Oct-4 controls cell-cycle progression of embryonic stem cells.
Biochem J. 426:171–181. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Abu Dawud R, Schreiber K, Schomburg D and
Adjaye J: Human embryonic stem cells and embryonal carcinoma cells
have overlapping and distinct metabolic signatures. PLoS One.
7:e398962012. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Kondoh H, Lleonart ME, Nakashima Y, Yokode
M, Tanaka M, Bernard D, Gil J and Beach D: A high glycolytic flux
supports the proliferative potential of murine embryonic stem
cells. Antioxid Redox Signal. 9:293–299. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Margineantu DH and Hockenbery DM:
Mitochondrial functions in stem cells. Curr Opin Genet Dev.
38:110–117. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Folmes CD and Terzic A: Energy metabolism
in the acquisition and maintenance of stemness. Semin Cell Dev
Biol. 52:68–75. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Folmes CD, Ma H, Mitalipov S and Terzic A:
Mitochondria in pluripotent stem cells: Stemness regulators and
disease targets. Curr Opin Genet Dev. 38:1–7. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
St John JC: Mitochondrial DNA copy number
and replication in reprogramming and differentiation. Semin Cell
Dev Biol. 52:93–101. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Lees JG, Rathjen J, Sheedy JR, Gardner DK
and Harvey AJ: Distinct profiles of human embryonic stem cell
metabolism and mitochondria identified by oxygen. Reproduction.
150:367–382. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Heiden MG Vander, Cantley LC and Thompson
CB: Understanding the Warburg effect: The metabolic requirements of
cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Lunt SY and Heiden MG Vander: Aerobic
glycolysis: Meeting the metabolic requirements of cell
proliferation. Annu Rev Cell Dev Biol. 27:441–464. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Bigarella CL, Liang R and Ghaffari S: Stem
cells and the impact of ROS signaling. Development. 141:4206–4218.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Wanet A, Arnould T, Najimi M and Renard P:
Connecting mitochondria, metabolism, and stem cell fate. Stem Cells
Dev. 24:1957–1971. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Kim H, Jang H, Kim TW, Kang BH, Lee SE,
Jeon YK, Chung DH, Choi J, Shin J, Cho EJ and Youn HD: Core
pluripotency factors directly regulate metabolism in embryonic stem
cell to maintain pluripotency. Stem Cells. 33:2699–2711. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Christensen DR, Calder PC and Houghton FD:
GLUT3 and PKM2 regulate OCT4 expression and support the hypoxic
culture of human embryonic stem cells. Sci Rep. 5:175002015.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Lee J, Kim HK, Han YM and Kim J: Pyruvate
kinase isozyme type M2 (PKM2) interacts and cooperates with Oct-4
in regulating transcription. Int J Biochem Cell Biol. 40:1043–1054.
2008. View Article : Google Scholar : PubMed/NCBI
|