Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
January-2018 Volume 17 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2018 Volume 17 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of innate lymphoid cells in obesity and metabolic disease (Review)

  • Authors:
    • Jirakrit Saetang
    • Surasak Sangkhathat
  • View Affiliations / Copyright

    Affiliations: Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand, Tumor Biology Research Unit, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
    Copyright: © Saetang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1403-1412
    |
    Published online on: November 13, 2017
       https://doi.org/10.3892/mmr.2017.8038
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The immune system has previously been demonstrated to be associated with the pathophysiological development of metabolic abnormalities. However, the mechanisms linking immunity to metabolic disease remain to be fully elucidated. It has previously been suggested that innate lymphoid cells (ILCs) may be involved in the progression of numerous types of metabolic diseases as these cells act as suppressors and promoters for obesity and associated conditions, and are particularly involved in adipose tissue inflammation, which is a major feature of metabolic imbalance. Group 2 ILCs (ILC2s) have been revealed as anti‑obese immune regulators by secreting anti‑inflammatory cytokines and promoting the polarization of M2 macrophages, whereas group 1 ILCs (ILC1s), including natural killer cells, may promote adipose tissue inflammation via production of interferon‑γ, which in turn polarizes macrophages toward the M1 type. The majority of studies to date have demonstrated the pathological association between ILCs and obesity in the context of adipose tissue inflammation, whereas the roles of ILCs in other organs which participate in obesity development have not been fully characterized. Therefore, identifying the roles of all types of ILCs as central components mediating obesity‑associated inflammation, is of primary concern, and may lead to the discovery of novel preventative and therapeutic interventions.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Boulangé CL, Neves AL, Chilloux J, Nicholson JK and Dumas ME: Impact of the gut microbiota on inflammation, obesity and metabolic disease. Genome Med. 8:422016. View Article : Google Scholar : PubMed/NCBI

2 

Lu Y and Loos RJ: Obesity genomics: Assessing the transferability of susceptibility loci across diverse populations. Genome Med. 5:552013. View Article : Google Scholar : PubMed/NCBI

3 

Westerterp KR and Plasqui G: Physically active lifestyle does not decrease the risk of fattening. PLoS One. 4:e47452009. View Article : Google Scholar : PubMed/NCBI

4 

DiNicolantonio JJ, O'Keefe JH and Lucan SC: Added fructose: A principal driver of type 2 diabetes mellitus and its consequences. Mayo Clin Proc. 90:372–381. 2015. View Article : Google Scholar : PubMed/NCBI

5 

DiNicolantonio JJ, Lucan SC and O'Keefe JH: The evidence for saturated fat and for sugar related to coronary heart disease. Prog Cardiovasc Dis. 58:464–472. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Gregor MF and Hotamisligil GS: Inflammatory mechanisms in obesity. Annu Rev Immunol. 29:415–445. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Sell H, Habich C and Eckel J: Adaptive immunity in obesity and insulin resistance. Nat Rev Endocrinol. 8:709–716. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Purkayastha S and Cai D: Neuroinflammatory basis of metabolic syndrome. Mol Metab. 2:356–363. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, et al: Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 56:1761–1772. 2007. View Article : Google Scholar : PubMed/NCBI

10 

Yang D, Yang W, Tian Z, van Velkinburgh JC, Song J, Wu Y and Ni B: Innate lymphoid cells as novel regulators of obesity and its-associated metabolic dysfunction. Obes Rev. 17:485–498. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Hotamisligil GS: Inflammation and metabolic disorders. Nature. 444:860–867. 2006. View Article : Google Scholar : PubMed/NCBI

12 

Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H and Flier JS: TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 116:3015–3025. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD and Gordon JI: Obesity alters gut microbial ecology. Proc Natl Acad Sci USA. 102:11070–11075. 2005. View Article : Google Scholar : PubMed/NCBI

14 

Venkatesh M, Mukherjee S, Wang H, Li H, Sun K, Benechet AP, Qiu Z, Maher L, Redinbo MR, Phillips RS, et al: Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity. 41:296–310. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Zhang C, Zhang M, Wang S, Han R, Cao Y, Hua W, Mao Y, Zhang X, Pang X, Wei C, et al: Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J. 4:232–241. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Sekirov I, Russell SL, Antunes LC and Finlay BB: Gut microbiota in health and disease. Physiol Rev. 90:859–904. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, et al: A core gut microbiome in obese and lean twins. Nature. 457:480–484. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, Blanchard C, Junt T, Nicod LP, Harris NL and Marsland BJ: Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 20:159–166. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Ley RE, Turnbaugh PJ, Klein S and Gordon JI: Microbial ecology: Human gut microbes associated with obesity. Nature. 444:1022–1023. 2006. View Article : Google Scholar : PubMed/NCBI

20 

Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C and Hardt PD: Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 18:190–195. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, Louis P and Flint HJ: Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond). 32:1720–1724. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Montiel-Castro AJ, González-Cervantes RM, Bravo-Ruiseco G and Pacheco-López G: The microbiota-gut-brain axis: Neurobehavioral correlates, health and sociality. Front Integr Neurosci. 7:702013. View Article : Google Scholar : PubMed/NCBI

23 

Harris K, Kassis A, Major G and Chou CJ: Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J Obes. 2012:8791512012. View Article : Google Scholar : PubMed/NCBI

24 

Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermúdez-Humarán LG, Smirnova N, Bergé M, Sulpice T, Lahtinen S, et al: Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: Molecular mechanisms and probiotic treatment. EMBO Mol Med. 3:559–572. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Cox LM and Blaser MJ: Pathways in microbe-induced obesity. Cell Metab. 17:883–894. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Burcelin R, Garidou L and Pomié C: Immuno-microbiota cross and talk: The new paradigm of metabolic diseases. Semin Immunol. 24:67–74. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Mosser DM and Edwards JP: Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 8:958–969. 2008. View Article : Google Scholar : PubMed/NCBI

28 

Eagle Red A and Chawla A: In obesity and weight loss, all roads lead to the mighty macrophage. J Clin Invest. 120:3437–3440. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Kratz M, Coats BR, Hisert KB, Hagman D, Mutskov V, Peris E, Schoenfelt KQ, Kuzma JN, Larson I, Billing PS, et al: Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab. 20:614–625. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Xu X, Grijalva A, Skowronski A, van Eijk M, Serlie MJ and Ferrante AW Jr: Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab. 18:816–830. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, Lee J, Goldfine AB, Benoist C, Shoelson S and Mathis D: Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med. 15:930–939. 2009. View Article : Google Scholar : PubMed/NCBI

32 

Strissel KJ, DeFuria J, Shaul ME, Bennett G, Greenberg AS and Obin MS: T-cell recruitment and Th1 polarization in adipose tissue during diet-induced obesity in C57BL/6 mice. Obesity (Silver Spring). 18:1918–1925. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie AN, Mebius RE, et al: Innate lymphoid cells – a proposal for uniform nomenclature. Nat Rev Immunol. 13:145–149. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Spits H and Cupedo T: Innate lymphoid cells: Emerging insights in development, lineage relationships and function. Annu Rev Immunol. 30:647–675. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Artis D and Spits H: The biology of innate lymphoid cells. Nature. 517:293–301. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Villanova F, Flutter B, Tosi I, Grys K, Sreeneebus H, Perera GK, Chapman A, Smith CH, Di Meglio P and Nestle FO: Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J Invest Dermatol. 134:984–991. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Fuchs A and Colonna M: Innate lymphoid cells in homeostasis, infection, chronic inflammation and tumors of the gastrointestinal tract. Curr Opin Gastroenterol. 29:581–587. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Cortez VS, Robinette ML and Colonna M: Innate lymphoid cells: New insights into function and development. Curr Opin Immunol. 32:71–77. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Cortez VS and Colonna M: Diversity and function of group 1 innate lymphoid cells. Immunol Lett. 179:19–24. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Sun JC and Lanier LL: NK cell development, homeostasis and function: Parallels with CD8+ T cells. Nat Rev Immunol. 11:645–657. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Robinette ML, Fuchs A, Cortez VS, Lee JS, Wang Y, Durum SK, Gilfillan S and Colonna M: Immunological Genome Consortium: Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat Immunol. 16:306–317. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S, Newberry RD, Cella M and Colonna M: Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity. 38:769–781. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM and Ugolini S: Innate or adaptive immunity? The example of natural killer cells. Science. 331:44–49. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Cichicki F, Schlums H, Theorell J, Tesi B, Miller JS, Ljunggren HG and Bryceson YT: Diversification and functional specialization of human NK cell subsets. Curr Top Microbiol Immunol. 395:63–94. 2016.PubMed/NCBI

45 

Fuchs A: ILC1s in tissue inflammation and infection. Front Immunol. 7:1042016. View Article : Google Scholar : PubMed/NCBI

46 

Gasteiger G, Fan X, Dikiy S, Lee SY and Rudensky AY: Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science. 350:981–985. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Peng H, Jiang X, Chen Y, Sojka DK, Wei H, Gao X, Sun R, Yokoyama WM and Tian Z: Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J Clin Invest. 123:1444–1456. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Klose CSN, Flach M, Möhle L, Rogell L, Hoyler T, Ebert K, Fabiunke C, Pfeifer D, Sexl V, Fonseca-Pereira D, et al: Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell. 157:340–356. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Daussy C, Faure F, Mayol K, Viel S, Gasteiger G, Charrier E, Bienvenu J, Henry T, Debien E, Hasan UA, et al: T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J Exp Med. 211:563–577. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Spits H, Bernink JH and Lanier L: NK cells and type 1 innate lymphoid cells: Partners in host defense. Nat Immunol. 17:758–764. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Sonnenberg GF and Artis D: Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat Med. 21:698–708. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Vivier E, Tomasello E, Baratin M, Walzer T and Ugolini S: Functions of natural killer cells. Nat Immunol. 9:503–510. 2008. View Article : Google Scholar : PubMed/NCBI

53 

Karta MR, Broide DH and Doherty TA: Insights into group 2 innate lymphoid cells in human airway disease. Curr Allergy Asthma Rep. 16:82016. View Article : Google Scholar : PubMed/NCBI

54 

Walker JA, Barlow JL and McKenzie AN: Innate lymphoid cells – how did we miss them? Nat Rev Immunol. 13:75–87. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Hoyler T, Klose CS, Souabni A, Turqueti-Neves A, Pfeifer D, Rawlins EL, Voehringer D, Busslinger M and Diefenbach A: The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity. 37:634–648. 2012. View Article : Google Scholar : PubMed/NCBI

56 

Wong SH, Walker JA, Jolin HE, Drynan LF, Hams E, Camelo A, Barlow JL, Neill DR, Panova V, Koch U, et al: Transcription factor RORα is critical for nuocyte development. Nat Immunol. 13:229–236. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, Furusawa J, Ohtani M, Fujii H and Koyasu S: Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature. 463:540–544. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Saenz SA, Siracusa MC, Perrigoue JG, Spencer SP, Urban JF Jr, Tocker JE, Budelsky AL, Kleinschek MA, Kastelein RA, Kambayashi T, et al: IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature. 464:1362–1366. 2010. View Article : Google Scholar : PubMed/NCBI

59 

Gentek R, Munneke JM, Helbig C, Blom B, Hazenberg MD, Spits H and Amsen D: Modulation of signal strength switches notch from an inducer of T cells to an inducer of ILC2. Front Immunol. 4:3342013. View Article : Google Scholar : PubMed/NCBI

60 

Price AE, Liang HE, Sullivan BM, Reinhardt RL, Eisley CJ, Erle DJ and Locksley RM: Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc Natl Acad Sci USA. 107:11489–11494. 2010. View Article : Google Scholar : PubMed/NCBI

61 

Tait Wojno ED and Artis D: Innate lymphoid cells: Balancing immunity, inflammation and tissue repair in the intestine. Cell Host Microbe. 12:445–457. 2012. View Article : Google Scholar : PubMed/NCBI

62 

Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TK, Bucks C, Kane CM, Fallon PG, Pannell R, et al: Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature. 464:1367–1370. 2010. View Article : Google Scholar : PubMed/NCBI

63 

Wilhelm C, Turner JE, Van Snick J and Stockinger B: The many lives of IL-9: A question of survival? Nat Immunol. 13:637–641. 2012. View Article : Google Scholar : PubMed/NCBI

64 

Doherty TA and Broide DH: Group 2 innate lymphoid cells: New players in human allergic diseases. J Investig Allergol Clin Immunol. 25:1–11; quiz 2p following 11. 2015.PubMed/NCBI

65 

Oliphant CJ, Hwang YY, Walker JA, Salimi M, Wong SH, Brewer JM, Englezakis A, Barlow JL, Hams E, Scanlon ST, et al: MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+) T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity. 41:283–295. 2014. View Article : Google Scholar : PubMed/NCBI

66 

Drake LY, Iijima K and Kita H: Group 2 innate lymphoid cells and CD4+ T cells cooperate to mediate type 2 immune response in mice. Allergy. 69:1300–1307. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Fajt ML, Gelhaus SL, Freeman B, Uvalle CE, Trudeau JB, Holguin F and Wenzel SE: Prostaglandin D2 pathway upregulation: Relation to asthma severity, control and TH2 inflammation. J Allergy Clin Immunol. 131:1504–1512. 2013. View Article : Google Scholar : PubMed/NCBI

68 

Yu X, Pappu R, Ramirez-Carrozzi V, Ota N, Caplazi P, Zhang J, Yan D, Xu M, Lee WP and Grogan JL: TNF superfamily member TL1A elicits type 2 innate lymphoid cells at mucosal barriers. Mucosal Immunol. 7:730–740. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Motomura Y, Morita H, Moro K, Nakae S, Artis D, Endo TA, Kuroki Y, Ohara O, Koyasu S and Kubo M: Basophil-derived interleukin-4 controls the function of natural helper cells, a member of ILC2s, in lung inflammation. Immunity. 40:758–771. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Maazi H, Patel N, Sankaranarayanan I, Suzuki Y, Rigas D, Soroosh P, Freeman GJ, Sharpe AH and Akbari O: ICOS: ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis and induction of airway hyperreactivity. Immunity. 42:538–551. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Salimi M, Barlow JL, Saunders SP, Xue L, Gutowska-Owsiak D, Wang X, Huang LC, Johnson D, Scanlon ST, McKenzie AN, et al: A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med. 210:2939–2950. 2013. View Article : Google Scholar : PubMed/NCBI

72 

Molofsky AB, Van Gool F, Liang HE, Van Dyken SJ, Nussbaum JC, Lee J, Bluestone JA and Locksley RM: Interleukin-33 and interferon-γ counter-regulate group 2 innate lymphoid cell activation during immune perturbation. Immunity. 43:161–174. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Walford HH and Doherty TA: Diagnosis and management of eosinophilic asthma: A US perspective. J Asthma Allergy. 7:53–65. 2014.PubMed/NCBI

74 

Oboki K, Ohno T, Kajiwara N, Arae K, Morita H, Ishii A, Nambu A, Abe T, Kiyonari H, Matsumoto K, et al: IL-33 is a crucial amplifier of innate rather than acquired immunity. Proc Natl Acad Sci USA. 107:18581–18586. 2010. View Article : Google Scholar : PubMed/NCBI

75 

Chang YJ, Kim HY, Albacker LA, Baumgarth N, McKenzie AN, Smith DE, Dekruyff RH and Umetsu DT: Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat Immunol. 12:631–638. 2011. View Article : Google Scholar : PubMed/NCBI

76 

Brestoff JR, Kim BS, Saenz SA, Stine RR, Monticelli LA, Sonnenberg GF, Thome JJ, Farber DL, Lutfy K, Seale P and Artis D: Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature. 519:242–246. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Molofsky AB, Nussbaum JC, Liang HE, Van Dyken SJ, Cheng LE, Mohapatra A, Chawla A and Locksley RM: Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J Exp Med. 210:535–549. 2013. View Article : Google Scholar : PubMed/NCBI

78 

Hams E, Locksley RM, McKenzie AN and Fallon PG: Cutting edge: IL-25 elicits innate lymphoid type 2 and type II NKT cells that regulate obesity in mice. J Immunol. 191:5349–5353. 2013. View Article : Google Scholar : PubMed/NCBI

79 

Spencer SP, Wilhelm C, Yang Q, Hall JA, Bouladoux N, Boyd A, Nutman TB, Urban JF Jr, Wang J, Ramalingam TR, et al: Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science. 343:432–437. 2014. View Article : Google Scholar : PubMed/NCBI

80 

Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S, Sawa S, Lochner M, Rattis F, Mention JJ, Thiam K, Cerf-Bensussan N, Mandelboim O, et al: Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity. 29:958–970. 2008. View Article : Google Scholar : PubMed/NCBI

81 

Cella M, Fuchs A, Vermi W, Facchetti F, Otero K, Lennerz JK, Doherty JM, Mills JC and Colonna M: A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature. 457:722–725. 2009. View Article : Google Scholar : PubMed/NCBI

82 

Satoh-Takayama N: Heterogeneity and diversity of group 3 innate lymphoid cells: New cells on the block. Int Immunol. 28:29–34. 2016.PubMed/NCBI

83 

van de Pavert SA and Vivier E: Differentiation and function of group 3 innate lymphoid cells, from embryo to adult. Int Immunol. 28:35–42. 2016.PubMed/NCBI

84 

Klose CS, Kiss EA, Schwierzeck V, Ebert K, Hoyler T, d'Hargues Y, Göppert N, Croxford AL, Waisman A, Tanriver Y and Diefenbach A: A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells. Nature. 494:261–265. 2013. View Article : Google Scholar : PubMed/NCBI

85 

Hepworth MR, Fung TC, Masur SH, Kelsen JR, McConnell FM, Dubrot J, Withers DR, Hugues S, Farrar MA, Reith W, et al: Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells. Science. 348:1031–1035. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Sawa S, Cherrier M, Lochner M, Satoh-Takayama N, Fehling HJ, Langa F, Di Santo JP and Eberl G: Lineage relationship analysis of RORγt+ innate lymphoid cells. Science. 330:665–669. 2010. View Article : Google Scholar : PubMed/NCBI

87 

Rankin LC, Groom JR, Chopin M, Herold MJ, Walker JA, Mielke LA, McKenzie AN, Carotta S, Nutt SL and Belz GT: The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway. Nat Immunol. 14:389–395. 2013. View Article : Google Scholar : PubMed/NCBI

88 

Takatori H, Kanno Y, Watford WT, Tato CM, Weiss G, Ivanov II, Littman DR and O'Shea JJ: Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med. 206:35–41. 2009. View Article : Google Scholar : PubMed/NCBI

89 

Hanash AM, Dudakov JA, Hua G, O'Connor MH, Young LF, Singer NV, West ML, Jenq RR, Holland AM, Kappel LW, et al: Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease. Immunity. 37:339–350. 2012. View Article : Google Scholar : PubMed/NCBI

90 

Pickard JM, Maurice CF, Kinnebrew MA, Abt MC, Schenten D, Golovkina TV, Bogatyrev SR, Ismagilov RF, Pamer EG, Turnbaugh PJ and Chervonsky AV: Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature. 514:638–641. 2014. View Article : Google Scholar : PubMed/NCBI

91 

Goto Y, Obata T, Kunisawa J, Sato S, Ivanov II, Lamichhane A, Takeyama N, Kamioka M, Sakamoto M, Matsuki T, et al: Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science. 345:12540092014. View Article : Google Scholar : PubMed/NCBI

92 

Gladiator A, Wangler N, Trautwein-Weidner K and LeibundGut-Landmann S: Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J Immunol. 190:521–525. 2013. View Article : Google Scholar : PubMed/NCBI

93 

Van Maele L, Carnoy C, Cayet D, Ivanov S, Porte R, Deruy E, Chabalgoity JA, Renauld JC, Eberl G, Benecke AG, et al: Activation of type 3 innate lymphoid cells and interleukin 22 secretion in the lungs during Streptococcus pneumoniae infection. J Infect Dis. 210:493–503. 2014. View Article : Google Scholar : PubMed/NCBI

94 

Kirchberger S, Royston DJ, Boulard O, Thornton E, Franchini F, Szabady RL, Harrison O and Powrie F: Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J Exp Med. 210:917–931. 2013. View Article : Google Scholar : PubMed/NCBI

95 

Sawa S, Lochner M, Satoh-Takayama N, Dulauroy S, Bérard M, Kleinschek M, Cua D, Di Santo JP and Eberl G: RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol. 12:320–326. 2011. View Article : Google Scholar : PubMed/NCBI

96 

Taube C, Tertilt C, Gyülveszi G, Dehzad N, Kreymborg K, Schneeweiss K, Michel E, Reuter S, Renauld JC, Arnold-Schild D, et al: IL-22 is produced by innate lymphoid cells and limits inflammation in allergic airway disease. PLoS One. 6:e217992011. View Article : Google Scholar : PubMed/NCBI

97 

Osborn O and Olefsky JM: The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med. 18:363–374. 2012. View Article : Google Scholar : PubMed/NCBI

98 

Jin C, Henao-Mejia J and Flavell RA: Innate immune receptors: Key regulators of metabolic disease progression. Cell Metab. 17:873–882. 2013. View Article : Google Scholar : PubMed/NCBI

99 

Winer DA, Luck H, Tsai S and Winer S: The intestinal immune system in obesity and insulin resistance. Cell Metab. 23:413–426. 2016. View Article : Google Scholar : PubMed/NCBI

100 

Bostick JW and Zhou L: Innate lymphoid cells in intestinal immunity and inflammation. Cell Mol Life Sci. 73:237–252. 2016. View Article : Google Scholar : PubMed/NCBI

101 

Hashiguchi M, Kashiwakura Y, Kojima H, Kobayashi A, Kanno Y and Kobata T: IL-33 activates eosinophils of visceral adipose tissue both directly and via innate lymphoid cells. Eur J Immunol. 45:876–885. 2015. View Article : Google Scholar : PubMed/NCBI

102 

Lee MW, Odegaard JI, Mukundan L, Qiu Y, Molofsky AB, Nussbaum JC, Yun K, Locksley RM and Chawla A: Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell. 160:74–87. 2015. View Article : Google Scholar : PubMed/NCBI

103 

Wensveen FM, Jelenčić V, Valentić S, Šestan M, Wensveen TT, Theurich S, Glasner A, Mendrila D, Štimac D, Wunderlich FT, et al: NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol. 16:376–385. 2015. View Article : Google Scholar : PubMed/NCBI

104 

Lee BC, Kim MS, Pae M, Yamamoto Y, Eberlé D, Shimada T, Kamei N, Park HS, Sasorith S, Woo JR, et al: Adipose natural killer cells regulate adipose tissue macrophages to promote insulin resistance in obesity. Cell Metab. 23:685–698. 2016. View Article : Google Scholar : PubMed/NCBI

105 

O'Sullivan TE, Rapp M, Fan X, Weizman OE, Bhardwaj P, Adams NM, Walzer T, Dannenberg AJ and Sun JC: Adipose-resident group 1 innate lymphoid cells promote obesity-associated insulin resistance. Immunity. 45:428–441. 2016. View Article : Google Scholar : PubMed/NCBI

106 

Kim HY, Lee HJ, Chang YJ, Pichavant M, Shore SA, Fitzgerald KA, Iwakura Y, Israel E, Bolger K, Faul J, et al: IL-17 producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med. 20:54–61. 2014. View Article : Google Scholar : PubMed/NCBI

107 

Wang X, Ota N, Manzanillo P, Kates L, Zavala-Solorio J, Eidenschenk C, Zhang J, Lesch J, Lee WP, Ross J, et al: Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature. 514:237–241. 2014.PubMed/NCBI

108 

Hasnain SZ, Borg DJ, Harcourt BE, Tong H, Sheng YH, Ng CP, Das I, Wang R, Chen AC, Loudovaris T, et al: Glycemic control in diabetes is restored by therapeutic manipulation of cytokines that regulate beta cell stress. Nat Med. 20:1417–1426. 2014. View Article : Google Scholar : PubMed/NCBI

109 

Luck H, Tsai S, Chung J, Clemente-Casares X, Ghazarian M, Revelo XS, Lei H, Luk CT, Shi SY, Surendra A, et al: Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab. 21:527–542. 2015. View Article : Google Scholar : PubMed/NCBI

110 

Garidou L, Pomié C, Klopp P, Waget A, Charpentier J, Aloulou M, Giry A, Serino M, Stenman L, Lahtinen S, et al: The gut microbiota regulates intestinal CD4 T cells expressing RORγt and controls metabolic disease. Cell Metab. 22:100–112. 2015. View Article : Google Scholar : PubMed/NCBI

111 

Ding S, Chi MM, Scull BP, Rigby R, Schwerbrock NM, Magness S, Jobin C and Lund PK: High-fat diet: Bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One. 5:e121912010. View Article : Google Scholar : PubMed/NCBI

112 

Hashiguchi M, Kashiwakura Y, Kojima H, Kobayashi A, Kanno Y and Kobata T: Peyer's patch innate lymphoid cells regulate commensal bacteria expansion. Immunol Lett. 165:1–9. 2015. View Article : Google Scholar : PubMed/NCBI

113 

Veilleux A, Mayeur S, Bérubé JC, Beaulieu JF, Tremblay E, Hould FS, Bossé Y, Richard D and Levy E: Altered intestinal functions and increased local inflammation in insulin-resistant obese subjects: A gene-expression profile analysis. BMC Gastroenterol. 15:1192015. View Article : Google Scholar : PubMed/NCBI

114 

Monteiro-Sepulveda M, Touch S, Mendes-Sá C, André S, Poitou C, Allatif O, Cotillard A, Fohrer-Ting H, Hubert EL, Remark R, et al: Jejunal T cell inflammation in human obesity correlates with decreased enterocyte insulin signaling. Cell Metab. 22:113–124. 2015. View Article : Google Scholar : PubMed/NCBI

115 

Johnson AM, Costanzo A, Gareau MG, Armando AM, Quehenberger O, Jameson JM and Olefsky JM: High fat diet causes depletion of intestinal eosinophils associated with intestinal permeability. PLoS One. 10:e01221952015. View Article : Google Scholar : PubMed/NCBI

116 

Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, Kim SG, Li H, Gao Z, Mahana D, et al: Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 158:705–721. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Saetang J and Sangkhathat S: Role of innate lymphoid cells in obesity and metabolic disease (Review). Mol Med Rep 17: 1403-1412, 2018.
APA
Saetang, J., & Sangkhathat, S. (2018). Role of innate lymphoid cells in obesity and metabolic disease (Review). Molecular Medicine Reports, 17, 1403-1412. https://doi.org/10.3892/mmr.2017.8038
MLA
Saetang, J., Sangkhathat, S."Role of innate lymphoid cells in obesity and metabolic disease (Review)". Molecular Medicine Reports 17.1 (2018): 1403-1412.
Chicago
Saetang, J., Sangkhathat, S."Role of innate lymphoid cells in obesity and metabolic disease (Review)". Molecular Medicine Reports 17, no. 1 (2018): 1403-1412. https://doi.org/10.3892/mmr.2017.8038
Copy and paste a formatted citation
x
Spandidos Publications style
Saetang J and Sangkhathat S: Role of innate lymphoid cells in obesity and metabolic disease (Review). Mol Med Rep 17: 1403-1412, 2018.
APA
Saetang, J., & Sangkhathat, S. (2018). Role of innate lymphoid cells in obesity and metabolic disease (Review). Molecular Medicine Reports, 17, 1403-1412. https://doi.org/10.3892/mmr.2017.8038
MLA
Saetang, J., Sangkhathat, S."Role of innate lymphoid cells in obesity and metabolic disease (Review)". Molecular Medicine Reports 17.1 (2018): 1403-1412.
Chicago
Saetang, J., Sangkhathat, S."Role of innate lymphoid cells in obesity and metabolic disease (Review)". Molecular Medicine Reports 17, no. 1 (2018): 1403-1412. https://doi.org/10.3892/mmr.2017.8038
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team