Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
January-2018 Volume 17 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2018 Volume 17 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Predicting pathogenic genes for primary myelofibrosis based on a system‑network approach

  • Authors:
    • Shu‑Cai Xu
    • Peng Ning
  • View Affiliations / Copyright

    Affiliations: Department of Oncology and Hematology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei 430015, P.R. China, Department of Traumatic Hand and Foot Surgery, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
    Copyright: © Xu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 186-192
    |
    Published online on: October 20, 2017
       https://doi.org/10.3892/mmr.2017.7847
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The aim of the present study was to predict pathogenic genes for primary myelofibrosis (PMF) using a system‑network approach by combining protein‑protein interaction (PPI) network and gene expression data with known pathogenic genes. PMF gene expression profiles, known pathogenic genes and protein‑protein interactions were obtained. Using these data, differentially expressed genes (DEGs) were identified between PMF and normal conditions using significance analysis of microarrays, and seed genes were determined based on the intersection of known pathogenic genes and the PMF gene expression profile. A new network was constructed using the seed genes and their adjacent DEGs within the PPI network. Subsequently, a pathogenic network was extracted from the new network, and contained genes that interacted with at least two seed genes, and the candidate pathogenic genes were predicted based on the cohesion with seed genes. Cluster analysis was performed to mine the pathogenic modules from the pathogenic network, and functional analysis was performed to identify the putative biological processes of the candidate pathogenic genes. Results from the present study identified 845 DEGs between PMF and normal conditions, and 45 seed genes in PMF were screened. Subsequently, a pathogenic network comprising 103 nodes and 265 interactions was constructed, and 4 pathogenic modules (modules A‑D) were mined from the pathogenic network. There were nine candidate pathogenic genes contained within Module A and four potential pathogenic genes, including E1A‑binding protein p300, RAS‑like proto‑oncogene A, von Willebrand factor and RAF‑1 proto‑oncogene, serine/threonine kinase, were identified that may be involved in the same biological process with the seed genes. This study predicted 10 candidate pathogenic genes and several signaling pathways that may be related to the pathogenesis of PMF using a system‑network approach. These predictions may shed light on the PMF pathogenesis and may provide guidelines for future experimental verification.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Jamieson CH, Barroga CF and Vainchenker WP: Miscreant myeloproliferative disorder stem cells. Leukemia. 22:2011–2019. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Tefferi A and Vardiman JW: Classification and diagnosis of myeloproliferative neoplasms: The 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia. 22:14–22. 2008. View Article : Google Scholar : PubMed/NCBI

3 

Vannucchi AM, Guglielmelli P and Tefferi A: Advances in understanding and management of myeloproliferative neoplasms. CA Cancer J Clin. 59:171–191. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Triviai I, Ziegler M, Bergholz U, Oler AJ, Stübig T, Prassolov V, Fehse B, Kozak CA, Kröger N and Stocking C: Endogenous retrovirus induces leukemia in a xenograft mouse model for primary myelofibrosis. Proc Natl Acad Sci USA. 111:8595–8600. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, Boggon TJ, Wlodarska I, Clark JJ, Moore S, et al: Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 7:387–397. 2005. View Article : Google Scholar : PubMed/NCBI

6 

Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M, Steensma DP, Elliott MA, Wolanskyj AP, Hogan WJ, et al: MPL515 mutations in myeloproliferative and other myeloid disorders: A study of 1182 patients. Blood. 108:3472–3476. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira A, Finke C, Score J, Gangat N, Mannarelli C, et al: Mutations and prognosis in primary myelofibrosis. Leukemia. 27:1861–1869. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Tefferi A, Lasho TL, Finke CM, Knudson RA, Ketterling R, Hanson CH, Maffioli M, Caramazza D, Passamonti F and Pardanani A: CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: Clinical, cytogenetic and molecular comparisons. Leukemia. 28:1472–1477. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Kostka D and Spang R: Finding disease specific alterations in the co-expression of genes. Bioinformatics. 20 Suppl 1:i194–i199. 2004. View Article : Google Scholar : PubMed/NCBI

10 

Liu Y, Chen SH, Jin X and Li YM: Analysis of differentially expressed genes and microRNAs in alcoholic liver disease. Int J Mol Med. 31:547–554. 2013. View Article : Google Scholar : PubMed/NCBI

11 

MacFarlane RC and Singh U: Identification of differentially expressed genes in virulent and nonvirulent Entamoeba species: Potential implications for amebic pathogenesis. Infect Immun. 74:340–351. 2006. View Article : Google Scholar : PubMed/NCBI

12 

Lim J, Hao T, Shaw C, Patel AJ, Szabó G, Rual JF, Fisk CJ, Li N, Smolyar A, Hill DE, et al: A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell. 125:801–814. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Liu ZP, Wang Y, Zhang XS and Chen L: Network-based analysis of complex diseases. IET Syst Biol. 6:22–33. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Jia Y, Nie K, Li J, Liang X and Zhang X: Identification of therapeutic targets for Alzheimer's disease via differentially expressed gene and weighted gene co-expression network analyses. Mol Med Rep. 14:4844–4848. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, Felciano RM, Laurance MF, Zhao W, Qi S, Chen Z, et al: Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci USA. 103:17402–17407. 2006. View Article : Google Scholar : PubMed/NCBI

16 

Jiang W, Li X, Rao S, Wang L, Du L, Li C, Wu C, Wang H, Wang Y and Yang B: Constructing disease-specific gene networks using pair-wise relevance metric: Application to colon cancer identifies interleukin 8, desmin and enolase 1 as the central elements. BMC Syst Biol. 2:722008. View Article : Google Scholar : PubMed/NCBI

17 

Pe'er D and Hacohen N: Principles and strategies for developing network models in cancer. Cell. 144:864–873. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Liu X, Tang WH, Zhao XM and Chen L: A network approach to predict pathogenic genes for Fusarium graminearum. PLoS One. 5:e130212010. View Article : Google Scholar : PubMed/NCBI

19 

Norfo R, Zini R, Pennucci V, Bianchi E, Salati S, Guglielmelli P, Bogani C, Fanelli T, Mannarelli C, Rosti V, et al: miRNA-mRNA integrative analysis in primary myelofibrosis CD34+ cells: Role of miR-155/JARID2 axis in abnormal megakaryopoiesis. Blood. 124:e21–e32. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Zhao J, Yang TH, Huang Y and Holme P: Ranking candidate disease genes from gene expression and protein interaction: A Katz-centrality based approach. PLoS One. 6:e243062011. View Article : Google Scholar : PubMed/NCBI

21 

Tusher VG, Tibshirani R and Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA. 98:5116–5121. 2001. View Article : Google Scholar : PubMed/NCBI

22 

Reiner A, Yekutieli D and Benjamini Y: Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics. 19:368–375. 2003. View Article : Google Scholar : PubMed/NCBI

23 

Choi JK, Yu U, Yoo OJ and Kim S: Differential coexpression analysis using microarray data and its application to human cancer. Bioinformatics. 21:4348–4355. 2005. View Article : Google Scholar : PubMed/NCBI

24 

Ravasz E, Somera AL, Mongru DA, Oltvai ZN and Barabási AL: Hierarchical organization of modularity in metabolic networks. Science. 297:1551–1555. 2002. View Article : Google Scholar : PubMed/NCBI

25 

Kanehisa M and Goto S: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28:27–30. 2000. View Article : Google Scholar : PubMed/NCBI

26 

Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC and Lempicki RA: The DAVID gene functional classification tool: A novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 8:R1832007. View Article : Google Scholar : PubMed/NCBI

27 

Gayther SA, Batley SJ, Linger L, Bannister A, Thorpe K, Chin SF, Daigo Y, Russell P, Wilson A, Sowter HM, et al: Mutations truncating the EP300 acetylase in human cancers. Nat Genet. 24:300–303. 2000. View Article : Google Scholar : PubMed/NCBI

28 

Bryan EJ, Jokubaitis VJ, Chamberlain NL, Baxter SW, Dawson E, Choong DY and Campbell IG: Mutation analysis of EP300 in colon, breast and ovarian carcinomas. Int J Cancer. 102:137–141. 2002. View Article : Google Scholar : PubMed/NCBI

29 

Ida K, Kitabayashi I, Taki T, Taniwaki M, Noro K, Yamamoto M, Ohki M and Hayashi Y: Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(q23;q13). Blood. 90:4699–4704. 1997.PubMed/NCBI

30 

Li B, Gale RP, Xu Z, Qin T, Song Z, Zhang P, Bai J, Zhang L, Zhang Y, Liu J, et al: Non-driver mutations in myeloproliferative neoplasm-associated myelofibrosis. J Hematol Oncol. 10:992017. View Article : Google Scholar : PubMed/NCBI

31 

Steensma DP, Pardanani A, Stevenson WS, Hoyt R, Kiu H, Grigg AP, Szer J, Juneja S, Hilton DJ, Alexander WS and Roberts AW: More on Myb in myelofibrosis: Molecular analyses of MYB and EP300 in 55 patients with myeloproliferative disorders. Blood. 107:1733–1735. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Bodemann BO and White MA: Ral GTPases and cancer: Linchpin support of the tumorigenic platform. Nat Rev Cancer. 8:133–140. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Male H, Patel V, Jacob MA, Borrego-Diaz E, Wang K, Young DA, Wise AL, Huang C, Van Veldhuizen P, O'Brien-Ladner A, et al: Inhibition of RalA signaling pathway in treatment of non-small cell lung cancer. Lung Cancer. 77:252–259. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Oxford G and Theodorescu D: The role of Ras superfamily proteins in bladder cancer progression. J Urol. 170:1987–1993. 2003. View Article : Google Scholar : PubMed/NCBI

35 

Neel NF, Stratford JK, Shinde V, Ecsedy JA, Martin TD, Der CJ and Yeh JJ: Response to MLN8237 in pancreatic cancer is not dependent on RalA phosphorylation. Mol Cancer Ther. 13:122–133. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Győrffy B, Stelniec-Klotz I, Sigler C, Kasack K, Redmer T, Qian Y and Schäfer R: Effects of RAL signal transduction in KRAS- and BRAF-mutated cells and prognostic potential of the RAL signature in colorectal cancer. Oncotarget. 6:13334–13346. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Varga A and Baccarini M: RAF-1 (C-RAF)Encyclopedia of Signaling Molecules. Springer; New York: pp. 1562–1570. 2012

38 

Leontovich AA, Zhang S, Quatraro C, Iankov I, Veroux PF, Gambino MW, Degnim A, McCubrey J, Ingle J, Galanis E and D'Assoro AB: Raf-1 oncogenic signaling is linked to activation of mesenchymal to epithelial transition pathway in metastatic breast cancer cells. Int J Oncol. 40:1858–1864. 2012.PubMed/NCBI

39 

Maurer G, Tarkowski B and Baccarini M: Raf kinases in cancer-roles and therapeutic opportunities. Oncogene. 30:3477–3488. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Franchini M, Frattini F, Crestani S, Bonfanti C and Lippi G: von Willebrand factor and cancer: A renewed interest. Thromb Res. 131:290–292. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Morganti M, Carpi A, Amo-Takyi B, Sagripanti A, Nicolini A, Giardino R and Mittermayer C: Von Willebrand's factor mediates the adherence of human tumoral cells to human endothelial cells and ticlopidine interferes with this effect. Biomed Pharmacother. 54:431–436. 2000. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Xu SC and Ning P: Predicting pathogenic genes for primary myelofibrosis based on a system‑network approach. Mol Med Rep 17: 186-192, 2018.
APA
Xu, S., & Ning, P. (2018). Predicting pathogenic genes for primary myelofibrosis based on a system‑network approach. Molecular Medicine Reports, 17, 186-192. https://doi.org/10.3892/mmr.2017.7847
MLA
Xu, S., Ning, P."Predicting pathogenic genes for primary myelofibrosis based on a system‑network approach". Molecular Medicine Reports 17.1 (2018): 186-192.
Chicago
Xu, S., Ning, P."Predicting pathogenic genes for primary myelofibrosis based on a system‑network approach". Molecular Medicine Reports 17, no. 1 (2018): 186-192. https://doi.org/10.3892/mmr.2017.7847
Copy and paste a formatted citation
x
Spandidos Publications style
Xu SC and Ning P: Predicting pathogenic genes for primary myelofibrosis based on a system‑network approach. Mol Med Rep 17: 186-192, 2018.
APA
Xu, S., & Ning, P. (2018). Predicting pathogenic genes for primary myelofibrosis based on a system‑network approach. Molecular Medicine Reports, 17, 186-192. https://doi.org/10.3892/mmr.2017.7847
MLA
Xu, S., Ning, P."Predicting pathogenic genes for primary myelofibrosis based on a system‑network approach". Molecular Medicine Reports 17.1 (2018): 186-192.
Chicago
Xu, S., Ning, P."Predicting pathogenic genes for primary myelofibrosis based on a system‑network approach". Molecular Medicine Reports 17, no. 1 (2018): 186-192. https://doi.org/10.3892/mmr.2017.7847
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team