|
1
|
Lau LF and Nathans D: Identification of a
set of genes expressed during the G0/G1 transition of cultured
mouse cells. EMBO J. 4:3145–3151. 1985.PubMed/NCBI
|
|
2
|
O'Brien TP, Yang GP, Sanders L and Lau LF:
Expression of cyr61, a growth factor-inducible immediate-early
gene. Mol Cell Biol. 10:3569–3577. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Bork P: The modular architecture of a new
family of growth regulators related to connective tissue growth
factor. FEBS Lett. 327:125–130. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Jay P, Bergé-Lefranc JL, Marsollier C,
Méjean C, Taviaux S and Berta P: The human growth factor-inducible
immediate early gene, CYR61, maps to chromosome 1p. Oncogene.
14:1753–1757. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Borkham-Kamphorst E, Schaffrath C, Van de
Leur E, Haas U, Tihaa L, Meurer SK, Nevzorova YA, Liedtke C and
Weiskirchen R: The anti-fibrotic effects of CCN1/CYR61 in primary
portal myofibroblasts are mediated through induction of reactive
oxygen species resulting in cellular senescence, apoptosis and
attenuated TGF-β signaling. Biochim Biophys Acta. 1843:902–914.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Chen Y and Du XY: Functional properties
and intracellular signaling of CCN1/Cyr61. J Cell Biochem.
100:1337–1345. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Chin LH, Hsu SP, Zhong WB and Liang YC:
Involvement of cysteine-rich protein 61 in the epidermal growth
factor-induced migration of human anaplastic thyroid cancer cells.
Mol Carcinog. 55:622–632. 2016. View
Article : Google Scholar : PubMed/NCBI
|
|
8
|
Rachfal AW and Brigstock DR: Structural
and functional properties of CCN proteins. Vitam Horm. 70:69–103.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Berschneider B and Königshoff M: WNT1
inducible signaling pathway protein 1 (WISP1): A novel mediator
linking development and disease. Int J Biochem Cell Biol.
43:306–309. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Choi J, Lin A, Shrier E, Lau LF, Grant MB
and Chaqour B: Degradome products of the matricellular protein CCN1
as modulators of pathological angiogenesis in the retina. J Biol
Chem. 288:23075–23089. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Lin J, Huo R, Wang L, Zhou Z, Sun Y, Shen
B, Wang R and Li N: A novel anti-Cyr61 antibody inhibits breast
cancer growth and metastasis in vivo. Cancer Immunol Immunother.
61:677–687. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Qin Z, Fisher GJ and Quan T: Cysteine-rich
protein 61 (CCN1) domain-specific stimulation of matrix
metalloproteinase-1 expression through aVb3 integrin in human skin
fibroblasts. J Biol Chem. 288:12386–12394. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Heng EC, Huang Y, Black SA Jr and Trackman
PC: CCN2, connective tissue growth factor, stimulates collagen
deposition by gingival fibroblasts via module 3 and alpha6- and
beta1 integrins. J Cell Biochem. 98:409–420. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kireeva ML, Lam SC and Lau LF: Adhesion of
human umbilical vein endothelial cells to the immediate-early gene
product Cyr61 is mediated through integrin alphavbeta3. J Biol
Chem. 273:3090–3096. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Chen N, Chen CC and Lau LF: Adhesion of
human skin fibroblasts to Cyr61 is mediated through integrin alpha
6beta 1 and cell surface heparan sulfate proteoglycans. J Biol
Chem. 275:24953–24961. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Grzeszkiewicz TM, Lindner V, Chen N, Lam
SC and Lau LF: The angiogenic factor cysteine-rich 61 (CYR61, CCN1)
supports vascular smooth muscle cell adhesion and stimulates
chemotaxis through integrin alpha(6)beta(1) and cell surface
heparan sulfate proteoglycans. Endocrinology. 143:1441–1450. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Schober JM, Chen N, Grzeszkiewicz TM,
Jovanovic I, Emeson EE, Ugarova TP, Ye RD, Lau LF and Lam SC:
Identification of integrin alpha(M)beta(2) as an adhesion receptor
on peripheral blood monocytes for Cyr61 (CCN1) and connective
tissue growth factor (CCN2): Immediate-early gene products
expressed in atherosclerotic lesions. Blood. 99:4457–4465. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Jedsadayanmata A, Chen CC, Kireeva ML, Lau
LF and Lam SC: Activation-dependent adhesion of human platelets to
Cyr61 and Fisp12/mouse connective tissue growth factor is mediated
through integrin alpha(IIb)beta(3). J Biol Chem. 274:24321–24327.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kireeva ML, Mo FE, Yang GP and Lau LF:
Cyr61, a product of a growth factor-inducible immediate-early gene,
promotes cell proliferation, migration, and adhesion. Mol Cell
Biol. 16:1326–1334. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhang F, Hao F, An D, Zeng L, Wang Y, Xu X
and Cui MZ: The matricellular protein Cyr61 is a key mediator of
platelet-derived growth factor-induced cell migration. J Biol Chem.
290:8232–8242. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Huang TL, Mu N, Gu JT, Shu Z, Zhang K,
Zhao JK, Zhang C, Hao Q, Li WN, Zhang WQ, et al: DDR2-CYR61-MMP1
signaling pathway promotes bone erosion in rheumatoid arthritis
through regulating migration and invasion of fibroblast-like
synoviocytes. J Bone Miner Res. 32:407–418. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Wei J, Yu G, Shao G, Sun A, Chen M, Yang W
and Lin Q: CYR61 (CCN1) is a metastatic biomarker of gastric cardia
adenocarcinoma. Oncotarget. 7:31067–31078. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Borkham-Kamphorst E, Steffen BT, Van de
Leur E, Haas U, Tihaa L, Friedman SL and Weiskirchen R: CCN1/CYR61
overexpression in hepatic stellate cells induces ER stress-related
apoptosis. Cell Signal. 28:34–42. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
You JJ, Yang CH, Yang CM and Chen MS:
Cyr61 induces the expression of monocyte chemoattractant protein-1
via the integrin avb3, FAK, PI3K/Akt, and NF-kB pathways in retinal
vascular endothelial cells. Cell Signal. 26:133–140. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Huang YT, Lan Q, Ponsonnet L, Blanquet M,
Christofori G, Zaric J and Rüegg C: The matricellular protein CYR61
interferes with normal pancreatic islets architecture and promotes
pancreatic neuroendocrine tumor progression. Oncotarget.
7:1663–1674. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Li X, Li C, Dong X and Gou W: MicroRNA-155
inhibits migration of trophoblast cells and contributes to the
pathogenesis of severe preeclampsia by regulating endothelial
nitric oxide synthase. Mol Med Rep. 10:550–554. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Lau LF: CCN1 and CCN2: Blood brothers in
angiogenic action. J Cell Commun Signal. 6:121–123. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
O'Brien TP and Lau LF: Expression of the
growth factor-inducible immediate early gene cyr61 correlates with
chondrogenesis during mouse embryonic development. Cell Growth
Differ. 3:645–654. 1992.PubMed/NCBI
|
|
29
|
Chijiiwa M, Mochizuki S, Kimura T, Abe H,
Tanaka Y, Fujii Y, Shimizu H, Enomoto H, Toyama Y and Okada Y: CCN1
(Cyr61) is overexpressed in human osteoarthritic cartilage and
inhibits ADAMTS-4 (Aggrecanase 1) activity. Arthritis Rheumatol.
67:1557–1567. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Yu Y, Park YS, Kim HS, Kim HY, Jin YM,
Jung SC, Ryu KH and Jo I: Characterization of long-term in vitro
culture-related alterations of human tonsil-derived mesenchymal
stem cells: Role for CCN1 in replicative senescence-associated
increase in osteogenic differentiation. J Anat. 225:510–518. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhang B, Tsang PC, Pate JL and Moses MA: A
role for cysteine-rich 61 in the angiogenic switch during the
estrous cycle in cows: Regulation by prostaglandin F2alpha. Biol
Reprod. 85:261–268. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Klein C: Novel equine
conceptus?endometrial interactions on Day 16 of pregnancy based on
RNA sequencing. Reprod Fertil Dev. May 5–2015.(Epub ahead of
print). PubMed/NCBI
|
|
33
|
Chen X, Liu Y, Xu X and Chen H:
Correlation of Cyr61 and CTGF in placentas from the late
pre-eclamptic pregnancy. J Perinat Med. 40:199–200. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Mo FE, Muntean AG, Chen CC, Stolz DB,
Watkins SC and Lau LF: CYR61 (CCN1) is essential for placental
development and vascular integrity. Mol Cell Biol. 22:8709–8720.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Malik AR, Urbanska M, Gozdz A, Swiech LJ,
Nagalski A, Perycz M, Blazejczyk M and Jaworski J: Cyr61, a
matricellular protein, is needed for dendritic arborization of
hippocampal neurons. J Biol Chem. 288:8544–8559. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kipkeew F, Kirsch M, Klein D, Wuelling M,
Winterhager E and Gellhaus A: CCN1 (CYR61) and CCN3 (NOV) signaling
drives human trophoblast cells into senescence and stimulates
migration properties. Cell Adh Migr. 10:163–178. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Draaken M, Proske J, Schramm C, Wittler L,
Bartels E, Nöthen MM, Reutter H and Ludwig M: Embryonic expression
of the cysteine rich protein 61 (CYR61) gene: A candidate for the
development of human epispadias. Birth Defects Res A Clin Mol
Teratol. 88:546–550. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Romereim SM, Summers AF, Pohlmeier WE,
Zhang P, Hou X, Talbott HA, Cushman RA, Wood JR, Davis JS and Cupp
AS: Gene expression profiling of bovine ovarian follicular and
luteal cells provides insight into cellular identities and
functions. Mol Cell Endocrinol. 439:379–394. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Chen Y, Ni H, Ma XH, Hu SJ, Luan LM, Ren
G, Zhao YC, Li SJ, Diao HL, Xu X, et al: Global analysis of
differential luminal epithelial gene expression at mouse
implantation sites. J Mol Endocrinol. 37:147–161. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Wu P, Kwok CS, Haththotuwa R, Kotronias
RA, Babu A, Fryer AA, Myint PK, Chew-Graham CA and Mamas MA:
Pre-eclampsia is associated with a twofold increase in diabetes: A
systematic review and meta-analysis. Diabetologia. 59:2518–2526.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Hodgins S: Pre-eclampsia as underlying
cause for perinatal deaths: Time for action. Glob Health Sci Pract.
3:525–527. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Chaiworapongsa T, Chaemsaithong P, Yeo L
and Romero R: Pre-eclampsia part 1: Current understanding of its
pathophysiology. Nat Rev Nephrol. 10:466–480. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhang X, Yan G, Diao Z, Sun H and Hu Y:
NUR77 inhibits the expression of TIMP2 and increases the migration
and invasion of HTR-8/SVneo cells induced by CYR61. Placenta.
33:561–567. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Zhang Y, Diao Z, Su L, Sun H, Li R, Cui H
and Hu Y: MicroRNA-155 contributes to preeclampsia by
down-regulating CYR61. Am J Obstet Gynecol. 202(466): e1–e7.
2010.PubMed/NCBI
|
|
45
|
Huang J, Gao K, Lin J and Wang Q:
MicroRNA-100 inhibits osteosarcoma cell proliferation by targeting
Cyr61. Tumour Biol. 35:1095–1100. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sarkissyan S, Sarkissyan M, Wu Y, Cardenas
J, Koeffler HP and Vadgama JV: IGF-1 regulates Cyr61 induced breast
cancer cell proliferation and invasion. PLoS One. 9:e1035342014.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Johnson SK, Stewart JP, Bam R, Qu P,
Barlogie B, van Rhee F, Shaughnessy JD Jr, Epstein J and Yaccoby S:
CYR61/CCN1 overexpression in the myeloma microenvironment is
associated with superior survival and reduced bone disease. Blood.
124:2051–2060. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Shigeoka M, Urakawa N, Nishio M, Takase N,
Utsunomiya S, Akiyama H, Kakeji Y, Komori T, Koma Y and Yokozaki H:
Cyr61 promotes CD204 expression and the migration of macrophages
via MEK/ERK pathway in esophageal squamous cell carcinoma. Cancer
Med. 4:437–446. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Maity G, Mehta S, Haque I, Dhar K, Sarkar
S, Banerjee SK and Banerjee S: Pancreatic tumor cell secreted
CCN1/Cyr61 promotes endothelial cell migration and aberrant
neovascularization. Sci Rep. 4:49952014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Arslan AA, Gold LI, Mittal K, Suen TC,
Belitskaya-Levy I, Tang MS and Toniolo P: Gene expression studies
provide clues to the pathogenesis of uterine leiomyoma: New
evidence and a systematic review. Hum Reprod. 20:852–863. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Di Tommaso S, Massari S, Malvasi A,
Bozzetti MP and Tinelli A: Gene expression analysis reveals an
angiogenic profile in uterine leiomyoma pseudocapsule. Mol Hum
Reprod. 19:380–387. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wallace K, Chatman K, Spencer SK, Johnson
V and LaMarca B: ‘Special research presentation’ endothelin
regulation of cyr61 in uterine leiomyomas. Fertil Steril. 102
Suppl:e1062014. View Article : Google Scholar
|
|
53
|
Zhao Y, Li Q, Katzenellenbogen BS, Lau LF,
Taylor RN, Bagchi IC and Bagchi MK: Estrogen-induced CCN1 is
critical for establishment of endometriosis-like lesions in mice.
Mol Endocrinol. 28:1934–1947. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Klein R, Stiller S and Gashaw I: Epidermal
growth factor upregulates endometrial CYR61 expression via
activation of the JAK2/STAT3 pathway. Reprod Fertil Dev.
24:482–489. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Chien W, Kumagai T, Miller CW, Desmond JC,
Frank JM, Said JW and Koeffler HP: Cyr61 suppresses growth of human
endometrial cancer cells. J Biol Chem. 279:53087–53096. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Fournier A, Dossus L, Mesrine S, Vilier A,
Boutron-Ruault MC, Clavel-Chapelon F and Chabbert-Buffet N: Risks
of endometrial cancer associated with different hormone replacement
therapies in the E3 N cohort, 1992–2008. Am J Epidemiol.
180:508–517. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Joy J: Epigenetic regulation of key genes
involved in cervical malignancy. 44:2014.
|
|
58
|
Xie H, Zhao Y, Caramuta S, Larsson C and
Lui WO: miR-205 expression promotes cell proliferation and
migration of human cervical cancer cells. PLoS One. 7:e469902012.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Bartel F, Balschun K, Gradhand E, Strauss
HG, Dittmer J and Hauptmann S: Inverse expression of cystein-rich
61 (Cyr61/CCN1) and connective tissue growth factor (CTGF/CCN2) in
borderline tumors and carcinomas of the ovary. Int J Gynecol
Pathol. 31:405–415. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Lee KB, Byun HJ, Park SH, Park CY, Lee SH
and Rho SB: CYR61 controls p53 and NF-kB expression through
PI3K/Akt/mTOR pathways in carboplatin-induced ovarian cancer cells.
Cancer Lett. 315:86–95. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Lin Y, Xu T, Tian G and Cui M:
Cysteine-rich, angiogenic inducer, 61 expression in patients with
ovarian epithelial carcinoma. J Int Med Res. 42:300–306. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Po LK and Liu GY: Development of uterine
smooth muscle tumour of uncertain malignant potential (STUMP) after
laparoscopic myomectomy of an atypical leiomyoma. J Minim Invasive
Gynecol. 22:S2312015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Joseph NM, Solomon DA, Frizzell N, Rabban
JT, Zaloudek C and Garg K: Morphology and immunohistochemistry for
2SC and FH aid in detection of fumarate hydratase gene aberrations
in uterine leiomyomas from young patients. Am J Surg Pathol.
39:1529–1539. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kubínová K, Mára M, Horák P and Kuzel D:
Genetic factors in etiology of uterine fibroids. Ceska Gynekol.
77:58–60. 2012.In Czech. PubMed/NCBI
|
|
65
|
Hashim Abu H: Aromatase inhibitors for
endometriosis-associated infertility; Do we have sufficient
evidence? Int J Fertil Steril. 10:270–277. 2016.PubMed/NCBI
|
|
66
|
Bhatti M, Arnold A, Ketheeswaran A,
Nesbitt-Hawes E, Deans R and Abbott J: A comparison of examination
and surgical findings in women with endometriosis. J Minim Invasive
Gynecol. 22:S55–S56. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Modotte WP, Modotti CC, Dias DS,
Bueloni-Dias FN and Rodrigues NP: Endometriosis and infertility
setup during hysterossalpingogram. J Minim Invasive Gynecol.
22:S1782015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Cozzolino M, Nasioudis D, Sisti G and
Coccia ME: Malignant transformation of vaginal endometriosis-a
review of literature. Gynecol Obstet Invest. 82:105–112. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Tobiume T, Kotani Y, Takaya H, Nakai H,
Tsuji I, Suzuki A and Mandai M: Determinant factors of
postoperative recurrence of endometriosis: Difference between
endometrioma and pain. Eur J Obstet Gynecol Reprod Biol. 205:54–59.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Lin K, Zhan H, Ma J, Xu K, Wu R, Zhou C
and Lin J: Silencing of SRA1 regulates ER expression and attenuates
the growth of stromal cells in ovarian endometriosis. Reprod Sci.
24:836–843. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ohara F, Abdala-Ribeiro HS, Rodrigues FC,
Aldrighi JM and Ribeiro PA: Outcomes of laparoscopic treatment of
rectosigmoid endometriosis: The linear nodulectomy and the
segmental ressection. J Minim Invasive Gynecol. 22:S952015.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Seyhan A, Ata B and Uncu G: The impact of
endometriosis and its treatment on ovarian reserve. Semin Reprod
Med. 33:422–428. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Gashaw I, Stiller S, Böing C, Kimmig R and
Winterhager E: Premenstrual regulation of the pro-angiogenic factor
CYR61 in human endometrium. Endocrinology. 149:2261–2269. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Yanokura M, Banno K, Iida M, Irie H, Umene
K, Masuda K, Kobayashi Y, Tominaga E and Aoki D: MicroRNAS in
endometrial cancer: Recent advances and potential clinical
applications. EXCLI J. 14:190–198. 2015.PubMed/NCBI
|
|
75
|
Djati Widodo MS and Rifa'i M: Role of
MicroRNAs in carcinogenesis that potential for biomarker of
endometrial cancer. Ann Med Surg (Lond). 7:9–13. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Witek Ł, Janikowski T, Bodzek P, Olejek A
and Mazurek U: Expression of tumor suppressor genes related to the
cell cycle in endometrial cancer patients. Adv Med Sci. 61:317–324.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Parkin DM, Bray F, Ferlay J and Pisani P:
Estimating the world cancer burden: Globocan 2000. Int J Cancer.
94:153–156. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Long Roche K, Angarita AM, Cristello A,
Lippitt M, Haider AH, Bowie JV, Fader AN and Tergas AI: ‘Little big
things’: A qualitative study of ovarian cancer survivors and their
experiences with the health care system. J Oncol Pract.
12:e974–e980. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Yokoyama Y, Futagami M, Watanabe J, Sato
N, Terada Y, Miura F, Sugiyama T, Takano T, Yaegashi N, Kojimahara
T, et al: Redistribution of resistance and sensitivity to platinum
during the observation period following treatment of epithelial
ovarian cancer. Mol Clin Oncol. 2:212–218. 2014.PubMed/NCBI
|