Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
December-2017 Volume 16 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2017 Volume 16 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Complex role of connexin 43 in astrocytic tumors and possible promotion of glioma‑associated epileptic discharge (Review)

  • Authors:
    • Hui Dong
    • Xing‑Wang Zhou
    • Xiang Wang
    • Yuan Yang
    • Jie‑Wen Luo
    • Yan‑Hui Liu
    • Qing Mao
  • View Affiliations / Copyright

    Affiliations: Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
  • Pages: 7890-7900
    |
    Published online on: September 26, 2017
       https://doi.org/10.3892/mmr.2017.7618
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Connexin (Cx)43 is a multifunction protein which forms gap junction channels and hemi‑channels. It also contains abundant binding domains which possess the ability to interact with certain Cx43‑associated proteins and therefore serve a fundamental role in various physiological and pathological functions. However, the understanding of the association between cancer and Cx43 along with Cx43‑gap junctions (GJ) remains unclear. All available data illustrate that Cx43 and its associated GJ serve important functions in cancers. The expression levels of Cx43 demonstrate a downward trend and an increase in the levels of malignancy, particularly in astrocytomas. The GJ intercellular communication activity in glioma cells can be adjusted via Cx43 phosphorylation and through the combination of Cx43 and its associated protein. Available evidence reveals Cx43 as a tumor‑inhibiting factor that suppresses glioma growth and proliferation. However, its mechanism is also regarded as complicated and ambiguous. Furthermore, it is apparent that Cx43‑GJ and the carboxyl tail may contribute to glioma growth and proliferation too. However, this valuable role could be weakened by its effects on migration and invasiveness. The detailed mechanism remains unclear and full of controversies. Cx43 can enhance the motor ability and invasiveness of astrocytic glioma cells. It is also able to influence glioma cells to detach from the tumor core to the peritumoral neocortex. This peritumoral region has recently been regarded as the basic focus of glioma‑associated seizure. Thus, Cx43 may take part in the onset and development of glioma‑associated epileptic discharge. In addition, change and increase of Cx43 expression in GJs has been observed in seizure perilesional tissue, which is associated with brain tumors. Cx43 or GJ/hemi‑channels exert enduring effects in the promotion of glioma‑associated epileptic release through direct mass effects and change of the tumor microenvironment. However, there are still a number of issues concerning this aspect that require further exploration. Cx43, as a potential treatment target against this incurable disease and its common symptom of epilepsy, requires further investigation.
View Figures

Figure 1

View References

1 

Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW and Kleihues P: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114:97–109. 2007. View Article : Google Scholar : PubMed/NCBI

2 

Shen F, Wu CX, Yao Y, Peng P, Qin ZY, Wang Y, Zheng Y and Zhou LF: Transition over 35 years in the incidence rates of primary central nervous system tumors in Shanghai, China and histological subtyping based on a single center experience spanning 60 years. Asian Pac J Cancer Prev. 14:7385–7393. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Jiang T, Mao Y, Ma W, Mao Q, You Y, Yang X, Jiang C, Kang C, Li X, Chen L, et al: CGCG clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett. 375:263–273. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, Morozova O, Newton Y, Radenbaugh A, Pagnotta SM, et al: Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell. 164:550–563. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Foote MB, Papadopoulos N and Diaz LA Jr: Genetic Classification of Gliomas: Refining Histopathology. Cancer Cell. 28:9–11. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Almad AA, Doreswamy A, Gross SK, Richard JP, Huo Y, Haughey N and Maragakis NJ: Connexin 43 in astrocytes contributes to motor neuron toxicity in amyotrophic lateral sclerosis. GLIA. 64:1154–1169. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Sharrow AC, Li Y, Micsenyi A, Griswold RD, Wells A, Monga SS and Blair HC: Modulation of osteoblast gap junction connectivity by serum, TNFalpha, and TRAIL. Exp Cell Res. 314:297–308. 2008. View Article : Google Scholar : PubMed/NCBI

8 

Giepmans BN: Gap junctions and connexin-interacting proteins. Cardiovasc Res. 62:233–245. 2004. View Article : Google Scholar : PubMed/NCBI

9 

Freitas-Andrade M and Naus CC: Astrocytes in neuroprotection and neurodegeneration: The role of connexin43 and pannexin1. Neuroscience. 323:207–221. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Garbelli R, Frassoni C, Condorelli DF, Salinaro A Trovato, Musso N, Medici V, Tassi L, Bentivoglio M and Spreafico R: Expression of connexin 43 in the human epileptic and drug-resistant cerebral cortex. Neurology. 76:895–902. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Almad AA, Doreswamy A, Gross SK, Richard JP, Huo Y, Haughey N and Maragakis NJ: Connexin 43 in Astrocytes Contributes to Motor Neuron Toxicity in Amyotrophic Lateral Sclerosis. Glia. 64:1154–1169. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Tabernero A, Gangoso E, Jaraíz-Rodríguez M and Medina JM: The role of connexin43-Src interaction in astrocytomas: A molecular puzzle. Neuroscience. 323:183–194. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Giaume C, Fromaget C, Aoumari A, Cordier J, Glowinski J and Gros D: Gap junctions in cultured astrocytes: Single-channel currents and characterization of channel-forming protein. Neuron. 6:133–143. 1991. View Article : Google Scholar : PubMed/NCBI

14 

Giaume C, Koulakoff A, Roux L, Holcman D and Rouach N: Astroglial networks: A step further in neuroglial and gliovascular interactions. Nat Rev Neurosci. 11:87–99. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Giaume C, Leybaert L, Naus CC and Sáez JC: Connexin and pannexin hemichannels in brain glial cells: Properties, pharmacology, and roles. Front Pharmacol. 4:882013. View Article : Google Scholar : PubMed/NCBI

16 

Bennett MV, Contreras JE, Bukauskas FF and Sáez JC: New roles for astrocytes: Gap junction hemichannels have something to communicate. Trends Neurosci. 26:610–617. 2003. View Article : Google Scholar : PubMed/NCBI

17 

Nagy JI and Rash JE: Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res Brain Res Rev. 32:29–44. 2000. View Article : Google Scholar : PubMed/NCBI

18 

Scemes E: Components of astrocytic intercellular calcium signaling. Mol Neurobiol. 22:167–179. 2000. View Article : Google Scholar : PubMed/NCBI

19 

van den pol AN, Finkberiner SM and Cornell-Bell AH: Calcium excitability and oscillations in suprachiasmatic nucleus neurons and glia in vitro. J Neurosci. 12:2648–2664. 1992.PubMed/NCBI

20 

Mehta PP, Yamamoto M and Rose B: Transcription of the gene for the gap junctional protein connexin43 and expression of functional cell-to-cell channels are regulated by c AMP. Mol Biol Cell. 3:839–850. 1992. View Article : Google Scholar : PubMed/NCBI

21 

Giaume C, Tabernero A and Medina JM: Metabolic trafficking through astrocytic gap junctions. Glia. 21:114–123. 1997. View Article : Google Scholar : PubMed/NCBI

22 

Nedergaard M: Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science. 263:1768–1771. 1994. View Article : Google Scholar : PubMed/NCBI

23 

Zhang W, Nwagwu C, Le DM, Yong VW, Song H and Couldwell WT: Increased invasive capacity of connexin43-overexpressing malignant glioma cells. J Neurosurg. 99:1039–1046. 2003. View Article : Google Scholar : PubMed/NCBI

24 

Bates DC, Sin WC, Aftab Q and Naus CC: Connexin43 Enhances Glioma Invasion by a Mechanism Involving the Carboxy Terminus. GLIA. 55:1554–1564. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Sin WC, Crespin S and Mesnil M: Opposing roles of connexin43 in glioma progression. Biochim Biophys Acta. 1818:2058–2067. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Sin WC, Aftab Q, Bechberger JF, Leung JH, Chen H and Naus CC: Astrocytes promote glioma invasion via the gap junction protein connexin43. Oncogene. 35:1504–1516. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Ye XY, Jiang QH, Hong T, Zhang ZY, Yang RJ, Huang JQ, Hu K and Peng YP: Altered expression of connexin43 and phosphorylation connexin43 in glioma tumors. Int J Clin Exp Pathol. 8:4296–4306. 2015.PubMed/NCBI

28 

Crespin S, Fromont G, Wager M, Levillain P, Cronier L, Monvoisin A, Defamie N and Mesnil M: Expression of a gap junction protein, connexin43, in a large panel of human gliomas: New insights. Cancer Med. 5:1742–1752. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Kolar K, Freitas-Andrade M, Bechberger JF, Krishnan H, Goldberg GS, Naus CC and Sin WC: Podoplanin: A marker for reactive gliosis in gliomas and brain injury. J Neuropathol Exp Neurol. 74:64–74. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Aronica E, Gorter JA, Jansen GH, Leenstra S, Yankaya B and Troost D: Expression of connexin 43 and connexin 32 gap-junction proteins in epilepsy-associated brain tumors and in the perilesional epileptic cortex. Acta Neuropathol. 101:449–459. 2001.PubMed/NCBI

31 

Pallud J, Le van Quyen M, Bielle F, Pellegrino C, Varlet P, Cresto N, Baulac M, Duyckaerts C, Kourdougli N, Chazal G, et al: Cortical GABAergic excitation contributes to epileptic activities around human glioma. Sci Transl Med. 6:244ra892014. View Article : Google Scholar : PubMed/NCBI

32 

Hitomi M, Deleyrolle LP, Mulkearns-Hubert EE, Jarrar A, Li M, Sinyuk M, Otvos B, Brunet S, Flavahan WA, Hubert CG, et al: Differential connexin function enhances self-renewal in glioblastoma. Cell Rep. 11:1031–1042. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Yu SC, Xiao HL, Jiang XF, Wang QL, Li Y, Yang XJ, Ping YF, Duan JJ, Jiang JY, Ye XZ, et al: Connexin 43 reverses malignant phenotypes of glioma stem cells by modulating E-cadherin. Stem Cell. 30:108–120. 2012. View Article : Google Scholar

34 

Moinfar Z, Dambach H and Faustmann PM: Influence of drugs on gap junctions in glioma cell lines and primary astrocytes in vitro. Front Physiol. 5:1862014. View Article : Google Scholar : PubMed/NCBI

35 

Naus CC and Laird DW: Implications and challenges of connexin connections to cancer. Nat Rev Cancer. 10:435–441. 2010. View Article : Google Scholar : PubMed/NCBI

36 

Sánchez-Alvarez R, Tabernero A, Sánchez-Abarca LI, Orfao A, Giaume C and Medina JM: Proliferation of C6 glioma cells is blunted by the increase in gap junction communication caused by tolbutamide. FEBS Lett. 509:1–206. 2001. View Article : Google Scholar : PubMed/NCBI

37 

Sánchez-Alvarez R, Paíno T, Herrero-González S, Medina JM and Tabernero A: Tolbutamide reduces glioma cell proliferation by increasing connexin43, which promotes the up-regulation of p21 and p27 and subsequent changes in retinoblastoma phosphorylation. Glia. 54:125–134. 2006. View Article : Google Scholar : PubMed/NCBI

38 

Mostafavi H, Khaksarian M, Joghataei MT, Soleimani M, Hassanzadeh G, Eftekhari S, Soleimani M, Mousavizadeh K, Estiri H, Ahmadi S and Hadjighassem MR: Selective β2 adrenergic agonist increases Cx43 and miR-451 expression via cAMP-Epac. Mol Med Rep. 9:2405–2410. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Moinfar Z, Dambach H, Schoenebeck B, Förster E, Prochnow N and Faustmann PM: Estradiol receptors regulate differential connexin 43 expression in F98 and C6 glioma cell lines. PLoS One. 11:e01500072016. View Article : Google Scholar : PubMed/NCBI

40 

Ozog MA, Bechberger JF and Naus CC: Ciliary neurotrophic factor (CNTF) in combination with its soluble receptor (CNTFRalpha) increases connexin43 expression and suppresses growth of C6 glioma cells. Cancer Res. 62:3544–3548. 2002.PubMed/NCBI

41 

Ghosh S, Kumar A, Tripathi RP and Chandna S: Connexin-43 regulates p38-mediated cell migration and invasion induced selectively in tumour cells by low doses of γ-radiation in an ERK-1/2-independent manner. Carcinogenesis. 35:383–395. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Gangoso E, Thirant C, Chneiweiss H, Medina JM and Tabernero A: A cell-penetrating peptide based on the interaction between c-Src and connexin43 reverses glioma stem cell phenotype. Cell Death Dis. 5:e10232014. View Article : Google Scholar : PubMed/NCBI

43 

Herrero-González S, Valle-Casuso JC, Sánchez-Alvarez R, Giaume C, Medina JM and Tabernero A: Connexin43 is involved in the effect of endothelin-1 on astrocyte proliferation and glucose uptake. Glia. 57:222–233. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Li G, Liu X, Liu Z and Su Z: Interactions of connexin 43 and aquaporin-4 in the formation of glioma-induced brain edema. Mol Med Rep. 11:1188–1194. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Kolar K, Freitas-Andrade M, Bechberger JF, Krishnan H, Goldberg GS, Naus CC and Sin WC: Podoplanin: A marker for reactive gliosis in gliomas and brain injury. J Neuropathol Exp Neurol. 74:64–74. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Zhang W, DeMattia JA, Song H and Couldwell WT: Communication between malignant glioma cells and vascular endothelial cells through gap junctions. J Neurosurg. 98:846–853. 2003. View Article : Google Scholar : PubMed/NCBI

47 

Huang R, Lin Y, Wang CC, Gano J, Lin B, Shi Q, Boynton A, Burke J and Huang RP: Connexin 43 suppresses human glioblastoma cell growth by down-regulation of monocyte chemotactic protein 1, as discovered using protein array technology. Cancer Res. 62:2806–2812. 2002.PubMed/NCBI

48 

Niu J, Li T, Yi C, Huang N, Koulakoff A, Weng C, Li C, Zhao CJ, Giaume C and Xiao L: Connexin-based channels contribute to metabolic pathways in the oligodendroglial lineage. J Cell Sci. 129:1902–1914. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Zhang YW, Nakayama K, Nakayama K and Morita I: A novel route for connexin 43 to inhibit cell proliferation: Negative regulation of S-phase kinase-associated protein (Skp 2). Cancer Res. 63:1623–1630. 2003.PubMed/NCBI

50 

Kamei J, Toyofuku T and Hori M: Negative regulation of p21 by beta-catenin/TCF signaling: A novel mechanism by which cell adhesion molecules regulate cell proliferation. Biochem Biophys Res Commun. 312:380–387. 2003. View Article : Google Scholar : PubMed/NCBI

51 

Tabernero A, Sánchez-Alvarez R and Medina JM: Increased levels of cyclins D1 and D3 after inhibition of gap junctional communication in astrocytes. J Neurochem. 96:973–982. 2006. View Article : Google Scholar : PubMed/NCBI

52 

Geng Y, Eaton EN, Picón M, Roberts JM, Lundberg AS, Gifford A, Sardet C and Weinberg RA: Regulation of cyclin E transcription by E2Fs and retinoblastoma protein. Oncogene. 12:1173–1180. 1996.PubMed/NCBI

53 

Sin WC, Bechberger JF, Rushlow WJ and Naus CC: Dose-dependent differential upregulation of CCN1/Cyr61 and CCN3/NOV by the gap junction protein connexin43 in glioma cells. J Cell Biochem. 103:1772–1782. 2008. View Article : Google Scholar : PubMed/NCBI

54 

Fu CT, Bechberger JF, Ozog MA, Perbal B and Naus CC: CCN3 (NOV) interacts with connexin43 in C6 glioma cells: Possible mechanism of connexin-mediated growth suppression. J Biol Chem. 279:36943–36950. 2004. View Article : Google Scholar : PubMed/NCBI

55 

Bradshaw SL, Naus CC, Zhu D, Kidder GM, D'Ercole AJ and Han VK: Alterations in the synthesis of insulin-like growth factor binding proteins and insulin-like growth factors in rat C6 glioma cells transfected with a gap junction connexin43 cDNA. Regul Pept. 48:99–112. 1993. View Article : Google Scholar : PubMed/NCBI

56 

Bradshaw SL, Naus CC, Zhu D, Kidder GM and Han VK: Insulin-like growth factor binding protein-4 gene expression is induced by transfection of gap junction connexin43 gene in a C6 glioma cell line. Growth Regul. 3:26–29. 1993.PubMed/NCBI

57 

Goldberg GS, Bechberger JF, Tajima Y, Merritt M, Omori Y, Gawinowicz MA, Narayanan R, Tan Y, Sanai Y, Yamasaki H, et al: Connexin43 suppresses MFG-E8 while inducing contact growth inhibition of glioma cells. Cancer Res. 60:6018–6026. 2000.PubMed/NCBI

58 

Xia ZB, Pu PY, Huang Q, You YP, Wang GX and Wang CY: Preliminary study on the mechanism of connexin 43 gene transfection in the control of glioma cell proliferation. Zhonghua Zhong Liu Za Zhi. 25:4–8. 2003.(In Chinese). PubMed/NCBI

59 

González-Sánchez A, Jaraíz-Rodríguez M, Domínguez-Prieto M, Herrero-González S, Medina JM and Tabernero A: Connexin43 recruits PTEN and Csk to inhibit c-Src activity in glioma cells and astrocytes. Oncotarget. 7:49819–49833. 2016. View Article : Google Scholar : PubMed/NCBI

60 

Herrero-González S, Gangoso E, Giaume C, Naus CC, Medina JM and Tabernero A: Connexin43 inhibits the oncogenic activity of c-Src in C6 glioma cells. Oncogene. 29:5712–5723. 2010. View Article : Google Scholar : PubMed/NCBI

61 

Suzhi Z, Liang T, Yuexia P, Lucy L, Xiaoting H, Yuan Z and Qin W: Gap junctions enhance the antiproliferative effect of microRNA-124-3p in glioblastoma cells. J Cell Physiol. 230:2476–2488. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Dang X, Doble BW and Kardami E: The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth. Mol Cell Biochem. 242:1–2. 2003. View Article : Google Scholar

63 

Mennecier G, Derangeon M, Coronas V, Hervé JC and Mesnil M: Aberrant expression and localization of connexin43 and connexin30 in a rat glioma cell line. Mol Carcinog. 47:391–401. 2008. View Article : Google Scholar : PubMed/NCBI

64 

Jin Z, Xu S, Yu H, Yang B, Zhao H and Zhao G: miR-125b inhibits connexin43 and Promotes glioma growth. Cell Mol Neurobiol. 33:1143–1148. 2013. View Article : Google Scholar : PubMed/NCBI

65 

Hao J, Zhang C, Zhang A, Wang K, Jia Z, Wang G, Han L, Kang C and Pu P: miR-221/222 is the regulator of Cx43 expression in human glioblastoma cells. Oncol Rep. 27:1–1510. 2012.

66 

Robe PA, Rogister B, Merville MP and Bours V: Growth regulation of astrocytes and C6 cells by TGFbeta1: Correlation with gap junctions. NeuroReport. 11:2837–2841. 2000. View Article : Google Scholar : PubMed/NCBI

67 

Zhang B, Feng X, Wang J, Xu X, Liu H and Lin N: Adenovirus-mediated delivery of bFGF small interfering RNA increases levels of connexin 43 in the glioma cell line, U251. J Exp Clin Cancer Res. 29:32010. View Article : Google Scholar : PubMed/NCBI

68 

Zhang W, Nwagwu C, Le DM, Yong VW, Song H and Couldwell WT: Increased invasive capacity of connexin43-overexpressing malignant glioma cells. J Neurosurg. 99:1039–1046. 2003. View Article : Google Scholar : PubMed/NCBI

69 

Strale PO, Clarhaut J, Lamiche C, Cronier L, Mesnil M and Defamie N: Down-regulation of Connexin43 expression reveals the involvement of caveolin-1 containing lipid rafts in human U251 glioblastoma cell invasion. Mol Carcinog. 51:845–860. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Qin LJ, Jia YS, Zhang YB and Wang YH: Cyclooxygenase inhibitor induces the upregulation of connexin-43 expression in C6 glioma cells. Biomed Rep. 4:444–448. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Aftab Q, Sin WC and Naus C: Reduction in gap junction intercellular communication promotes glioma migration. Oncotarget. 6:11447–11464. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Hong X, Sin WC, Harris AL and Naus CC: Gap junctions modulate glioma invasion by direct transfer of microRNA. Oncotarget. 6:15566–15577. 2015. View Article : Google Scholar : PubMed/NCBI

73 

McDonough WS, Johansson A, Joffee H, Giese A and Berens ME: Gap junction intercellular communication in gliomas is inversely related to cell motility. Int J Dev Neurosci. 17:601–611. 1999. View Article : Google Scholar : PubMed/NCBI

74 

Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J, Weil S, Horstmann H, Wiestler B, Syed M, et al: Brain tumour cells interconnect to a functional and resistant network. Nature. 528:93–98. 2015.PubMed/NCBI

75 

Reichert M, Müller T and Hunziker W: The PDZ domains of zonula occludens-1 induce an epithelial to mesenchymal transition of Madin-Darby canine kidney I cells. Evidence for a role of beta-catenin/Tcf/Lef signaling. J Biol Chem. 275:9492–9500. 2000. View Article : Google Scholar : PubMed/NCBI

76 

Lin JH, Takano T, Cotrina ML, Arcuino G, Kang J, Liu S, Gao Q, Jiang L, Li F, Lichtenberg-Frate H, et al: Connexin 43 enhances the adhesivity and mediates the invasion of malignant glioma cells. J Neurosci. 22:4302–4311. 2002.PubMed/NCBI

77 

Reszec J, Szkudlarek M, Hermanowicz A, Bernaczyk PS, Mariak Z and Chyczewski L: N-cadherin, beta-catenin and connexin 43 expression in astrocytic tumours of various grades. Histol Histopathol. 30:361–371. 2015.PubMed/NCBI

78 

Kirschstein T and Köhling R: Animal models of tumour-associated epilepsy. J Neurosci Methods. 260:109–117. 2016. View Article : Google Scholar : PubMed/NCBI

79 

Patel A, Sabbineni H, Clarke A and Somanath PR: Novel roles of Src in cancer cell epithelial-to-mesenchymal transition, vascular permeability, microinvasion and metastasis. Life Sci. 157:52–61. 2016. View Article : Google Scholar : PubMed/NCBI

80 

Elisevich K, Rempel SA, Smith BJ and Edvardsen K: Hippocampal connexin 43 expression in human complex partial seizure disorder. Exp Neurol. 145:154–164. 1997. View Article : Google Scholar : PubMed/NCBI

81 

Senner V, Köhling R, Püttmann-Cyrus S, Straub H, Paulus W and Speckmann EJ: A new neurophysiological/neuropathological ex vivo model localizes the origin of glioma-associated epileptogenesis in the invasion area. Acta Neuropathol. 107:1–7. 2004. View Article : Google Scholar : PubMed/NCBI

82 

Das A, GC IV Wallace, Holmes C, McDowell ML, Smith JA, Marshall JD, Bonilha L, Edwards JC, Glazier SS, Ray SK, et al: Hippocampal tissue of patients with refractory temporal lobe epilepsy is associated with astrocyte activation, inflammation, and altered expression of channels and receptors. Neuroscience. 220:237–246. 2012. View Article : Google Scholar : PubMed/NCBI

83 

Fonseca CG, Green CR and Nicholson LF: Upregulation in astrocytic connexin 43 gap junction levels may exacerbate generalized seizures in mesial temporal lobe epilepsy. Brain Res. 929:105–116. 2002. View Article : Google Scholar : PubMed/NCBI

84 

Su M and Tong XX: Astrocytic gap junction in the hippocampus of rats with lithium pilocarpine-induced epilepsy. Nan Fang Yi Ke Da Xue Xue Bao. 30:2738–2741. 2010.(In Chinese). PubMed/NCBI

85 

Takahashi DK, Vargas JR and Wilcox KS: Increased coupling and altered glutamate transport currents in astrocytes following kainic-acid-induced status epilepticus. Neurobiol Dis. 40:573–585. 2010. View Article : Google Scholar : PubMed/NCBI

86 

Oliveira R, Christov C, Guillamo JS, de Boüard S, Palfi S, Venance L, Tardy M and Peschanski M: Contribution of gap junctional communication between tumor cells and astroglia to the invasion of the brain parenchyma by human glioblastomas. BMC Cell Biol. 6:72005. View Article : Google Scholar : PubMed/NCBI

87 

Liubinas SV, O'Brien TJ, Moffat BM, Drummond KJ, Morokoff AP and Kaye AH: Tumour associated epilepsy and glutamate excitotoxicity in patients with gliomas. J Clin Neurosci. 21:899–908. 2014. View Article : Google Scholar : PubMed/NCBI

88 

Armstrong TS, Grant R, Gilbert MR, Lee JW and Norden AD: Epilepsy in glioma patients: Mechanisms, management, and impact of anticonvulsant therapy. Neuro Oncol. 18:779–789. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Elisevich K, Rempel SA, Smith B and Allar N: Connexin 43 mRNA expression in two experimental models of epilepsy. Mol Chem Neuropathol. 32:75–88. 1997. View Article : Google Scholar : PubMed/NCBI

90 

Köhling R, Senner V, Paulus W and Speckmann EJ: Epileptiform activity preferentially arises outside tumor invasion zone in glioma xenotransplants. Neurobiol Dis. 22:64–75. 2006. View Article : Google Scholar : PubMed/NCBI

91 

Buckingham SC, Campbell SL, Haas BR, Montana V, Robel S, Ogunrinu T and Sontheimer H: Glutamate release by primary brain tumors induces epileptic activity. Nat Med. 17:1269–1274. 2011. View Article : Google Scholar : PubMed/NCBI

92 

Kim LC, Song L and Haura EB: Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol. 6:587–595. 2009. View Article : Google Scholar : PubMed/NCBI

93 

Mylvaganam S, Ramani M, Krawczyk M and Carlen PL: Roles of gap junctions, connexins, and pannexins in epilepsy. Front Physiol. 5:1722014. View Article : Google Scholar : PubMed/NCBI

94 

Kékesi O, Ioja E, Szabó Z, Kardos J and Héja L: Recurrent seizure-like events are associated with coupled astroglial synchronization. Front Cell Neurosci. 9:2152015.PubMed/NCBI

95 

Jiang S, Wang YQ, Xu CF, Li YN, Guo R and Li L: Involvement of connexin43 in the infrasonic noise-induced glutamate release by cultured astrocytes. Neurochem Res. 39:833–842. 2014. View Article : Google Scholar : PubMed/NCBI

96 

Wei H, Deng F, Chen Y, Qin Y, Hao Y and Guo X: Ultrafine carbon black induces glutamate and ATP release by activating connexin and pannexin hemichannels in cultured astrocytes. Toxicology. 323:32–41. 2014. View Article : Google Scholar : PubMed/NCBI

97 

Chever O, Pannasch U, Ezan P and Rouach N: Astroglial connexin 43 sustains glutamatergic synaptic efficacy. Philos Trans R Soc Lond B Biol Sci. 369:201305962014. View Article : Google Scholar : PubMed/NCBI

98 

Unger T, Bette S, Zhang J, Theis M and Engele J: Connexin-deficiency affects expression levels of glial glutamate transporters within the cerebrum. Neurosci Lett. 506:12–16. 2012. View Article : Google Scholar : PubMed/NCBI

99 

Figiel M, Allritz C, Lehmann C and Engele J: Gap junctional control of glial glutamate transporter expression. Mol Cell Neurosci. 35:130–137. 2007. View Article : Google Scholar : PubMed/NCBI

100 

Shen N, Mo LQ, Hu F, Chen PX, Guo RX and Feng JQ: A novel role of spinal astrocytic connexin 43: Mediating morphine antinociceptive tolerance by activation of NMDA receptors and inhibition of glutamate transporter-1 in rats. CNS Neurosci Ther. 20:728–736. 2014. View Article : Google Scholar : PubMed/NCBI

101 

Huberfeld G and Vecht CJ: Seizures and gliomas-towards a single therapeutic approach. Nat Rev Neurol. 12:204–216. 2016. View Article : Google Scholar : PubMed/NCBI

102 

Robel S and Sontheimer H: Glia as drivers of abnormal neuronal activity. Nat Neurosci. 19:28–33. 2016. View Article : Google Scholar : PubMed/NCBI

103 

Abakumova T, Abakumov M, Shein S, Chelushkin P, Bychkov D, Mukhin V, Yusubalieva G, Grinenko N, Kabanov A, Nukolova N and Chekhonin V: Connexin 43-targeted T1 contrast agent for MRI, diagnosis of glioma. Contrast Media Mol Imaging. 11:15–23. 2016. View Article : Google Scholar : PubMed/NCBI

104 

Iusubalieva GM, Zorkina IaA, Baklaushev VP, Gurina OI, Goriaĭnov SA, Aleksandrova EV, Zhukov VIu, Savel'eva TA, Potapov AA and Chekhonin VP: Connexin-43 antibodies In Intraoperative diagnosis of experimental poorly differentiated gliomas. Zh Vopr Neirokhir Im N N Burdenko. 78:3–13. 2014.(In Russian). PubMed/NCBI

105 

Gielen PR, Aftab Q, Ma N, Chen VC, Hong X, Lozinsky S, Naus CC and Sin WC: Connexin43 confers Temozolomide resistance in human glioma cells by modulating the mitochondrial apoptosis pathway. Neuropharmacology. 75:539–548. 2013. View Article : Google Scholar : PubMed/NCBI

106 

Murphy SF, Varghese RT, Lamouille S, Guo S, Pridham KJ, Kanabur P, Osimani AM, Sharma S, Jourdan J, Rodgers CM, et al: Connexin 43 inhibition sensitizes chemoresistant glioblastoma cells to temozolomide. Cancer Res. 76:139–149. 2016. View Article : Google Scholar : PubMed/NCBI

107 

Munoz JL, Rodriguez-Cruz V, Greco SJ, Ramkissoon SH, Ligon KL and Rameshwar P: Temozolomide resistance in glioblastoma cells occurs partly through epidermal growth factor receptor-mediated induction of connexin 43. Cell Death Dis. 5:e11452014. View Article : Google Scholar : PubMed/NCBI

108 

Yusubalieva GM, Baklaushev VP, Gurina OI, Zorkina YA, Gubskii IL, Kobyakov GL, Golanov AV, Goryainov SA, Gorlachev GE, Konovalov AN, et al: Treatment of poorly differentiated glioma using a combination of monoclonal antibodies to extracellular connexin-43 fragment, temozolomide, and radiotherapy. Bull Exp Biol Med. 157:510–515. 2014. View Article : Google Scholar : PubMed/NCBI

109 

Okolie O, Bago JR, Schmid RS, Irvin DM, Bash RE, Miller CR and Hingtgen SD: Reactive astrocytes potentiate tumor aggressiveness in a murine glioma resection and recurrence model. Neuro Oncol. 18:1622–1633. 2016. View Article : Google Scholar : PubMed/NCBI

110 

Theodoric N, Bechberger JF, Naus CC and Sin WC: Role of gap junction protein Connexin43 in astrogliosis induced by brain injury. PLoS One. 7:e473112012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Dong H, Zhou XW, Wang X, Yang Y, Luo JW, Liu YH and Mao Q: Complex role of connexin 43 in astrocytic tumors and possible promotion of glioma‑associated epileptic discharge (Review). Mol Med Rep 16: 7890-7900, 2017.
APA
Dong, H., Zhou, X., Wang, X., Yang, Y., Luo, J., Liu, Y., & Mao, Q. (2017). Complex role of connexin 43 in astrocytic tumors and possible promotion of glioma‑associated epileptic discharge (Review). Molecular Medicine Reports, 16, 7890-7900. https://doi.org/10.3892/mmr.2017.7618
MLA
Dong, H., Zhou, X., Wang, X., Yang, Y., Luo, J., Liu, Y., Mao, Q."Complex role of connexin 43 in astrocytic tumors and possible promotion of glioma‑associated epileptic discharge (Review)". Molecular Medicine Reports 16.6 (2017): 7890-7900.
Chicago
Dong, H., Zhou, X., Wang, X., Yang, Y., Luo, J., Liu, Y., Mao, Q."Complex role of connexin 43 in astrocytic tumors and possible promotion of glioma‑associated epileptic discharge (Review)". Molecular Medicine Reports 16, no. 6 (2017): 7890-7900. https://doi.org/10.3892/mmr.2017.7618
Copy and paste a formatted citation
x
Spandidos Publications style
Dong H, Zhou XW, Wang X, Yang Y, Luo JW, Liu YH and Mao Q: Complex role of connexin 43 in astrocytic tumors and possible promotion of glioma‑associated epileptic discharge (Review). Mol Med Rep 16: 7890-7900, 2017.
APA
Dong, H., Zhou, X., Wang, X., Yang, Y., Luo, J., Liu, Y., & Mao, Q. (2017). Complex role of connexin 43 in astrocytic tumors and possible promotion of glioma‑associated epileptic discharge (Review). Molecular Medicine Reports, 16, 7890-7900. https://doi.org/10.3892/mmr.2017.7618
MLA
Dong, H., Zhou, X., Wang, X., Yang, Y., Luo, J., Liu, Y., Mao, Q."Complex role of connexin 43 in astrocytic tumors and possible promotion of glioma‑associated epileptic discharge (Review)". Molecular Medicine Reports 16.6 (2017): 7890-7900.
Chicago
Dong, H., Zhou, X., Wang, X., Yang, Y., Luo, J., Liu, Y., Mao, Q."Complex role of connexin 43 in astrocytic tumors and possible promotion of glioma‑associated epileptic discharge (Review)". Molecular Medicine Reports 16, no. 6 (2017): 7890-7900. https://doi.org/10.3892/mmr.2017.7618
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team