Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
November-2017 Volume 16 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2017 Volume 16 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Thymic function in the regulation of T cells, and molecular mechanisms underlying the modulation of cytokines and stress signaling (Review)

  • Authors:
    • Fenggen Yan
    • Xiumei Mo
    • Junfeng Liu
    • Siqi Ye
    • Xing Zeng
    • Dacan Chen
  • View Affiliations / Copyright

    Affiliations: Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
    Copyright: © Yan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 7175-7184
    |
    Published online on: September 19, 2017
       https://doi.org/10.3892/mmr.2017.7525
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The thymus is critical in establishing and maintaining the appropriate microenvironment for promoting the development and selection of T cells. The function and structure of the thymus gland has been extensively studied, particularly as the thymus serves an important physiological role in the lymphatic system. Numerous studies have investigated the morphological features of thymic involution. Recently, research attention has increasingly been focused on thymic proteins as targets for drug intervention. Omics approaches have yielded novel insights into the thymus and possible drug targets. The present review addresses the signaling and transcriptional functions of the thymus, including the molecular mechanisms underlying the regulatory functions of T cells and their role in the immune system. In addition, the levels of cytokines secreted in the thymus have a significant effect on thymic functions, including thymocyte migration and development, thymic atrophy and thymic recovery. Furthermore, the regulation and molecular mechanisms of stress‑mediated thymic atrophy and involution were investigated, with particular emphasis on thymic function as a potential target for drug development and discovery using proteomics.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Gordon J and Manley NR: Mechanisms of thymus organogenesis and morphogenesis. Development. 138:3865–3878. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Blackburn CC and Manley NR: Developing a new paradigm for thymus organogenesis. Nat Rev Immunol. 4:278–289. 2004. View Article : Google Scholar : PubMed/NCBI

3 

Skogberg G, Lundberg V, Berglund M, Gudmundsdottir J, Telemo E, Lindgren S and Ekwall O: Human thymic epithelial primary cells produce exosomes carrying tissue-restricted antigens. Immunol Cell Biol. 93:727–734. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Anderson G and Jenkinson EJ: Lymphostromal interactions in thymic development and function. Nat Rev Immunol. 1:31–40. 2001. View Article : Google Scholar : PubMed/NCBI

5 

Su M, Hu R, Jin J, Yan Y, Song Y, Sullivan R and Lai L: Efficient in vitro generation of functional thymic epithelial progenitors from human embryonic stem cells. Sci Rep. 5:98822015. View Article : Google Scholar : PubMed/NCBI

6 

Fan Y, Tajima A, Goh SK, Geng X, Gualtierotti G, Grupillo M, Coppola A, Bertera S, Rudert WA, Banerjee I, et al: Bioengineering thymus organoids to restore thymic function and induce donor-specific immune tolerance to allografts. Mol Ther. 23:1262–1277. 2015. View Article : Google Scholar : PubMed/NCBI

7 

van Ewijk W, Wang B, Hollander G, Kawamoto H, Spanopoulou E, Itoi M, Amagai T, Jiang YF, Germeraad WT, Chen WF and Katsura Y: Thymic microenvironments, 3-D versus 2-D? Semin Immunol. 11:57–64. 1999. View Article : Google Scholar : PubMed/NCBI

8 

Nishizuka Y and Sakakura T: Thymus and reproduction: Sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science. 166:753–755. 1969. View Article : Google Scholar : PubMed/NCBI

9 

Josefowicz SZ, Lu LF and Rudensky AY: Regulatory T cells: Mechanisms of differentiation and function. Annu Rev Immunol. 30:531–564. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Hsieh CS, Lee HM and Lio CW: Selection of regulatory T cells in the thymus. Nat Rev Immunol. 12:157–167. 2012.PubMed/NCBI

11 

Wang YM, Ghali J, Zhang GY, Hu M, Wang Y, Sawyer A, Zhou JJ, Hapudeniya DA, Wang Y, Cao Q, et al: Development and function of Foxp3(+) regulatory T cells. Nephrology (Carlton). 21:81–85. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Lahl K, Loddenkemper C, Drouin C, Freyer J, Arnason J, Eberl G, Hamann A, Wagner H, Huehn J and Sparwasser T: Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med. 204:57–63. 2007. View Article : Google Scholar : PubMed/NCBI

13 

Kim JM, Rasmussen JP and Rudensky AY: Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol. 8:191–197. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Rosalia RA, Štěpánek I, Polláková V, Šímová J, Bieblová J, Indrová M, Moravcová S, Přibylová H, Bontkes HJ, Bubeník J, et al: Administration of anti-CD25 mAb leads to impaired α-galactosylceramide-mediated induction of IFN-γ production in a murine model. Immunobiology. 218:851–859. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Wong J, Obst R, Correia-Neves M, Losyev G, Mathis D and Benoist C: Adaptation of TCR repertoires to self-peptides in regulatory and nonregulatory CD4+ T cells. J Immunol. 178:7032–7041. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Pacholczyk R, Ignatowicz H, Kraj P and Ignatowicz L: Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells. Immunity. 25:249–259. 2006. View Article : Google Scholar : PubMed/NCBI

17 

Hsieh CS, Liang Y, Tyznik AJ, Self SG, Liggitt D and Rudensky AY: Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity. 21:267–277. 2004. View Article : Google Scholar : PubMed/NCBI

18 

Maloy KJ and Powrie F: Regulatory T cells in the control of immune pathology. Nat Immunol. 2:816–822. 2001. View Article : Google Scholar : PubMed/NCBI

19 

Klein L, Kyewski B, Allen PM and Hogquist KA: Positive and negative selection of the T cell repertoire: What thymocytes see (and don't see). Nat Rev Immunol. 14:377–391. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Chapman NM and Chi H: mTOR links environmental signals to T cell fate decisions. Front Immunol. 5:6862015. View Article : Google Scholar : PubMed/NCBI

21 

Akimzhanov AM and Boehning D: IP3R function in cells of the immune system. WIREs Membr Transp Signal. 1:329–339. 2012. View Article : Google Scholar

22 

Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight ZA, Cobb BS, Cantrell D, O'Connor E, et al: T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci USA. 105:7797–7802. 2008; View Article : Google Scholar : PubMed/NCBI

23 

Schwarz A, Schumacher M, Pfaff D, Schumacher K, Jarius S, Balint B, Wiendl H, Haas J and Wildemann B: Fine-tuning of regulatory T cell function: The role of calcium signals and naive regulatory T cells for regulatory T cell deficiency in multiple sclerosis. J Immunol. 190:4965–4970. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Lin J, Yang L, Silva HM, Trzeciak A, Choi Y, Schwab SR, Dustin ML and Lafaille JJ: Increased generation of Foxp3(+) regulatory T cells by manipulating antigen presentation in the thymus. Nat Commun. 7:105622016. View Article : Google Scholar : PubMed/NCBI

25 

Engel M, Sidwell T, Vasanthakumar A, Grigoriadis G and Banerjee A: Thymic regulatory T cell development: Role of signalling pathways and transcription factors. Clin Dev Immunol. 2013:6175952013. View Article : Google Scholar : PubMed/NCBI

26 

Ouyang W, Beckett O, Ma Q, Paik Jh, DePinho RA and Li MO: Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat Immunol. 11:618–627. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Kerdiles YM, Stone EL, Beisner DL, McGargill MA, Ch'en IL, Stockmann C, Katayama CD and Hedrick SM: Foxo transcription factors control regulatory T cell development and function. Immunity. 33:890–904. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Harada Y, Harada Y, Elly C, Ying G, Paik JH, DePinho RA and Liu YC: Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. J Exp Med. 207:1381–1391. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Haribhai D, Williams JB, Jia S, Nickerson D, Schmitt EG, Edwards B, Ziegelbauer J, Yassai M, Li SH, Relland LM, et al: A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity. 35:109–122. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Omenetti S and Pizarro TT: The Treg/Th17 axis: A dynamic balance regulated by the gut microbiome. Front Immunol. 6:6392015. View Article : Google Scholar : PubMed/NCBI

31 

Nitta T and Suzuki H: Thymic stromal cell subsets for T cell development. Cell Mol Life Sci. 73:1021–1037. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Yarilin AA and Belyakov IM: Cytokines in the thymus: Production and biological effects. Curr Med Chem. 11:447–464. 2004. View Article : Google Scholar : PubMed/NCBI

33 

Shitara S, Hara T, Liang B, Wagatsuma K, Zuklys S, Holländer GA, Nakase H, Chiba T, Tani-ichi S and Ikuta K: IL-7 produced by thymic epithelial cells plays a major role in the development of thymocytes and TCRγδ+ intraepithelial lymphocytes. J Immunol. 190:6173–6179. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Tian T, Zhang J, Gao L, Qian XP and Chen WF: Heterogeneity within medullary-type TCRalphabeta(+)CD3(+)CD4(−)CD8(+) thymocytes in normal mouse thymus. Int Immunol. 13:313–320. 2001. View Article : Google Scholar : PubMed/NCBI

35 

Chemin K, Bohineust A, Dogniaux S, Tourret M, Guégan S, Miro F and Hivroz C: Cytokine secretion by CD4+ T cells at the immunological synapse requires Cdc42-dependent local actin remodeling but not microtubule organizing center polarity. J Immunol. 189:2159–2168. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Coto JA, Hadden EM, Sauro M, Zorn N and Hadden JW: Interleukin 1 regulates secretion of zinc-thymulin by human thymic epithelial cells and its action on T-lymphocyte proliferation and nuclear protein kinase C. Proc Natl Acad Sci USA. 89:7752–7756. 1992; View Article : Google Scholar : PubMed/NCBI

37 

Dalloul A, Arock M, Fourcade C, Hatzfeld A, Bertho JM, Debré P and Mossalayi MD: Human thymic epithelial cells produce interleukin-3. Blood. 77:69–74. 1991.PubMed/NCBI

38 

Galy AH, Dinarello CA, Kupper TS, Kameda A and Hadden JW: Effects of cytokines on human thymic epithelial cells in culture. II. Recombinant IL 1 stimulates thymic epithelial cells to produce IL6 and GM-CSF. Cell Immunol. 129:161–175. 1990. View Article : Google Scholar : PubMed/NCBI

39 

Savino W, Mendes-da-Cruz DA, Lepletier A and Dardenne M: Hormonal control of T-cell development in health and disease. Nat Rev Endocrinol. 12:77–89. 2016.PubMed/NCBI

40 

Savino W and Dardenne M: Neuroendocrine control of thymus physiology. Endocr Rev. 21:412–443. 2000. View Article : Google Scholar : PubMed/NCBI

41 

Muegge K, Vila MP and Durum SK: Interleukin-7: A cofactor for V(D)J rearrangement of the T cell receptor beta gene. Science. 261:93–95. 1993. View Article : Google Scholar : PubMed/NCBI

42 

Bayer AL, Yu A and Malek TR: Function of the IL-2R for thymic and peripheral CD4+CD25+ Foxp3+ T regulatory cells. J Immunol. 178:4062–4071. 2007. View Article : Google Scholar : PubMed/NCBI

43 

Varas A, Vicente A, Romo T and Zapata AG: Role of IL-2 in rat fetal thymocyte development. Int Immunol. 9:1589–1599. 1997. View Article : Google Scholar : PubMed/NCBI

44 

Weist BM, Kurd N, Boussier J, Chan SW and Robey EA: Thymic regulatory T cell niche size is dictated by limiting IL-2 from antigen-bearing dendritic cells and feedback competition. Nat Immunol. 16:635–641. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Meilin A, Sharabi Y and Shoham J: Analysis of thymic stromal cell subpopulations grown in vitro on extracellular matrix in defined medium-v. Proliferation regulating activities in supernatants of human thymic epithelial cell cultures. Int J Immunopharmacol. 19:39–47. 1997. View Article : Google Scholar : PubMed/NCBI

46 

Zlotnik A, Ransom J, Frank G, Fischer M and Howard M: Interleukin 4 is a growth factor for activated thymocytes: Possible role in T-cell ontogeny. Proc Natl Acad Sci USA. 84:3856–3860. 1987; View Article : Google Scholar : PubMed/NCBI

47 

Shevach EM: Mechanisms of Foxp3+ T regulatory cell-mediated suppression. Immunity. 30:636–645. 2009. View Article : Google Scholar : PubMed/NCBI

48 

Barnes MJ and Powrie F: Regulatory T cells reinforce intestinal homeostasis. Immunity. 31:401–411. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Mittal SK and Roche PA: Suppression of antigen presentation by IL-10. Curr Opin Immunol. 34:22–27. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Patel DD, Whichard LP, Radcliff G, Denning SM and Haynes BF: Characterization of human thymic epithelial cell surface antigens: phenotypic similarity of thymic epithelial cells to epidermal keratinocytes. J Clin Immunol. 15:80–92. 1995. View Article : Google Scholar : PubMed/NCBI

51 

Meilin A, Shoham J, Schreiber L and Sharabi Y: The role of thymocytes in regulating thymic epithelial cell growth and function. Scand J Immunol. 42:185–190. 1995. View Article : Google Scholar : PubMed/NCBI

52 

Baseta JG and Stutman O: TNF regulates thymocyte production by apoptosis and proliferation of the triple negative (CD3-CD4-CD8-) subset. J Immunol. 165:5621–5630. 2000. View Article : Google Scholar : PubMed/NCBI

53 

Zúñiga-Pflücker JC, Jiang D and Lenardo MJ: Requirement for TNF-alpha and IL-1 alpha in fetal thymocyte commitment and differentiation. Science. 268:1906–1909. 1995. View Article : Google Scholar : PubMed/NCBI

54 

Arzt E, Kovalovsky D, Igaz LM, Costas M, Plazas P, Refojo D, Páez-Pereda M, Reul JM, Stalla G and Holsboer F: Functional cross-talk among cytokines, T-cell receptor, and glucocorticoid receptor transcriptional activity and action. Ann NY Acad Sci. 917:672–677. 2000. View Article : Google Scholar : PubMed/NCBI

55 

Cohen-Kaminsky S, Delattre RM, Devergne O, Rouet P, Gimond D, Berrih-Aknin S and Galanaud P: Synergistic induction of interleukin-6 production and gene expression in human thymic epithelial cells by LPS and cytokines. Cell Immunol. 138:79–93. 1991. View Article : Google Scholar : PubMed/NCBI

56 

Wang J, Zhuo Y, Yin L, Wang H, Jiang Y, Liu X, Zhang M, Du F, Xia S and Shao Q: Doxycycline protects thymic epithelial cells from mitomycin C-mediated apoptosis in vitro via Trx2-NF-κB-Bcl-2/Bax axis. Cell Physiol Biochem. 38:449–460. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Shanley DP, Aw D, Manley NR and Palmer DB: An evolutionary perspective on the mechanisms of immunosenescence. Trends Immunol. 30:374–381. 2009. View Article : Google Scholar : PubMed/NCBI

58 

Dooley J and Liston A: Molecular control over thymic involution: From cytokines and microRNA to aging and adipose tissue. Eur J Immunol. 42:1073–1079. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Kappler JW, Roehm N and Marrack P: T cell tolerance by clonal elimination in the thymus. Cell. 49:273–280. 1987. View Article : Google Scholar : PubMed/NCBI

60 

Xing Y and Hogquist KA: T-Cell tolerance: Central and peripheral. Cold Spring Harb Perspect Biol. 4(pii): a0069572012.PubMed/NCBI

61 

Roberts JL, Sharrow SO and Singer A: Clonal deletion and clonal anergy in the thymus induced by cellular elements with different radiation sensitivities. J Exp Med. 171:935–940. 1990. View Article : Google Scholar : PubMed/NCBI

62 

Kisielow P, Bluthmann H, Staerz UD, Steinmetz M and von Boehmer H: Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature. 333:742–746. 1988. View Article : Google Scholar : PubMed/NCBI

63 

Ramsdell F and Fowlkes B: Clonal deletion versus clonal anergy: The role of the thymus in inducing self tolerance. Science. 248:1342–1348. 1990. View Article : Google Scholar : PubMed/NCBI

64 

Nurieva R, Wang J and Sahoo A: T-cell tolerance in cancer. Immunotherapy. 5:513–531. 2013. View Article : Google Scholar : PubMed/NCBI

65 

Xing Y and Hogquist KA: T-cell tolerance: Central and peripheral. Cold Spring Harb Perspect Biol. 4(pii): a0069572012.PubMed/NCBI

66 

Wood KJ and Sakaguchi S: Regulatory T cells in transplantation tolerance. Nat Rev Immunol. 3:199–210. 2003. View Article : Google Scholar : PubMed/NCBI

67 

Howard JK, Lord GM, Matarese G, Vendetti S, Ghatei MA, Ritter MA, Lechler RI and Bloom SR: Leptin protects mice from starvation-induced lymphoid atrophy and increases thymic cellularity in ob/ob mice. J Clin Invest. 104:1051–1059. 1999. View Article : Google Scholar : PubMed/NCBI

68 

Wang SD, Huang KJ, Lin YS and Lei HY: Sepsis-induced apoptosis of the thymocytes in mice. J Immunol. 152:5014–5021. 1994.PubMed/NCBI

69 

Müller-Hermelink HK, Sale GE, Borisch B and Storb R: Pathology of the thymus after allogeneic bone marrow transplantation in man. A histologic immunohistochemical study of 36 patients. Am J Pathol. 129:242–256. 1987.PubMed/NCBI

70 

Gruver AL and Sempowski GD: Cytokines, leptin, and stress-induced thymic atrophy. J Leukoc Biol. 84:915–923. 2008. View Article : Google Scholar : PubMed/NCBI

71 

Boyd E: The weight of the thymus gland in health and disease. Am J Dis Child. 43:1162–1214. 1932.

72 

Gruver AL, Hudson LL and Sempowski GD: Immunosenescence of ageing. J Pathol. 211:144–156. 2007. View Article : Google Scholar : PubMed/NCBI

73 

Aw D, Silva AB and Palmer DB: Immunosenescence: Emerging challenges for an ageing population. Immunology. 120:435–446. 2007. View Article : Google Scholar : PubMed/NCBI

74 

Fülöp T, Larbi A and Pawelec G: Human T cell aging and the impact of persistent viral infections. Front Immunol. 4:2712013. View Article : Google Scholar : PubMed/NCBI

75 

Gruver AL, Ventevogel MS and Sempowski GD: Leptin receptor is expressed in thymus medulla and leptin protects against thymic remodeling during endotoxemia-induced thymus involution. J Endocrinol. 203:75–85. 2009. View Article : Google Scholar : PubMed/NCBI

76 

Haynes BF, Markert ML, Sempowski GD, Patel DD and Hale LP: The role of the thymus in immune reconstitution in aging, bone marrow transplantation, and HIV-1 infection. Annu Rev Immunol. 18:529–560. 2000. View Article : Google Scholar : PubMed/NCBI

77 

Billard MJ, Gruver AL and Sempowski GD: Acute endotoxin-induced thymic atrophy is characterized by intrathymic inflammatory and wound healing responses. PLoS One. 6:e179402011. View Article : Google Scholar : PubMed/NCBI

78 

Hick RW, Gruver AL, Ventevogel MS, Haynes BF and Sempowski GD: Leptin selectively augments thymopoiesis in leptin deficiency and lipopolysaccharide-induced thymic atrophy. J Immunol. 177:169–176. 2006. View Article : Google Scholar : PubMed/NCBI

79 

Zhou YJ, Peng H, Chen Y and Liu YL: Alterations of thymic epithelial cells in lipopolysaccharide-induced neonatal thymus involution. Chin Med J (Engl). 129:59–65. 2016. View Article : Google Scholar : PubMed/NCBI

80 

Ann V Griffith, Venables T, Shi J, Farr A, van Remmen H, Szweda L, Fallahi M, Rabinovitch P and Petrie HT: Metabolic damage and premature thymus aging caused by stromal catalase deficiency. Cell Rep. 12:1071–1079. 2015. View Article : Google Scholar : PubMed/NCBI

81 

Dorshkind K, Montecino-Rodriguez E and Signer RA: The ageing immune system: Is it ever too old to become young again? Nat Rev Immunol. 9:57–62. 2009. View Article : Google Scholar : PubMed/NCBI

82 

Gomez CR, Nomellini V, Faunce DE and Kovacs EJ: Innate immunity and aging. Exp Gerontol. 43:718–728. 2008. View Article : Google Scholar : PubMed/NCBI

83 

Min D, Panoskaltsis-Mortari A, Kuro-o M, Holländer GA, Blazar BR and Weinberg KI: Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging. Blood. 109:2529–2537. 2007. View Article : Google Scholar : PubMed/NCBI

84 

Rossi SW, Jeker LT, Ueno T, Kuse S, Keller MP, Zuklys S, Gudkov AV, Takahama Y, Krenger W, Blazar BR and Holländer GA: Keratinocyte growth factor (KGF) enhances postnatal T-cell development via enhancements in proliferation and function of thymic epithelial cells. Blood. 109:3803–3811. 2007. View Article : Google Scholar : PubMed/NCBI

85 

Hsu HC, Zhang HG, Li L, Yi N, Yang PA, Wu Q, Zhou J, Sun S, Xu X, Yang X, et al: Age-related thymic involution in C57BL/6J × DBA/2J recombinant-inbred mice maps to mouse chromosomes 9 and 10. Genes Immun. 4:402–410. 2003. View Article : Google Scholar : PubMed/NCBI

86 

Frawley R, White K Jr, Brown R, Musgrove D, Walker N and Germolec D: Gene expression alterations in immune system pathways in the thymus after exposure to immunosuppressive chemicals. Environ Health Perspect. 119:371–376. 2010. View Article : Google Scholar : PubMed/NCBI

87 

Boehm T and Swann JB: Thymus involution and regeneration: Two sides of the same coin? Nat Rev Immunol. 13:831–838. 2013. View Article : Google Scholar : PubMed/NCBI

88 

Bluth MH, Kohlhoff S, Norowitz KB, Silverberg JI, Chice S, Nowakowski M, Durkin HG and Smith-Norowitz TA: Immune responses in autoimmune hepatitis: Effect of prednisone and azathioprine treatment: Case report. Int J Med Sci. 6:177–183. 2009. View Article : Google Scholar : PubMed/NCBI

89 

Marchetti MC, Marco BD, Santini MC, Bartoli A, Delfino DV and Riccardi C: Dexamethasone-induced thymocytes apoptosis requires glucocorticoid receptor nuclear translocation but not mitochondrial membrane potential transition. Toxicol Lett. 139:175–180. 2003. View Article : Google Scholar : PubMed/NCBI

90 

Gould KA, Shull JD and Gorski J: DES action in the thymus: Inhibition of cell proliferation and genetic variation. Mol Cell Endocrinol. 170:31–39. 2000. View Article : Google Scholar : PubMed/NCBI

91 

Fletcher AL, Lowen TE, Sakkal S, Reiseger JJ, Hammett MV, Seach N, Scott HS, Boyd RL and Chidgey AP: Ablation and regeneration of tolerance-inducing medullary thymic epithelial cells after cyclosporine, cyclophosphamide, and dexamethasone treatment. J Immunol. 183:823–831. 2009. View Article : Google Scholar : PubMed/NCBI

92 

Camacho IA, Singh N, Hegde VL, Nagarkatti M and Nagarkatti PS: Treatment of mice with 2,3,7,8-tetrachlorodibenzo-p-dioxin leads to aryl hydrocarbon receptor-dependent nuclear translocation of NF-kappaB and expression of Fas ligand in thymic stromal cells and consequent apoptosis in T cells. J Immunol. 175:90–103. 2005. View Article : Google Scholar : PubMed/NCBI

93 

Dudakov JA, Hanash AM, Jenq RR, Young LF, Ghosh A, Singer NV, West ML, Smith OM, Holland AM, Tsai JJ, et al: Interleukin-22 drives endogenous thymic regeneration in mice. Science. 336:91–95. 2012. View Article : Google Scholar : PubMed/NCBI

94 

Larance M and Lamond AI: Multidimensional proteomics for cell biology. Nat Rev Mol Cell Biol. 16:269–280. 2015. View Article : Google Scholar : PubMed/NCBI

95 

Leung EL, Cao ZW, Jiang ZH, Zhou H and Liu L: Network-based drug discovery by integrating systems biology and computational technologies. Brief Bioinform. 14:491–505. 2013. View Article : Google Scholar : PubMed/NCBI

96 

Turiák L, Misják P, Szabó TG, Aradi B, Pálóczi K, Ozohanics O, Drahos L, Kittel A, Falus A, Buzás EI and Vékey K: Proteomic characterization of thymocyte-derived microvesicles and apoptotic bodies in BALB/c mice. J Proteomics. 74:2025–2033. 2011. View Article : Google Scholar : PubMed/NCBI

97 

Billing AM, Revets D, Hoffmann C, Turner JD, Vernocchi S and Muller CP: Proteomic profiling of rapid non-genomic and concomitant genomic effects of acute restraint stress on rat thymocytes. J Proteomics. 75:2064–2079. 2012. View Article : Google Scholar : PubMed/NCBI

98 

Schulze WX and Usadel B: Quantitation in mass-spectrometry-based proteomics. Annu Rev Plant Biol. 61:491–516. 2010. View Article : Google Scholar : PubMed/NCBI

99 

Matt P, Fu Z, Fu Q and Van Eyk JE: Biomarker discovery: Proteome fractionation and separation in biological samples. Physiol Genomics. 33:12–17. 2008. View Article : Google Scholar : PubMed/NCBI

100 

Sultana R, Di Domenico F, Tseng M, Cai J, Noel T, Chelvarajan RL, Pierce WD, Cini C, Bondada S, St Clair DK and Butterfield DA: Doxorubicin-induced thymus senescence. J Proteome Res. 9:6232–6241. 2010. View Article : Google Scholar : PubMed/NCBI

101 

Ma C, Yue QX, Guan SH, Wu WY, Yang M, Jiang BH, Liu X and Guo DA: Proteomic analysis of possible target-related proteins of cyclophosphamide in mice thymus. Food Chem Toxicol. 47:1841–1847. 2009. View Article : Google Scholar : PubMed/NCBI

102 

Kawakami T, Nagata T, Muraguchi A and Nishimura T: Proteomic approach to apoptotic thymus maturation. J Chromatogr B Analyt Technol Biomed Life Sci. 787:223–229. 2003. View Article : Google Scholar : PubMed/NCBI

103 

Tyanova S, Albrechtsen R, Kronqvist P, Cox J, Mann M and Geiger T: Proteomic maps of breast cancer subtypes. Nat Commun. 7:102592016. View Article : Google Scholar : PubMed/NCBI

104 

Chan PP, Wasinger VC and Leong RW: Current application of proteomics in biomarker discovery for inflammatory bowel disease. World J Gastrointest Pathophysiol. 7:27–37. 2016. View Article : Google Scholar : PubMed/NCBI

105 

Peng F, Zhan X, Li MY, Fang F, Li G, Li C, Zhang PF and Chen Z: Proteomic and bioinformatics analyses of mouse liver microsomes. Int J Proteomics. 2012:8325692012. View Article : Google Scholar : PubMed/NCBI

106 

Goh WW, Lee YH, Chung M and Wong L: How advancement in biological network analysis methods empowers proteomics. Proteomics. 12:550–563. 2012. View Article : Google Scholar : PubMed/NCBI

107 

Miller JF: Immunological function of the thymus. Lancet. 2:748–749. 1961. View Article : Google Scholar : PubMed/NCBI

108 

Burns JC and Franco A: The immunomodulatory effects of intravenous immunoglobulin therapy in Kawasaki disease. Expert Rev Clin Immunol. 11:819–825. 2015. View Article : Google Scholar : PubMed/NCBI

109 

Shankar-Hari M, Spencer J, Sewell WA, Rowan KM and Singer M: Bench-to-bedside review: Immunoglobulin therapy for sepsis - biological plausibility from a critical care perspective. Crit Care. 16:2062012. View Article : Google Scholar : PubMed/NCBI

110 

Gupta M, Noel GJ, Schaefer M, Friedman D, Bussel J and Johann-Liang R: Cytokine modulation with immune gamma-globulin in peripheral blood of normal children and its implications in Kawasaki disease treatment. J Clin Immunol. 21:193–199. 2001. View Article : Google Scholar : PubMed/NCBI

111 

Chaudhry MS, Velardi E, Malard F and van den Brink MR: Immune reconstitution after allogeneic hematopoietic stem cell transplantation: Time to T Up the thymus. J Immunol. 198:40–46. 2017. View Article : Google Scholar : PubMed/NCBI

112 

Zhu YX, Kortuem KM and Stewart AK: Molecular mechanism of action of immune-modulatory drugs thalidomide, lenalidomide and pomalidomide in multiple myeloma. Leuk Lymphoma. 54:683–687. 2013. View Article : Google Scholar : PubMed/NCBI

113 

Ekins S, Gupta RR, Gifford E, Bunin BA and Waller CL: Chemical space: Missing pieces in cheminformatics. Pharm Res. 27:2035–2039. 2010. View Article : Google Scholar : PubMed/NCBI

114 

Dobson CM: Chemical space and biology. Nature. 432:824–828. 2004. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yan F, Mo X, Liu J, Ye S, Zeng X and Chen D: Thymic function in the regulation of T cells, and molecular mechanisms underlying the modulation of cytokines and stress signaling (Review). Mol Med Rep 16: 7175-7184, 2017.
APA
Yan, F., Mo, X., Liu, J., Ye, S., Zeng, X., & Chen, D. (2017). Thymic function in the regulation of T cells, and molecular mechanisms underlying the modulation of cytokines and stress signaling (Review). Molecular Medicine Reports, 16, 7175-7184. https://doi.org/10.3892/mmr.2017.7525
MLA
Yan, F., Mo, X., Liu, J., Ye, S., Zeng, X., Chen, D."Thymic function in the regulation of T cells, and molecular mechanisms underlying the modulation of cytokines and stress signaling (Review)". Molecular Medicine Reports 16.5 (2017): 7175-7184.
Chicago
Yan, F., Mo, X., Liu, J., Ye, S., Zeng, X., Chen, D."Thymic function in the regulation of T cells, and molecular mechanisms underlying the modulation of cytokines and stress signaling (Review)". Molecular Medicine Reports 16, no. 5 (2017): 7175-7184. https://doi.org/10.3892/mmr.2017.7525
Copy and paste a formatted citation
x
Spandidos Publications style
Yan F, Mo X, Liu J, Ye S, Zeng X and Chen D: Thymic function in the regulation of T cells, and molecular mechanisms underlying the modulation of cytokines and stress signaling (Review). Mol Med Rep 16: 7175-7184, 2017.
APA
Yan, F., Mo, X., Liu, J., Ye, S., Zeng, X., & Chen, D. (2017). Thymic function in the regulation of T cells, and molecular mechanisms underlying the modulation of cytokines and stress signaling (Review). Molecular Medicine Reports, 16, 7175-7184. https://doi.org/10.3892/mmr.2017.7525
MLA
Yan, F., Mo, X., Liu, J., Ye, S., Zeng, X., Chen, D."Thymic function in the regulation of T cells, and molecular mechanisms underlying the modulation of cytokines and stress signaling (Review)". Molecular Medicine Reports 16.5 (2017): 7175-7184.
Chicago
Yan, F., Mo, X., Liu, J., Ye, S., Zeng, X., Chen, D."Thymic function in the regulation of T cells, and molecular mechanisms underlying the modulation of cytokines and stress signaling (Review)". Molecular Medicine Reports 16, no. 5 (2017): 7175-7184. https://doi.org/10.3892/mmr.2017.7525
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team