|
1
|
Louis DN, Ohgaki H, Wiestler OD, Cavenee
WK, Burger PC, Jouvet A, Scheithauer BW and Kleihues P: The 2007
WHO classification of tumours of the central nervous system. Acta
Neuropathol. 114:97–109. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Shen F, Wu CX, Yao Y, Peng P, Qin ZY, Wang
Y, Zheng Y and Zhou LF: Transition over 35 years in the incidence
rates of primary central nervous system tumors in Shanghai, China
and histological subtyping based on a single center experience
spanning 60 years. Asian Pac J Cancer Prev. 14:7385–7393. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Jiang T, Mao Y, Ma W, Mao Q, You Y, Yang
X, Jiang C, Kang C, Li X, Chen L, et al: CGCG clinical practice
guidelines for the management of adult diffuse gliomas. Cancer
Lett. 375:263–273. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ceccarelli M, Barthel FP, Malta TM,
Sabedot TS, Salama SR, Murray BA, Morozova O, Newton Y, Radenbaugh
A, Pagnotta SM, et al: Molecular profiling reveals biologically
discrete subsets and pathways of progression in diffuse glioma.
Cell. 164:550–563. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Foote MB, Papadopoulos N and Diaz LA Jr:
Genetic Classification of Gliomas: Refining Histopathology. Cancer
Cell. 28:9–11. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Almad AA, Doreswamy A, Gross SK, Richard
JP, Huo Y, Haughey N and Maragakis NJ: Connexin 43 in astrocytes
contributes to motor neuron toxicity in amyotrophic lateral
sclerosis. GLIA. 64:1154–1169. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Sharrow AC, Li Y, Micsenyi A, Griswold RD,
Wells A, Monga SS and Blair HC: Modulation of osteoblast gap
junction connectivity by serum, TNFalpha, and TRAIL. Exp Cell Res.
314:297–308. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Giepmans BN: Gap junctions and
connexin-interacting proteins. Cardiovasc Res. 62:233–245. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Freitas-Andrade M and Naus CC: Astrocytes
in neuroprotection and neurodegeneration: The role of connexin43
and pannexin1. Neuroscience. 323:207–221. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Garbelli R, Frassoni C, Condorelli DF,
Salinaro A Trovato, Musso N, Medici V, Tassi L, Bentivoglio M and
Spreafico R: Expression of connexin 43 in the human epileptic and
drug-resistant cerebral cortex. Neurology. 76:895–902. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Almad AA, Doreswamy A, Gross SK, Richard
JP, Huo Y, Haughey N and Maragakis NJ: Connexin 43 in Astrocytes
Contributes to Motor Neuron Toxicity in Amyotrophic Lateral
Sclerosis. Glia. 64:1154–1169. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Tabernero A, Gangoso E, Jaraíz-Rodríguez M
and Medina JM: The role of connexin43-Src interaction in
astrocytomas: A molecular puzzle. Neuroscience. 323:183–194. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Giaume C, Fromaget C, Aoumari A, Cordier
J, Glowinski J and Gros D: Gap junctions in cultured astrocytes:
Single-channel currents and characterization of channel-forming
protein. Neuron. 6:133–143. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Giaume C, Koulakoff A, Roux L, Holcman D
and Rouach N: Astroglial networks: A step further in neuroglial and
gliovascular interactions. Nat Rev Neurosci. 11:87–99. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Giaume C, Leybaert L, Naus CC and Sáez JC:
Connexin and pannexin hemichannels in brain glial cells:
Properties, pharmacology, and roles. Front Pharmacol. 4:882013.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bennett MV, Contreras JE, Bukauskas FF and
Sáez JC: New roles for astrocytes: Gap junction hemichannels have
something to communicate. Trends Neurosci. 26:610–617. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Nagy JI and Rash JE: Connexins and gap
junctions of astrocytes and oligodendrocytes in the CNS. Brain Res
Brain Res Rev. 32:29–44. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Scemes E: Components of astrocytic
intercellular calcium signaling. Mol Neurobiol. 22:167–179. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
van den pol AN, Finkberiner SM and
Cornell-Bell AH: Calcium excitability and oscillations in
suprachiasmatic nucleus neurons and glia in vitro. J Neurosci.
12:2648–2664. 1992.PubMed/NCBI
|
|
20
|
Mehta PP, Yamamoto M and Rose B:
Transcription of the gene for the gap junctional protein connexin43
and expression of functional cell-to-cell channels are regulated by
c AMP. Mol Biol Cell. 3:839–850. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Giaume C, Tabernero A and Medina JM:
Metabolic trafficking through astrocytic gap junctions. Glia.
21:114–123. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Nedergaard M: Direct signaling from
astrocytes to neurons in cultures of mammalian brain cells.
Science. 263:1768–1771. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zhang W, Nwagwu C, Le DM, Yong VW, Song H
and Couldwell WT: Increased invasive capacity of
connexin43-overexpressing malignant glioma cells. J Neurosurg.
99:1039–1046. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Bates DC, Sin WC, Aftab Q and Naus CC:
Connexin43 Enhances Glioma Invasion by a Mechanism Involving the
Carboxy Terminus. GLIA. 55:1554–1564. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Sin WC, Crespin S and Mesnil M: Opposing
roles of connexin43 in glioma progression. Biochim Biophys Acta.
1818:2058–2067. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Sin WC, Aftab Q, Bechberger JF, Leung JH,
Chen H and Naus CC: Astrocytes promote glioma invasion via the gap
junction protein connexin43. Oncogene. 35:1504–1516. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ye XY, Jiang QH, Hong T, Zhang ZY, Yang
RJ, Huang JQ, Hu K and Peng YP: Altered expression of connexin43
and phosphorylation connexin43 in glioma tumors. Int J Clin Exp
Pathol. 8:4296–4306. 2015.PubMed/NCBI
|
|
28
|
Crespin S, Fromont G, Wager M, Levillain
P, Cronier L, Monvoisin A, Defamie N and Mesnil M: Expression of a
gap junction protein, connexin43, in a large panel of human
gliomas: New insights. Cancer Med. 5:1742–1752. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kolar K, Freitas-Andrade M, Bechberger JF,
Krishnan H, Goldberg GS, Naus CC and Sin WC: Podoplanin: A marker
for reactive gliosis in gliomas and brain injury. J Neuropathol Exp
Neurol. 74:64–74. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Aronica E, Gorter JA, Jansen GH, Leenstra
S, Yankaya B and Troost D: Expression of connexin 43 and connexin
32 gap-junction proteins in epilepsy-associated brain tumors and in
the perilesional epileptic cortex. Acta Neuropathol. 101:449–459.
2001.PubMed/NCBI
|
|
31
|
Pallud J, Le van Quyen M, Bielle F,
Pellegrino C, Varlet P, Cresto N, Baulac M, Duyckaerts C,
Kourdougli N, Chazal G, et al: Cortical GABAergic excitation
contributes to epileptic activities around human glioma. Sci Transl
Med. 6:244ra892014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Hitomi M, Deleyrolle LP, Mulkearns-Hubert
EE, Jarrar A, Li M, Sinyuk M, Otvos B, Brunet S, Flavahan WA,
Hubert CG, et al: Differential connexin function enhances
self-renewal in glioblastoma. Cell Rep. 11:1031–1042. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Yu SC, Xiao HL, Jiang XF, Wang QL, Li Y,
Yang XJ, Ping YF, Duan JJ, Jiang JY, Ye XZ, et al: Connexin 43
reverses malignant phenotypes of glioma stem cells by modulating
E-cadherin. Stem Cell. 30:108–120. 2012. View Article : Google Scholar
|
|
34
|
Moinfar Z, Dambach H and Faustmann PM:
Influence of drugs on gap junctions in glioma cell lines and
primary astrocytes in vitro. Front Physiol. 5:1862014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Naus CC and Laird DW: Implications and
challenges of connexin connections to cancer. Nat Rev Cancer.
10:435–441. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Sánchez-Alvarez R, Tabernero A,
Sánchez-Abarca LI, Orfao A, Giaume C and Medina JM: Proliferation
of C6 glioma cells is blunted by the increase in gap junction
communication caused by tolbutamide. FEBS Lett. 509:1–206. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Sánchez-Alvarez R, Paíno T,
Herrero-González S, Medina JM and Tabernero A: Tolbutamide reduces
glioma cell proliferation by increasing connexin43, which promotes
the up-regulation of p21 and p27 and subsequent changes in
retinoblastoma phosphorylation. Glia. 54:125–134. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Mostafavi H, Khaksarian M, Joghataei MT,
Soleimani M, Hassanzadeh G, Eftekhari S, Soleimani M, Mousavizadeh
K, Estiri H, Ahmadi S and Hadjighassem MR: Selective β2 adrenergic
agonist increases Cx43 and miR-451 expression via cAMP-Epac. Mol
Med Rep. 9:2405–2410. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Moinfar Z, Dambach H, Schoenebeck B,
Förster E, Prochnow N and Faustmann PM: Estradiol receptors
regulate differential connexin 43 expression in F98 and C6 glioma
cell lines. PLoS One. 11:e01500072016. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ozog MA, Bechberger JF and Naus CC:
Ciliary neurotrophic factor (CNTF) in combination with its soluble
receptor (CNTFRalpha) increases connexin43 expression and
suppresses growth of C6 glioma cells. Cancer Res. 62:3544–3548.
2002.PubMed/NCBI
|
|
41
|
Ghosh S, Kumar A, Tripathi RP and Chandna
S: Connexin-43 regulates p38-mediated cell migration and invasion
induced selectively in tumour cells by low doses of γ-radiation in
an ERK-1/2-independent manner. Carcinogenesis. 35:383–395. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Gangoso E, Thirant C, Chneiweiss H, Medina
JM and Tabernero A: A cell-penetrating peptide based on the
interaction between c-Src and connexin43 reverses glioma stem cell
phenotype. Cell Death Dis. 5:e10232014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Herrero-González S, Valle-Casuso JC,
Sánchez-Alvarez R, Giaume C, Medina JM and Tabernero A: Connexin43
is involved in the effect of endothelin-1 on astrocyte
proliferation and glucose uptake. Glia. 57:222–233. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Li G, Liu X, Liu Z and Su Z: Interactions
of connexin 43 and aquaporin-4 in the formation of glioma-induced
brain edema. Mol Med Rep. 11:1188–1194. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kolar K, Freitas-Andrade M, Bechberger JF,
Krishnan H, Goldberg GS, Naus CC and Sin WC: Podoplanin: A marker
for reactive gliosis in gliomas and brain injury. J Neuropathol Exp
Neurol. 74:64–74. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Zhang W, DeMattia JA, Song H and Couldwell
WT: Communication between malignant glioma cells and vascular
endothelial cells through gap junctions. J Neurosurg. 98:846–853.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Huang R, Lin Y, Wang CC, Gano J, Lin B,
Shi Q, Boynton A, Burke J and Huang RP: Connexin 43 suppresses
human glioblastoma cell growth by down-regulation of monocyte
chemotactic protein 1, as discovered using protein array
technology. Cancer Res. 62:2806–2812. 2002.PubMed/NCBI
|
|
48
|
Niu J, Li T, Yi C, Huang N, Koulakoff A,
Weng C, Li C, Zhao CJ, Giaume C and Xiao L: Connexin-based channels
contribute to metabolic pathways in the oligodendroglial lineage. J
Cell Sci. 129:1902–1914. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zhang YW, Nakayama K, Nakayama K and
Morita I: A novel route for connexin 43 to inhibit cell
proliferation: Negative regulation of S-phase kinase-associated
protein (Skp 2). Cancer Res. 63:1623–1630. 2003.PubMed/NCBI
|
|
50
|
Kamei J, Toyofuku T and Hori M: Negative
regulation of p21 by beta-catenin/TCF signaling: A novel mechanism
by which cell adhesion molecules regulate cell proliferation.
Biochem Biophys Res Commun. 312:380–387. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Tabernero A, Sánchez-Alvarez R and Medina
JM: Increased levels of cyclins D1 and D3 after inhibition of gap
junctional communication in astrocytes. J Neurochem. 96:973–982.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Geng Y, Eaton EN, Picón M, Roberts JM,
Lundberg AS, Gifford A, Sardet C and Weinberg RA: Regulation of
cyclin E transcription by E2Fs and retinoblastoma protein.
Oncogene. 12:1173–1180. 1996.PubMed/NCBI
|
|
53
|
Sin WC, Bechberger JF, Rushlow WJ and Naus
CC: Dose-dependent differential upregulation of CCN1/Cyr61 and
CCN3/NOV by the gap junction protein connexin43 in glioma cells. J
Cell Biochem. 103:1772–1782. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Fu CT, Bechberger JF, Ozog MA, Perbal B
and Naus CC: CCN3 (NOV) interacts with connexin43 in C6 glioma
cells: Possible mechanism of connexin-mediated growth suppression.
J Biol Chem. 279:36943–36950. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Bradshaw SL, Naus CC, Zhu D, Kidder GM,
D'Ercole AJ and Han VK: Alterations in the synthesis of
insulin-like growth factor binding proteins and insulin-like growth
factors in rat C6 glioma cells transfected with a gap junction
connexin43 cDNA. Regul Pept. 48:99–112. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Bradshaw SL, Naus CC, Zhu D, Kidder GM and
Han VK: Insulin-like growth factor binding protein-4 gene
expression is induced by transfection of gap junction connexin43
gene in a C6 glioma cell line. Growth Regul. 3:26–29.
1993.PubMed/NCBI
|
|
57
|
Goldberg GS, Bechberger JF, Tajima Y,
Merritt M, Omori Y, Gawinowicz MA, Narayanan R, Tan Y, Sanai Y,
Yamasaki H, et al: Connexin43 suppresses MFG-E8 while inducing
contact growth inhibition of glioma cells. Cancer Res.
60:6018–6026. 2000.PubMed/NCBI
|
|
58
|
Xia ZB, Pu PY, Huang Q, You YP, Wang GX
and Wang CY: Preliminary study on the mechanism of connexin 43 gene
transfection in the control of glioma cell proliferation. Zhonghua
Zhong Liu Za Zhi. 25:4–8. 2003.(In Chinese). PubMed/NCBI
|
|
59
|
González-Sánchez A, Jaraíz-Rodríguez M,
Domínguez-Prieto M, Herrero-González S, Medina JM and Tabernero A:
Connexin43 recruits PTEN and Csk to inhibit c-Src activity in
glioma cells and astrocytes. Oncotarget. 7:49819–49833. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Herrero-González S, Gangoso E, Giaume C,
Naus CC, Medina JM and Tabernero A: Connexin43 inhibits the
oncogenic activity of c-Src in C6 glioma cells. Oncogene.
29:5712–5723. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Suzhi Z, Liang T, Yuexia P, Lucy L,
Xiaoting H, Yuan Z and Qin W: Gap junctions enhance the
antiproliferative effect of microRNA-124-3p in glioblastoma cells.
J Cell Physiol. 230:2476–2488. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Dang X, Doble BW and Kardami E: The
carboxy-tail of connexin-43 localizes to the nucleus and inhibits
cell growth. Mol Cell Biochem. 242:1–2. 2003. View Article : Google Scholar
|
|
63
|
Mennecier G, Derangeon M, Coronas V, Hervé
JC and Mesnil M: Aberrant expression and localization of connexin43
and connexin30 in a rat glioma cell line. Mol Carcinog. 47:391–401.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Jin Z, Xu S, Yu H, Yang B, Zhao H and Zhao
G: miR-125b inhibits connexin43 and Promotes glioma growth. Cell
Mol Neurobiol. 33:1143–1148. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Hao J, Zhang C, Zhang A, Wang K, Jia Z,
Wang G, Han L, Kang C and Pu P: miR-221/222 is the regulator of
Cx43 expression in human glioblastoma cells. Oncol Rep. 27:1–1510.
2012.
|
|
66
|
Robe PA, Rogister B, Merville MP and Bours
V: Growth regulation of astrocytes and C6 cells by TGFbeta1:
Correlation with gap junctions. NeuroReport. 11:2837–2841. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhang B, Feng X, Wang J, Xu X, Liu H and
Lin N: Adenovirus-mediated delivery of bFGF small interfering RNA
increases levels of connexin 43 in the glioma cell line, U251. J
Exp Clin Cancer Res. 29:32010. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhang W, Nwagwu C, Le DM, Yong VW, Song H
and Couldwell WT: Increased invasive capacity of
connexin43-overexpressing malignant glioma cells. J Neurosurg.
99:1039–1046. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Strale PO, Clarhaut J, Lamiche C, Cronier
L, Mesnil M and Defamie N: Down-regulation of Connexin43 expression
reveals the involvement of caveolin-1 containing lipid rafts in
human U251 glioblastoma cell invasion. Mol Carcinog. 51:845–860.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Qin LJ, Jia YS, Zhang YB and Wang YH:
Cyclooxygenase inhibitor induces the upregulation of connexin-43
expression in C6 glioma cells. Biomed Rep. 4:444–448. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Aftab Q, Sin WC and Naus C: Reduction in
gap junction intercellular communication promotes glioma migration.
Oncotarget. 6:11447–11464. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Hong X, Sin WC, Harris AL and Naus CC: Gap
junctions modulate glioma invasion by direct transfer of microRNA.
Oncotarget. 6:15566–15577. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
McDonough WS, Johansson A, Joffee H, Giese
A and Berens ME: Gap junction intercellular communication in
gliomas is inversely related to cell motility. Int J Dev Neurosci.
17:601–611. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Osswald M, Jung E, Sahm F, Solecki G,
Venkataramani V, Blaes J, Weil S, Horstmann H, Wiestler B, Syed M,
et al: Brain tumour cells interconnect to a functional and
resistant network. Nature. 528:93–98. 2015.PubMed/NCBI
|
|
75
|
Reichert M, Müller T and Hunziker W: The
PDZ domains of zonula occludens-1 induce an epithelial to
mesenchymal transition of Madin-Darby canine kidney I cells.
Evidence for a role of beta-catenin/Tcf/Lef signaling. J Biol Chem.
275:9492–9500. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lin JH, Takano T, Cotrina ML, Arcuino G,
Kang J, Liu S, Gao Q, Jiang L, Li F, Lichtenberg-Frate H, et al:
Connexin 43 enhances the adhesivity and mediates the invasion of
malignant glioma cells. J Neurosci. 22:4302–4311. 2002.PubMed/NCBI
|
|
77
|
Reszec J, Szkudlarek M, Hermanowicz A,
Bernaczyk PS, Mariak Z and Chyczewski L: N-cadherin, beta-catenin
and connexin 43 expression in astrocytic tumours of various grades.
Histol Histopathol. 30:361–371. 2015.PubMed/NCBI
|
|
78
|
Kirschstein T and Köhling R: Animal models
of tumour-associated epilepsy. J Neurosci Methods. 260:109–117.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Patel A, Sabbineni H, Clarke A and
Somanath PR: Novel roles of Src in cancer cell
epithelial-to-mesenchymal transition, vascular permeability,
microinvasion and metastasis. Life Sci. 157:52–61. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Elisevich K, Rempel SA, Smith BJ and
Edvardsen K: Hippocampal connexin 43 expression in human complex
partial seizure disorder. Exp Neurol. 145:154–164. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Senner V, Köhling R, Püttmann-Cyrus S,
Straub H, Paulus W and Speckmann EJ: A new
neurophysiological/neuropathological ex vivo model localizes the
origin of glioma-associated epileptogenesis in the invasion area.
Acta Neuropathol. 107:1–7. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Das A, GC IV Wallace, Holmes C, McDowell
ML, Smith JA, Marshall JD, Bonilha L, Edwards JC, Glazier SS, Ray
SK, et al: Hippocampal tissue of patients with refractory temporal
lobe epilepsy is associated with astrocyte activation,
inflammation, and altered expression of channels and receptors.
Neuroscience. 220:237–246. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Fonseca CG, Green CR and Nicholson LF:
Upregulation in astrocytic connexin 43 gap junction levels may
exacerbate generalized seizures in mesial temporal lobe epilepsy.
Brain Res. 929:105–116. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Su M and Tong XX: Astrocytic gap junction
in the hippocampus of rats with lithium pilocarpine-induced
epilepsy. Nan Fang Yi Ke Da Xue Xue Bao. 30:2738–2741. 2010.(In
Chinese). PubMed/NCBI
|
|
85
|
Takahashi DK, Vargas JR and Wilcox KS:
Increased coupling and altered glutamate transport currents in
astrocytes following kainic-acid-induced status epilepticus.
Neurobiol Dis. 40:573–585. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Oliveira R, Christov C, Guillamo JS, de
Boüard S, Palfi S, Venance L, Tardy M and Peschanski M:
Contribution of gap junctional communication between tumor cells
and astroglia to the invasion of the brain parenchyma by human
glioblastomas. BMC Cell Biol. 6:72005. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Liubinas SV, O'Brien TJ, Moffat BM,
Drummond KJ, Morokoff AP and Kaye AH: Tumour associated epilepsy
and glutamate excitotoxicity in patients with gliomas. J Clin
Neurosci. 21:899–908. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Armstrong TS, Grant R, Gilbert MR, Lee JW
and Norden AD: Epilepsy in glioma patients: Mechanisms, management,
and impact of anticonvulsant therapy. Neuro Oncol. 18:779–789.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Elisevich K, Rempel SA, Smith B and Allar
N: Connexin 43 mRNA expression in two experimental models of
epilepsy. Mol Chem Neuropathol. 32:75–88. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Köhling R, Senner V, Paulus W and
Speckmann EJ: Epileptiform activity preferentially arises outside
tumor invasion zone in glioma xenotransplants. Neurobiol Dis.
22:64–75. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Buckingham SC, Campbell SL, Haas BR,
Montana V, Robel S, Ogunrinu T and Sontheimer H: Glutamate release
by primary brain tumors induces epileptic activity. Nat Med.
17:1269–1274. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Kim LC, Song L and Haura EB: Src kinases
as therapeutic targets for cancer. Nat Rev Clin Oncol. 6:587–595.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Mylvaganam S, Ramani M, Krawczyk M and
Carlen PL: Roles of gap junctions, connexins, and pannexins in
epilepsy. Front Physiol. 5:1722014. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Kékesi O, Ioja E, Szabó Z, Kardos J and
Héja L: Recurrent seizure-like events are associated with coupled
astroglial synchronization. Front Cell Neurosci.
9:2152015.PubMed/NCBI
|
|
95
|
Jiang S, Wang YQ, Xu CF, Li YN, Guo R and
Li L: Involvement of connexin43 in the infrasonic noise-induced
glutamate release by cultured astrocytes. Neurochem Res.
39:833–842. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wei H, Deng F, Chen Y, Qin Y, Hao Y and
Guo X: Ultrafine carbon black induces glutamate and ATP release by
activating connexin and pannexin hemichannels in cultured
astrocytes. Toxicology. 323:32–41. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Chever O, Pannasch U, Ezan P and Rouach N:
Astroglial connexin 43 sustains glutamatergic synaptic efficacy.
Philos Trans R Soc Lond B Biol Sci. 369:201305962014. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Unger T, Bette S, Zhang J, Theis M and
Engele J: Connexin-deficiency affects expression levels of glial
glutamate transporters within the cerebrum. Neurosci Lett.
506:12–16. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Figiel M, Allritz C, Lehmann C and Engele
J: Gap junctional control of glial glutamate transporter
expression. Mol Cell Neurosci. 35:130–137. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Shen N, Mo LQ, Hu F, Chen PX, Guo RX and
Feng JQ: A novel role of spinal astrocytic connexin 43: Mediating
morphine antinociceptive tolerance by activation of NMDA receptors
and inhibition of glutamate transporter-1 in rats. CNS Neurosci
Ther. 20:728–736. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Huberfeld G and Vecht CJ: Seizures and
gliomas-towards a single therapeutic approach. Nat Rev Neurol.
12:204–216. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Robel S and Sontheimer H: Glia as drivers
of abnormal neuronal activity. Nat Neurosci. 19:28–33. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Abakumova T, Abakumov M, Shein S,
Chelushkin P, Bychkov D, Mukhin V, Yusubalieva G, Grinenko N,
Kabanov A, Nukolova N and Chekhonin V: Connexin 43-targeted T1
contrast agent for MRI, diagnosis of glioma. Contrast Media Mol
Imaging. 11:15–23. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Iusubalieva GM, Zorkina IaA, Baklaushev
VP, Gurina OI, Goriaĭnov SA, Aleksandrova EV, Zhukov VIu, Savel'eva
TA, Potapov AA and Chekhonin VP: Connexin-43 antibodies In
Intraoperative diagnosis of experimental poorly differentiated
gliomas. Zh Vopr Neirokhir Im N N Burdenko. 78:3–13. 2014.(In
Russian). PubMed/NCBI
|
|
105
|
Gielen PR, Aftab Q, Ma N, Chen VC, Hong X,
Lozinsky S, Naus CC and Sin WC: Connexin43 confers Temozolomide
resistance in human glioma cells by modulating the mitochondrial
apoptosis pathway. Neuropharmacology. 75:539–548. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Murphy SF, Varghese RT, Lamouille S, Guo
S, Pridham KJ, Kanabur P, Osimani AM, Sharma S, Jourdan J, Rodgers
CM, et al: Connexin 43 inhibition sensitizes chemoresistant
glioblastoma cells to temozolomide. Cancer Res. 76:139–149. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Munoz JL, Rodriguez-Cruz V, Greco SJ,
Ramkissoon SH, Ligon KL and Rameshwar P: Temozolomide resistance in
glioblastoma cells occurs partly through epidermal growth factor
receptor-mediated induction of connexin 43. Cell Death Dis.
5:e11452014. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Yusubalieva GM, Baklaushev VP, Gurina OI,
Zorkina YA, Gubskii IL, Kobyakov GL, Golanov AV, Goryainov SA,
Gorlachev GE, Konovalov AN, et al: Treatment of poorly
differentiated glioma using a combination of monoclonal antibodies
to extracellular connexin-43 fragment, temozolomide, and
radiotherapy. Bull Exp Biol Med. 157:510–515. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Okolie O, Bago JR, Schmid RS, Irvin DM,
Bash RE, Miller CR and Hingtgen SD: Reactive astrocytes potentiate
tumor aggressiveness in a murine glioma resection and recurrence
model. Neuro Oncol. 18:1622–1633. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Theodoric N, Bechberger JF, Naus CC and
Sin WC: Role of gap junction protein Connexin43 in astrogliosis
induced by brain injury. PLoS One. 7:e473112012. View Article : Google Scholar : PubMed/NCBI
|