|
1
|
Gordon J and Manley NR: Mechanisms of
thymus organogenesis and morphogenesis. Development. 138:3865–3878.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Blackburn CC and Manley NR: Developing a
new paradigm for thymus organogenesis. Nat Rev Immunol. 4:278–289.
2004. View
Article : Google Scholar : PubMed/NCBI
|
|
3
|
Skogberg G, Lundberg V, Berglund M,
Gudmundsdottir J, Telemo E, Lindgren S and Ekwall O: Human thymic
epithelial primary cells produce exosomes carrying
tissue-restricted antigens. Immunol Cell Biol. 93:727–734. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Anderson G and Jenkinson EJ: Lymphostromal
interactions in thymic development and function. Nat Rev Immunol.
1:31–40. 2001. View
Article : Google Scholar : PubMed/NCBI
|
|
5
|
Su M, Hu R, Jin J, Yan Y, Song Y, Sullivan
R and Lai L: Efficient in vitro generation of functional thymic
epithelial progenitors from human embryonic stem cells. Sci Rep.
5:98822015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Fan Y, Tajima A, Goh SK, Geng X,
Gualtierotti G, Grupillo M, Coppola A, Bertera S, Rudert WA,
Banerjee I, et al: Bioengineering thymus organoids to restore
thymic function and induce donor-specific immune tolerance to
allografts. Mol Ther. 23:1262–1277. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
van Ewijk W, Wang B, Hollander G, Kawamoto
H, Spanopoulou E, Itoi M, Amagai T, Jiang YF, Germeraad WT, Chen WF
and Katsura Y: Thymic microenvironments, 3-D versus 2-D? Semin
Immunol. 11:57–64. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Nishizuka Y and Sakakura T: Thymus and
reproduction: Sex-linked dysgenesia of the gonad after neonatal
thymectomy in mice. Science. 166:753–755. 1969. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Josefowicz SZ, Lu LF and Rudensky AY:
Regulatory T cells: Mechanisms of differentiation and function.
Annu Rev Immunol. 30:531–564. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Hsieh CS, Lee HM and Lio CW: Selection of
regulatory T cells in the thymus. Nat Rev Immunol. 12:157–167.
2012.PubMed/NCBI
|
|
11
|
Wang YM, Ghali J, Zhang GY, Hu M, Wang Y,
Sawyer A, Zhou JJ, Hapudeniya DA, Wang Y, Cao Q, et al: Development
and function of Foxp3(+) regulatory T cells. Nephrology (Carlton).
21:81–85. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Lahl K, Loddenkemper C, Drouin C, Freyer
J, Arnason J, Eberl G, Hamann A, Wagner H, Huehn J and Sparwasser
T: Selective depletion of Foxp3+ regulatory T cells induces a
scurfy-like disease. J Exp Med. 204:57–63. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kim JM, Rasmussen JP and Rudensky AY:
Regulatory T cells prevent catastrophic autoimmunity throughout the
lifespan of mice. Nat Immunol. 8:191–197. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Rosalia RA, Štěpánek I, Polláková V,
Šímová J, Bieblová J, Indrová M, Moravcová S, Přibylová H, Bontkes
HJ, Bubeník J, et al: Administration of anti-CD25 mAb leads to
impaired α-galactosylceramide-mediated induction of IFN-γ
production in a murine model. Immunobiology. 218:851–859. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wong J, Obst R, Correia-Neves M, Losyev G,
Mathis D and Benoist C: Adaptation of TCR repertoires to
self-peptides in regulatory and nonregulatory CD4+ T cells. J
Immunol. 178:7032–7041. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Pacholczyk R, Ignatowicz H, Kraj P and
Ignatowicz L: Origin and T cell receptor diversity of
Foxp3+CD4+CD25+ T cells. Immunity. 25:249–259. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Hsieh CS, Liang Y, Tyznik AJ, Self SG,
Liggitt D and Rudensky AY: Recognition of the peripheral self by
naturally arising CD25+ CD4+ T cell receptors. Immunity.
21:267–277. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Maloy KJ and Powrie F: Regulatory T cells
in the control of immune pathology. Nat Immunol. 2:816–822. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Klein L, Kyewski B, Allen PM and Hogquist
KA: Positive and negative selection of the T cell repertoire: What
thymocytes see (and don't see). Nat Rev Immunol. 14:377–391. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Chapman NM and Chi H: mTOR links
environmental signals to T cell fate decisions. Front Immunol.
5:6862015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Akimzhanov AM and Boehning D: IP3R
function in cells of the immune system. WIREs Membr Transp Signal.
1:329–339. 2012. View
Article : Google Scholar
|
|
22
|
Sauer S, Bruno L, Hertweck A, Finlay D,
Leleu M, Spivakov M, Knight ZA, Cobb BS, Cantrell D, O'Connor E, et
al: T cell receptor signaling controls Foxp3 expression via PI3K,
Akt, and mTOR. Proc Natl Acad Sci USA. 105:7797–7802. 2008;
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Schwarz A, Schumacher M, Pfaff D,
Schumacher K, Jarius S, Balint B, Wiendl H, Haas J and Wildemann B:
Fine-tuning of regulatory T cell function: The role of calcium
signals and naive regulatory T cells for regulatory T cell
deficiency in multiple sclerosis. J Immunol. 190:4965–4970. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lin J, Yang L, Silva HM, Trzeciak A, Choi
Y, Schwab SR, Dustin ML and Lafaille JJ: Increased generation of
Foxp3(+) regulatory T cells by manipulating antigen presentation in
the thymus. Nat Commun. 7:105622016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Engel M, Sidwell T, Vasanthakumar A,
Grigoriadis G and Banerjee A: Thymic regulatory T cell development:
Role of signalling pathways and transcription factors. Clin Dev
Immunol. 2013:6175952013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ouyang W, Beckett O, Ma Q, Paik Jh,
DePinho RA and Li MO: Foxo proteins cooperatively control the
differentiation of Foxp3+ regulatory T cells. Nat Immunol.
11:618–627. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Kerdiles YM, Stone EL, Beisner DL,
McGargill MA, Ch'en IL, Stockmann C, Katayama CD and Hedrick SM:
Foxo transcription factors control regulatory T cell development
and function. Immunity. 33:890–904. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Harada Y, Harada Y, Elly C, Ying G, Paik
JH, DePinho RA and Liu YC: Transcription factors Foxo3a and Foxo1
couple the E3 ligase Cbl-b to the induction of Foxp3 expression in
induced regulatory T cells. J Exp Med. 207:1381–1391. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Haribhai D, Williams JB, Jia S, Nickerson
D, Schmitt EG, Edwards B, Ziegelbauer J, Yassai M, Li SH, Relland
LM, et al: A requisite role for induced regulatory T cells in
tolerance based on expanding antigen receptor diversity. Immunity.
35:109–122. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Omenetti S and Pizarro TT: The Treg/Th17
axis: A dynamic balance regulated by the gut microbiome. Front
Immunol. 6:6392015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Nitta T and Suzuki H: Thymic stromal cell
subsets for T cell development. Cell Mol Life Sci. 73:1021–1037.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Yarilin AA and Belyakov IM: Cytokines in
the thymus: Production and biological effects. Curr Med Chem.
11:447–464. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Shitara S, Hara T, Liang B, Wagatsuma K,
Zuklys S, Holländer GA, Nakase H, Chiba T, Tani-ichi S and Ikuta K:
IL-7 produced by thymic epithelial cells plays a major role in the
development of thymocytes and TCRγδ+ intraepithelial lymphocytes. J
Immunol. 190:6173–6179. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Tian T, Zhang J, Gao L, Qian XP and Chen
WF: Heterogeneity within medullary-type
TCRalphabeta(+)CD3(+)CD4(−)CD8(+) thymocytes in normal mouse
thymus. Int Immunol. 13:313–320. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Chemin K, Bohineust A, Dogniaux S, Tourret
M, Guégan S, Miro F and Hivroz C: Cytokine secretion by CD4+ T
cells at the immunological synapse requires Cdc42-dependent local
actin remodeling but not microtubule organizing center polarity. J
Immunol. 189:2159–2168. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Coto JA, Hadden EM, Sauro M, Zorn N and
Hadden JW: Interleukin 1 regulates secretion of zinc-thymulin by
human thymic epithelial cells and its action on T-lymphocyte
proliferation and nuclear protein kinase C. Proc Natl Acad Sci USA.
89:7752–7756. 1992; View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Dalloul A, Arock M, Fourcade C, Hatzfeld
A, Bertho JM, Debré P and Mossalayi MD: Human thymic epithelial
cells produce interleukin-3. Blood. 77:69–74. 1991.PubMed/NCBI
|
|
38
|
Galy AH, Dinarello CA, Kupper TS, Kameda A
and Hadden JW: Effects of cytokines on human thymic epithelial
cells in culture. II. Recombinant IL 1 stimulates thymic epithelial
cells to produce IL6 and GM-CSF. Cell Immunol. 129:161–175. 1990.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Savino W, Mendes-da-Cruz DA, Lepletier A
and Dardenne M: Hormonal control of T-cell development in health
and disease. Nat Rev Endocrinol. 12:77–89. 2016.PubMed/NCBI
|
|
40
|
Savino W and Dardenne M: Neuroendocrine
control of thymus physiology. Endocr Rev. 21:412–443. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Muegge K, Vila MP and Durum SK:
Interleukin-7: A cofactor for V(D)J rearrangement of the T cell
receptor beta gene. Science. 261:93–95. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Bayer AL, Yu A and Malek TR: Function of
the IL-2R for thymic and peripheral CD4+CD25+ Foxp3+ T regulatory
cells. J Immunol. 178:4062–4071. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Varas A, Vicente A, Romo T and Zapata AG:
Role of IL-2 in rat fetal thymocyte development. Int Immunol.
9:1589–1599. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Weist BM, Kurd N, Boussier J, Chan SW and
Robey EA: Thymic regulatory T cell niche size is dictated by
limiting IL-2 from antigen-bearing dendritic cells and feedback
competition. Nat Immunol. 16:635–641. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Meilin A, Sharabi Y and Shoham J: Analysis
of thymic stromal cell subpopulations grown in vitro on
extracellular matrix in defined medium-v. Proliferation regulating
activities in supernatants of human thymic epithelial cell
cultures. Int J Immunopharmacol. 19:39–47. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Zlotnik A, Ransom J, Frank G, Fischer M
and Howard M: Interleukin 4 is a growth factor for activated
thymocytes: Possible role in T-cell ontogeny. Proc Natl Acad Sci
USA. 84:3856–3860. 1987; View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Shevach EM: Mechanisms of Foxp3+ T
regulatory cell-mediated suppression. Immunity. 30:636–645. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Barnes MJ and Powrie F: Regulatory T cells
reinforce intestinal homeostasis. Immunity. 31:401–411. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Mittal SK and Roche PA: Suppression of
antigen presentation by IL-10. Curr Opin Immunol. 34:22–27. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Patel DD, Whichard LP, Radcliff G, Denning
SM and Haynes BF: Characterization of human thymic epithelial cell
surface antigens: phenotypic similarity of thymic epithelial cells
to epidermal keratinocytes. J Clin Immunol. 15:80–92. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Meilin A, Shoham J, Schreiber L and
Sharabi Y: The role of thymocytes in regulating thymic epithelial
cell growth and function. Scand J Immunol. 42:185–190. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Baseta JG and Stutman O: TNF regulates
thymocyte production by apoptosis and proliferation of the triple
negative (CD3-CD4-CD8-) subset. J Immunol. 165:5621–5630. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zúñiga-Pflücker JC, Jiang D and Lenardo
MJ: Requirement for TNF-alpha and IL-1 alpha in fetal thymocyte
commitment and differentiation. Science. 268:1906–1909. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Arzt E, Kovalovsky D, Igaz LM, Costas M,
Plazas P, Refojo D, Páez-Pereda M, Reul JM, Stalla G and Holsboer
F: Functional cross-talk among cytokines, T-cell receptor, and
glucocorticoid receptor transcriptional activity and action. Ann NY
Acad Sci. 917:672–677. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Cohen-Kaminsky S, Delattre RM, Devergne O,
Rouet P, Gimond D, Berrih-Aknin S and Galanaud P: Synergistic
induction of interleukin-6 production and gene expression in human
thymic epithelial cells by LPS and cytokines. Cell Immunol.
138:79–93. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wang J, Zhuo Y, Yin L, Wang H, Jiang Y,
Liu X, Zhang M, Du F, Xia S and Shao Q: Doxycycline protects thymic
epithelial cells from mitomycin C-mediated apoptosis in vitro via
Trx2-NF-κB-Bcl-2/Bax axis. Cell Physiol Biochem. 38:449–460. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Shanley DP, Aw D, Manley NR and Palmer DB:
An evolutionary perspective on the mechanisms of immunosenescence.
Trends Immunol. 30:374–381. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Dooley J and Liston A: Molecular control
over thymic involution: From cytokines and microRNA to aging and
adipose tissue. Eur J Immunol. 42:1073–1079. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Kappler JW, Roehm N and Marrack P: T cell
tolerance by clonal elimination in the thymus. Cell. 49:273–280.
1987. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Xing Y and Hogquist KA: T-Cell tolerance:
Central and peripheral. Cold Spring Harb Perspect Biol. 4(pii):
a0069572012.PubMed/NCBI
|
|
61
|
Roberts JL, Sharrow SO and Singer A:
Clonal deletion and clonal anergy in the thymus induced by cellular
elements with different radiation sensitivities. J Exp Med.
171:935–940. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Kisielow P, Bluthmann H, Staerz UD,
Steinmetz M and von Boehmer H: Tolerance in T-cell-receptor
transgenic mice involves deletion of nonmature CD4+8+ thymocytes.
Nature. 333:742–746. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ramsdell F and Fowlkes B: Clonal deletion
versus clonal anergy: The role of the thymus in inducing self
tolerance. Science. 248:1342–1348. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Nurieva R, Wang J and Sahoo A: T-cell
tolerance in cancer. Immunotherapy. 5:513–531. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Xing Y and Hogquist KA: T-cell tolerance:
Central and peripheral. Cold Spring Harb Perspect Biol. 4(pii):
a0069572012.PubMed/NCBI
|
|
66
|
Wood KJ and Sakaguchi S: Regulatory T
cells in transplantation tolerance. Nat Rev Immunol. 3:199–210.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Howard JK, Lord GM, Matarese G, Vendetti
S, Ghatei MA, Ritter MA, Lechler RI and Bloom SR: Leptin protects
mice from starvation-induced lymphoid atrophy and increases thymic
cellularity in ob/ob mice. J Clin Invest. 104:1051–1059. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wang SD, Huang KJ, Lin YS and Lei HY:
Sepsis-induced apoptosis of the thymocytes in mice. J Immunol.
152:5014–5021. 1994.PubMed/NCBI
|
|
69
|
Müller-Hermelink HK, Sale GE, Borisch B
and Storb R: Pathology of the thymus after allogeneic bone marrow
transplantation in man. A histologic immunohistochemical study of
36 patients. Am J Pathol. 129:242–256. 1987.PubMed/NCBI
|
|
70
|
Gruver AL and Sempowski GD: Cytokines,
leptin, and stress-induced thymic atrophy. J Leukoc Biol.
84:915–923. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Boyd E: The weight of the thymus gland in
health and disease. Am J Dis Child. 43:1162–1214. 1932.
|
|
72
|
Gruver AL, Hudson LL and Sempowski GD:
Immunosenescence of ageing. J Pathol. 211:144–156. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Aw D, Silva AB and Palmer DB:
Immunosenescence: Emerging challenges for an ageing population.
Immunology. 120:435–446. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Fülöp T, Larbi A and Pawelec G: Human T
cell aging and the impact of persistent viral infections. Front
Immunol. 4:2712013. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Gruver AL, Ventevogel MS and Sempowski GD:
Leptin receptor is expressed in thymus medulla and leptin protects
against thymic remodeling during endotoxemia-induced thymus
involution. J Endocrinol. 203:75–85. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Haynes BF, Markert ML, Sempowski GD, Patel
DD and Hale LP: The role of the thymus in immune reconstitution in
aging, bone marrow transplantation, and HIV-1 infection. Annu Rev
Immunol. 18:529–560. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Billard MJ, Gruver AL and Sempowski GD:
Acute endotoxin-induced thymic atrophy is characterized by
intrathymic inflammatory and wound healing responses. PLoS One.
6:e179402011. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Hick RW, Gruver AL, Ventevogel MS, Haynes
BF and Sempowski GD: Leptin selectively augments thymopoiesis in
leptin deficiency and lipopolysaccharide-induced thymic atrophy. J
Immunol. 177:169–176. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhou YJ, Peng H, Chen Y and Liu YL:
Alterations of thymic epithelial cells in
lipopolysaccharide-induced neonatal thymus involution. Chin Med J
(Engl). 129:59–65. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ann V Griffith, Venables T, Shi J, Farr A,
van Remmen H, Szweda L, Fallahi M, Rabinovitch P and Petrie HT:
Metabolic damage and premature thymus aging caused by stromal
catalase deficiency. Cell Rep. 12:1071–1079. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Dorshkind K, Montecino-Rodriguez E and
Signer RA: The ageing immune system: Is it ever too old to become
young again? Nat Rev Immunol. 9:57–62. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Gomez CR, Nomellini V, Faunce DE and
Kovacs EJ: Innate immunity and aging. Exp Gerontol. 43:718–728.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Min D, Panoskaltsis-Mortari A, Kuro-o M,
Holländer GA, Blazar BR and Weinberg KI: Sustained thymopoiesis and
improvement in functional immunity induced by exogenous KGF
administration in murine models of aging. Blood. 109:2529–2537.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Rossi SW, Jeker LT, Ueno T, Kuse S, Keller
MP, Zuklys S, Gudkov AV, Takahama Y, Krenger W, Blazar BR and
Holländer GA: Keratinocyte growth factor (KGF) enhances postnatal
T-cell development via enhancements in proliferation and function
of thymic epithelial cells. Blood. 109:3803–3811. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Hsu HC, Zhang HG, Li L, Yi N, Yang PA, Wu
Q, Zhou J, Sun S, Xu X, Yang X, et al: Age-related thymic
involution in C57BL/6J × DBA/2J recombinant-inbred mice maps to
mouse chromosomes 9 and 10. Genes Immun. 4:402–410. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Frawley R, White K Jr, Brown R, Musgrove
D, Walker N and Germolec D: Gene expression alterations in immune
system pathways in the thymus after exposure to immunosuppressive
chemicals. Environ Health Perspect. 119:371–376. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Boehm T and Swann JB: Thymus involution
and regeneration: Two sides of the same coin? Nat Rev Immunol.
13:831–838. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Bluth MH, Kohlhoff S, Norowitz KB,
Silverberg JI, Chice S, Nowakowski M, Durkin HG and Smith-Norowitz
TA: Immune responses in autoimmune hepatitis: Effect of prednisone
and azathioprine treatment: Case report. Int J Med Sci. 6:177–183.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Marchetti MC, Marco BD, Santini MC,
Bartoli A, Delfino DV and Riccardi C: Dexamethasone-induced
thymocytes apoptosis requires glucocorticoid receptor nuclear
translocation but not mitochondrial membrane potential transition.
Toxicol Lett. 139:175–180. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Gould KA, Shull JD and Gorski J: DES
action in the thymus: Inhibition of cell proliferation and genetic
variation. Mol Cell Endocrinol. 170:31–39. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Fletcher AL, Lowen TE, Sakkal S, Reiseger
JJ, Hammett MV, Seach N, Scott HS, Boyd RL and Chidgey AP: Ablation
and regeneration of tolerance-inducing medullary thymic epithelial
cells after cyclosporine, cyclophosphamide, and dexamethasone
treatment. J Immunol. 183:823–831. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Camacho IA, Singh N, Hegde VL, Nagarkatti
M and Nagarkatti PS: Treatment of mice with
2,3,7,8-tetrachlorodibenzo-p-dioxin leads to aryl hydrocarbon
receptor-dependent nuclear translocation of NF-kappaB and
expression of Fas ligand in thymic stromal cells and consequent
apoptosis in T cells. J Immunol. 175:90–103. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Dudakov JA, Hanash AM, Jenq RR, Young LF,
Ghosh A, Singer NV, West ML, Smith OM, Holland AM, Tsai JJ, et al:
Interleukin-22 drives endogenous thymic regeneration in mice.
Science. 336:91–95. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Larance M and Lamond AI: Multidimensional
proteomics for cell biology. Nat Rev Mol Cell Biol. 16:269–280.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Leung EL, Cao ZW, Jiang ZH, Zhou H and Liu
L: Network-based drug discovery by integrating systems biology and
computational technologies. Brief Bioinform. 14:491–505. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Turiák L, Misják P, Szabó TG, Aradi B,
Pálóczi K, Ozohanics O, Drahos L, Kittel A, Falus A, Buzás EI and
Vékey K: Proteomic characterization of thymocyte-derived
microvesicles and apoptotic bodies in BALB/c mice. J Proteomics.
74:2025–2033. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Billing AM, Revets D, Hoffmann C, Turner
JD, Vernocchi S and Muller CP: Proteomic profiling of rapid
non-genomic and concomitant genomic effects of acute restraint
stress on rat thymocytes. J Proteomics. 75:2064–2079. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Schulze WX and Usadel B: Quantitation in
mass-spectrometry-based proteomics. Annu Rev Plant Biol.
61:491–516. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Matt P, Fu Z, Fu Q and Van Eyk JE:
Biomarker discovery: Proteome fractionation and separation in
biological samples. Physiol Genomics. 33:12–17. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Sultana R, Di Domenico F, Tseng M, Cai J,
Noel T, Chelvarajan RL, Pierce WD, Cini C, Bondada S, St Clair DK
and Butterfield DA: Doxorubicin-induced thymus senescence. J
Proteome Res. 9:6232–6241. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Ma C, Yue QX, Guan SH, Wu WY, Yang M,
Jiang BH, Liu X and Guo DA: Proteomic analysis of possible
target-related proteins of cyclophosphamide in mice thymus. Food
Chem Toxicol. 47:1841–1847. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Kawakami T, Nagata T, Muraguchi A and
Nishimura T: Proteomic approach to apoptotic thymus maturation. J
Chromatogr B Analyt Technol Biomed Life Sci. 787:223–229. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Tyanova S, Albrechtsen R, Kronqvist P, Cox
J, Mann M and Geiger T: Proteomic maps of breast cancer subtypes.
Nat Commun. 7:102592016. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Chan PP, Wasinger VC and Leong RW: Current
application of proteomics in biomarker discovery for inflammatory
bowel disease. World J Gastrointest Pathophysiol. 7:27–37. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Peng F, Zhan X, Li MY, Fang F, Li G, Li C,
Zhang PF and Chen Z: Proteomic and bioinformatics analyses of mouse
liver microsomes. Int J Proteomics. 2012:8325692012. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Goh WW, Lee YH, Chung M and Wong L: How
advancement in biological network analysis methods empowers
proteomics. Proteomics. 12:550–563. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Miller JF: Immunological function of the
thymus. Lancet. 2:748–749. 1961. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Burns JC and Franco A: The
immunomodulatory effects of intravenous immunoglobulin therapy in
Kawasaki disease. Expert Rev Clin Immunol. 11:819–825. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Shankar-Hari M, Spencer J, Sewell WA,
Rowan KM and Singer M: Bench-to-bedside review: Immunoglobulin
therapy for sepsis - biological plausibility from a critical care
perspective. Crit Care. 16:2062012. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Gupta M, Noel GJ, Schaefer M, Friedman D,
Bussel J and Johann-Liang R: Cytokine modulation with immune
gamma-globulin in peripheral blood of normal children and its
implications in Kawasaki disease treatment. J Clin Immunol.
21:193–199. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Chaudhry MS, Velardi E, Malard F and van
den Brink MR: Immune reconstitution after allogeneic hematopoietic
stem cell transplantation: Time to T Up the thymus. J Immunol.
198:40–46. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Zhu YX, Kortuem KM and Stewart AK:
Molecular mechanism of action of immune-modulatory drugs
thalidomide, lenalidomide and pomalidomide in multiple myeloma.
Leuk Lymphoma. 54:683–687. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Ekins S, Gupta RR, Gifford E, Bunin BA and
Waller CL: Chemical space: Missing pieces in cheminformatics. Pharm
Res. 27:2035–2039. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Dobson CM: Chemical space and biology.
Nature. 432:824–828. 2004. View Article : Google Scholar : PubMed/NCBI
|