|
1
|
Smith GP: Filamentous fusion phage: Novel
expression vectors that display cloned antigens on the virion
surface. Science. 228:1315–1317. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
McCafferty J, Griffiths AD, Winter G and
Chiswell DJ: Phage antibodies: Filamentous phage displaying
antibody variable domains. Nature. 348:552–554. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Barbas CF III, Kang AS, Lerner RA and
Benkovic SJ: Assembly of combinatorial antibody libraries on phage
surfaces: The gene III site. Proc Natl Acad Sci USA. 88:7978–7982.
1991. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Smith GP: Surface presentation of protein
epitopes using bacteriophage expression systems. Curr Opin
Biotechnol. 2:668–673. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Bass S, Greene R and Wells JA: Hormone
phage: An enrichment method for variant proteins with altered
binding properties. Proteins. 8:309–314. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Smith GP and Scott JK: Libraries of
peptides and proteins displayed on filamentous phage. Methods
Enzymol. 217:228–257. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Gao C, Mao S, Kaufmann G, Wirsching P,
Lerner RA and Janda KD: A method for the generation of
combinatorial antibody libraries using pIX phage display. Proc Natl
Acad Sci USA. 99:12612–12616. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Gao C, Mao S, Lo CH, Wirsching P, Lerner
RA and Janda KD: Making artificial antibodies: A format for phage
display of combinatorial heterodimeric arrays. Proc Natl Acad Sci
USA. 96:6025–6030. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Jespers LS, Messens JH, De Keyser A,
Eeckhout D, Van den Brande I, Gansemans YG, Lauwereys MJ, Vlasuk GP
and Stanssens PE: Surface expression and ligand-based selection of
cDNAs fused to filamentous phage gene VI. Biotechnology (N Y).
13:378–382. 1995.PubMed/NCBI
|
|
10
|
Hufton SE, Moerkerk PT, Meulemans EV, de
Bruïne A, Arends JW and Hoogenboom HR: Phage display of cDNA
repertoires: The pVI display system and its applications for the
selection of immunogenic ligands. J Immunol Methods. 231:39–51.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zheng Z, Jiang H, Huang Y, Wang J, Qiu L,
Hu Z, Ma X and Lu Y: Screening of an anti-inflammatory peptide from
Hydrophis cyanocinctus and analysis of its activities and mechanism
in DSS-induced acute colitis. Sci Rep. 6:256722016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wang Z, Wang D, Chen J, Sela DA and Nugen
SR: Development of a novel bacteriophage based biomagnetic
separation method as an aid for sensitive detection of viable
Escherichia coli. Analyst. 141:1009–1016. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Demerec M and Fano U:
Bacteriophage-resistant mutants in escherichia coli. Genetics.
30:119–136. 1945.PubMed/NCBI
|
|
14
|
Sipley J, Stassi D, Dunn J and Goldman E:
Analysis of bacteriophage T7 gene 10A and frameshifted 10B
proteins. Gene Expr. 1:127–136. 1991.PubMed/NCBI
|
|
15
|
Condron BG, Atkins JF and Gesteland RF:
Frameshifting in gene 10 of bacteriophage T7. J Bacteriol.
173:6998–7003. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Molineux IJ: No syringes please, ejection
of phage T7 DNA from the virion is enzyme driven. Mol Microbiol.
40:1–8. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Leiman M: Research of effectiveness is a
challenge in psychotherapy. Duodecim. 120:2645–2653. 2004.(In
Finnish). PubMed/NCBI
|
|
18
|
Chang CY, Kemp P and Molineux IJ: Gp15 and
gp16 cooperate in translocating bacteriophage T7 DNA into the
infected cell. Virology. 398:176–186. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Lupo D, Leptihn S, Nagler G, Haase MJ,
Molineux I and Kuhn A: The T7 ejection nanomachine components
gp15-gp16 form a spiral ring complex that binds DNA and a lipid
membrane. Virology. 486:263–271. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Johns M, George AJ and Ritter MA: In vivo
selection of sFv from phage display libraries. J Immunol Methods.
239:137–151. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Hu CF, Peng XJ, Zhou YY, Tan YP, Li SQ and
Zhu YG: Construction of T7 phage display library from the anther of
Honglian hybrid line of rice. Yi Chuan. 30:771–775. 2008.(In
Chinese). View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Paschke M: Phage display systems and their
applications. Appl Microbiol Biotechnol. 70:2–11. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Li W and Caberoy NB: New perspective for
phage display as an efficient and versatile technology of
functional proteomics. Appl Microbiol Biotechnol. 85:909–919. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Danner S and Belasco JG: T7 phage display:
A novel genetic selection system for cloning RNA-binding proteins
from cDNA libraries. Proc Natl Acad Sci USA. 98:12954–12959. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Hansen MH, Ostenstad B and Sioud M:
Identification of immunogenic antigens using a phage-displayed cDNA
library from an invasive ductal breast carcinoma tumour. Int J
Oncol. 19:1303–1309. 2001.PubMed/NCBI
|
|
26
|
Larman HB, Zhao Z, Laserson U, Li MZ,
Ciccia A, Gakidis MA, Church GM, Kesari S, Leproust EM, Solimini NL
and Elledge SJ: Autoantigen discovery with a synthetic human
peptidome. Nat Biotechnol. 29:535–541. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Talwar H, Rosati R, Li J, Kissner D, Ghosh
S, -Madrid FF and Samavati L: Development of a T7 phage display
library to detect sarcoidosis and tuberculosis by a panel of novel
antigens. EBioMedicine. 2:341–350. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hashemi H, Pouyanfard S, Bandehpour M,
Noroozbabaei Z, Kazemi B, Saelens X and Mokhtari-Azad T:
Immunization with M2e-displaying T7 bacteriophage nanoparticles
protects against influenza A virus challenge. PLoS One.
7:e457652012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Gazarian KG, Palacios-Rodríguez Y,
Gazarian TG and Huerta L: HIV-1 V3 loop crown epitope-focused
mimotope selection by patient serum from random phage display
libraries: Implications for the epitope structural features. Mol
Immunol. 54:148–156. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Rechkina EA, Denisova GF, Masalova OV,
Lideman LF, Denisov DA, Lesnova EI, Ataullakhanov RI, Gur'ianova SV
and Kushch AA: Epitope mapping of antigenic determinants of
hepatitis C virus proteins by phage display. Mol Biol (Mosk).
40:357–368. 2006.(In Russian). View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Sun EC, Zhao J, Yang T, Liu NH, Geng HW,
Qin YL, Wang LF, Bu ZG, Yang YH, Lunt RA, et al: Identification of
a conserved JEV serocomplex B-cell epitope by screening a
phage-display peptide library with a mAb generated against West
Nile virus capsid protein. Virol J. 8:1002011. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Beghetto E, De Paolis F, Montagnani F,
Cellesi C and Gargano N: Discovery of new Mycoplasma pneumoniae
antigens by use of a whole-genome lambda display library. Microbes
Infect. 11:66–73. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Beghetto E, Gargano N, Ricci S, Garufi G,
Peppoloni S, Montagnani F, Oggioni M, Pozzi G and Felici F:
Discovery of novel streptococcus pneumoniae antigens by screening a
whole-genome lambda-display library. FEMS Microbiol Lett.
262:14–21. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Li Y, Ning YS, Wang YD, Hong YH, Luo J,
Dong WQ and Li M: Production of mouse monoclonal antibodies against
Helicobacter pylori Lpp20 and mapping the antigenic epitope by
phage display library. J Immunol Methods. 325:1–8. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Fan H, Wang Y, Tang F and Lu C:
Determination of the mimic epitope of the M-like protein adhesin in
swine Streptococcus equi subsp. Zooepidemicus. BMC
Microbiol. 8:1702008. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wong CL, Sieo CC and Tan WS: Display of
the VP1 epitope of foot-and-mouth disease virus on bacteriophage T7
and its application in diagnosis. J Virol Methods. 193:611–619.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Pouyanfard S, Bamdad T, Hashemi H,
Bandehpour M and Kazemi B: Induction of protective anti-CTL epitope
responses against HER-2-positive breast cancer based on multivalent
T7 phage nanoparticles. PLoS One. 7:e495392012. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Yang J, Fuller PJ, Morgan J, Shibata H,
McDonnell DP, Clyne CD and Young MJ: Use of phage display to
identify novel mineralocorticoid receptor-interacting proteins. Mol
Endocrinol. 28:1571–1584. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Gao W, He W, Zhao K, Lu H, Ren W, Du C,
Chen K, Lan Y, Song D and Gao F: Identification of NCAM that
interacts with the PHE-CoV spike protein. Virol J. 7:2542010.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Caberoy NB, Zhou Y, Jiang X, Alvarado G
and Li W: Efficient identification of tubby-binding proteins by an
improved system of T7 phage display. J Mol Recognit. 23:74–83.
2010.PubMed/NCBI
|
|
41
|
Blessing AM, Ganesan S, Rajapakshe K, Ying
Sung Y, Bollu Reddy L, Shi Y, Cheung E, Coarfa C, Chang JT,
McDonnell DP and Frigo DE: Identification of a Novel Coregulator,
SH3YL1, that interacts with the androgen receptor n-terminus. Mol
Endocrinol. 29:1426–1439. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Takami M, Takakusagi Y, Kuramochi K,
Tsukuda S, Aoki S, Morohashi K, Ohta K, Kobayashi S, Sakaguchi K
and Sugawara F: A screening of a library of T7 phage-displayed
peptide identifies E2F-4 as an etoposide-binding protein.
Molecules. 16:4278–4294. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Ren HJ, Liu RD, Wang ZQ and Cui J:
Construction and use of a Trichinella spiralis phage display
library to identify the interactions between parasite and host
enterocytes. Parasitol Res. 112:1857–1863. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lauterbach SB, Lanzillotti R and Coetzer
TL: Construction and use of Plasmodium falciparum phage display
libraries to identify host parasite interactions. Malar J.
2:472003. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Cardona-Correa A and Rios-Velazquez C:
Profiling lethal factor interacting proteins from human stomach
using T7 phage display screening. Mol Med Rep. 13:3797–3804. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Fang L, Xu Z, Wang GS, Ji FY, Mei CX, Liu
J and Wu GM: Directed evolution of an LBP/CD14 inhibitory peptide
and its anti-endotoxin activity. PLoS One. 9:e1014062014.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Silman NJ: World influenza congress Europe
2009. Expert Rev Vaccines. 9:273–275. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Tan GH, Yusoff K, Seow HF and Tan WS:
Antigenicity and immunogenicity of the immunodominant region of
hepatitis B surface antigen displayed on bacteriophage T7. J Med
Virol. 77:475–480. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lv Q, Xing S, Gong P, Chang L, Bian Z,
Wang L, Zhang X and Li J: A 78 kDa host cell invasion protein of
Neospora caninum as a potential vaccine candidate. Exp
Parasitol. 148:56–65. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Lun YZ, Cheng J, Zhong YW, Yu ZG, Wang Q,
Wang F and Feng J: Cloning, expression and identification by
immunohistochemistry of humanized single-chain variable fragment
antibody against hepatitis C virus core protein. Pol J Microbiol.
60:13–17. 2011.PubMed/NCBI
|
|
51
|
Gabbard J, Velappan N, Di Niro R, Schmidt
J, Jones CA, Tompkins SM and Bradbury AR: A humanized anti-M2 scFv
shows protective in vitro activity against influenza. Protein Eng
Des Sel. 22:189–198. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Aavula SM, Nimmagadda SV, Biradhar N, Sula
S, Chandran D, Lingala R and Villuppanoor SA: Generation and
characterization of an scFv directed against Site II of rabies
glycoprotein. Biotechnol Res Int. 2011:6521472011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Abdel-Motal UM, Sarkis PT, Han T, Pudney
J, Anderson DJ, Zhu Q and Marasco WA: Anti-gp120 minibody gene
transfer to female genital epithelial cells protects against HIV-1
virus challenge in vitro. PLoS One. 6:e264732011. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Gnanasekar M, Rao KV, He YX, Mishra PK,
Nutman TB, Kaliraj P and Ramaswamy K: Novel phage display-based
subtractive screening to identify vaccine candidates of Brugia
malayi. Infect Immun. 72:4707–4715. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Long SR, Wang ZQ, Jiang P, Liu RD, Qi X,
Liu P, Ren HJ, Shi HN and Cui J: Characterization and functional
analysis of Trichinella spiralis Nudix hydrolase. Exp
Parasitol. 159:264–273. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Conde J, Doria G and Baptista P: Noble
metal nanoparticles applications in cancer. J Drug Deliv.
2012:7510752012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Mitsunaga M, Ogawa M, Kosaka N, Rosenblum
LT, Choyke PL and Kobayashi H: Cancer cell-selective in vivo near
infrared photoimmunotherapy targeting specific membrane molecules.
Nat Med. 17:1685–1691. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Luo S, Zhang E, Su Y, Cheng T and Shi C: A
review of NIR dyes in cancer targeting and imaging. Biomaterials.
32:7127–7138. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Allegra A, Penna G, Alonci A, Rizzo V,
Russo S and Musolino C: Nanoparticles in oncology: The new
theragnostic molecules. Anticancer Agents Med Chem. 11:669–686.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Shubayev VI, Pisanic TR II and Jin S:
Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev.
61:467–477. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Li Z, Jin Q, Huang C, Dasa S, Chen L, Yap
LP, Liu S, Cai H, Park R and Conti PS: Trackable and targeted phage
as positron emission tomography (PET) agent for cancer imaging.
Theranostics. 1:371–380. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Jemal A, Siegel R, Ward E, Murray T, Xu J
and Thun MJ: Cancer statistics, 2007. CA Cancer J Clin. 57:43–66.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Koolpe M, Dail M and Pasquale EB: An
ephrin mimetic peptide that selectively targets the EphA2 receptor.
J Biol Chem. 277:46974–46979. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Sakamoto K, Kamada Y, Sameshima T, Yaguchi
M, Niida A, Sasaki S, Miwa M, Ohkubo S, Sakamoto JI, Kamaura M, et
al: K-Ras(G12D)-selective inhibitory peptides generated by random
peptide T7 phage display technology. Biochem Biophys Res Commun.
484:605–611. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Takakusagi K, Takakusagi Y, Suzuki T,
Toizaki A, Suzuki A, Kawakatsu Y, Watanabe M, Saito Y, Fukuda R,
Nakazaki A, et al: Multimodal biopanning of T7 phage-displayed
peptides reveals angiomotin as a potential receptor of the
anti-angiogenic macrolide Roxithromycin. Eur J Med Chem.
90:809–821. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Izaguirre-Carbonell J, Kawakubo H, Murata
H, Tanabe A, Takeuchi T, Kusayanagi T, Tsukuda S, Hirakawa T,
Iwabata K, Kanai Y, et al: Novel anticancer agent, SQAP, binds to
focal adhesion kinase and modulates its activity. Sci Rep.
5:151362015. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Oh MH, Yu JH, Kim I and Nam YS:
Genetically programmed clusters of gold nanoparticles for cancer
cell-targeted photothermal therapy. ACS Appl Mater Interfaces.
7:22578–22586. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Dong X, Yang M, Sun H, Lü J, Zheng Z, Li Z
and Zhong L: Combined measurement of CA 15-3 with novel
autoantibodies improves diagnostic accuracy for breast cancer. Onco
Targets Ther. 6:273–279. 2013.PubMed/NCBI
|
|
69
|
Zayakin P, Ancāns G, Siliņa K, Meistere I,
Kalniņa Z, Andrejeva D, Endzeliņš E, Ivanova L, Pismennaja A,
Ruskule A, et al: Tumor-associated autoantibody signature for the
early detection of gastric cancer. Int J Cancer. 132:137–147. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Lin HS, Talwar HS, Tarca AL, Ionan A,
Chatterjee M, Ye B, Wojciechowski J, Mohapatra S, Basson MD, Yoo
GH, et al: Autoantibody approach for serum-based detection of head
and neck cancer. Cancer Epidemiol Biomarkers Prev. 16:2396–2405.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Li HM, Guo K, Yu Z, Feng R and Xu P:
Diagnostic value of protein chips constructed by
lung-cancer-associated markers selected by the T7 phage display
library. Thorac Cancer. 6:469–474. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yuan N, Xin GH, Zuo XX, Huang SK, Wang Y,
Hou L, Qin TJ and Zhao XH: Combination of phage display and SEREX
for screening early lung cancer associated antigens. Zhejiang Da
Xue Xue Bao Yi Xue Ban. 43:388–396. 2014.(In Chinese). PubMed/NCBI
|
|
73
|
Kuroiwa Y, Takakusagi Y, Kusayanagi T,
Kuramochi K, Imai T, Hirayama T, Ito I, Yoshida M, Sakaguchi K and
Sugawara F: Identification and characterization of the direct
interaction between methotrexate (MTX) and high-mobility group box
1 (HMGB1) protein. PLoS One. 8:e630732013. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zhou X, Cao P, Zhu Y, Lu W, Gu N and Mao
C: Phage-mediated counting by the naked eye of miRNA molecules at
attomolar concentrations in a Petri dish. Nat Mater. 14:1058–1064.
2015. View Article : Google Scholar : PubMed/NCBI
|